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High Precision Evaluation of the Selfpatch Integral
for Linear Basis Functions on Flat Triangles

Ignace Bogaert and Daniel De Zutter,Fellow, IEEE

Abstract—The application of integral equations for the fre-
quency domain analysis of scattering problems requires the
accurate evaluation of interaction integrals. Generally speaking,
the most critical integral is the selfpatch. However, due tothe
non-smoothness of the Green function, this integral is alsothe
toughest to calculate numerically. In previous work, the source
and test integrals have been determined analytically for the 1

R

singularity, i.e. the static kernel. In this work we extend this result
to the terms of the form Rn, ∀n ∈ {0, 1, 2, 3, 4} that occur in the
Taylor expansion of the Green function. Numerical testing shows
that truncating the Taylor series beyond n = 4 yields a highly
accurate result for λ

7
and λ

10
discretizations. These analytical

formulas are also very robust when applied to highly irregular
triangles.

Index Terms—Selfpatch, Triangular domains, Linear basis
functions, Analytical, High accuracy

I. I NTRODUCTION

CALCULATING interaction integrals is imperative when
solving integral equations using the method of moments.

For patches that do not touch at all, the interaction integrals can
be computed up to high precision by simply utilizing Gaus-
sian quadrature. For touching patches, the non-smoothness
of the Green function makes the calculation of the integrals
nontrivial. Although there exists a host of techniques for
integrating the Green function over the source triangle [1],
[2], the subsequent test integration is usually performed using a
simple Gaussian quadrature rule for triangles. The integrand of
the test integration is bounded, but still exhibits discontinuities
in its first derivative. Therefore, Gaussian quadrature converges
relatively slowly with increasing integration order. Thisis
especially true for the selfpatch, i.e. the interaction integral
of a triangle with itself. The selfpatch is at the same time the
most singularand the most dominant integral, so that formulas
for its accurate and fast calculation are certainly of value.

In previous work [3], [4], explicit formulas were given for
the selfpatch with the static Green function, i.e. the1

R
kernel.

In this work, we will supply additional formulas for kernelsof
the formRn, ∀n ∈ {0, 1, 2, 3, 4}. As will be shown in Section
III, this allows the highly accurate and fast evaluation of the
selfpatch when the frequency differs from zero.

Let the triangle for which we wish to calculate the self-
patch have verticesr1, r2 and r3. The familiar barycentric
coordinates(λ1, λ2, λ3) with λ3 = 1 − λ1 − λ2 will be used
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to parameterize this triangle

r =
3

∑

i=1

λiri. (1)

The following discussion will be limited to linear basis func-
tions, which includes the important cases of RWG and linear-
linear basis functions [5], [6]. Therefore, we only need to
consider the following integral

Ip,q = 4A2

∫ 1

0

∫ 1−λ2

0

∫ 1

0

∫ 1−λ′

2

0

λ′

pλqGk(r − r
′) dλ′

1dλ′

2dλ1dλ2,

(2)

with wavenumberk, Green function

Gk (r − r
′) =

e−jk|r−r
′|

4π |r − r
′|

, (3)

andA the surface area of the triangle. The position vectorr
′

is defined similarly to (1)

r
′ =

3
∑

i=1

λ′

iri. (4)

Clearly, if Ip,q is known, the integrals

Ip = 4A2

∫ 1

0

∫ 1−λ2

0

∫ 1

0

∫ 1−λ′

2

0

λqGk(r − r
′) dλ′

1dλ′

2dλ1dλ2,

(5)

I = 4A2

∫ 1

0

∫ 1−λ2

0

∫ 1

0

∫ 1−λ′

2

0

Gk(r − r
′) dλ′

1dλ′

2dλ1dλ2, (6)

can be easily computed from integral (2) as follows

Ip =

3
∑

q=1

Ip,q , (7)

I =

3
∑

p=1

Ip. (8)

We therefore turn to the computation of integral (2). Assuming
that the size of the triangle is significantly smaller than the
wavelength2π

k
, it makes sense to expand the Green function

(3) into a Taylor series in the wavenumberk. This in turn
converts the selfpatch integral to a Taylor series

Ip,q =
A2

π

∞
∑

n=0

(−jk)nIn−1
p,q (9)
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with In
p,q defined as

In
p,q =

∫ 1

0

∫ 1−λ2

0

∫ 1

0

∫ 1−λ′

2

0

λ′

pλq

|r − r
′|

n

(n + 1)!
dλ′

1dλ′

2dλ1dλ2.

(10)

Strictly speaking, series (9) converges absolutely for allcom-
plex k. However, if the triangle is electrically large, i.e. if
|k| rmin ≫ 1, with rmin the radius of the smallest sphere
encircling the triangle, convergence may require a lot of terms
and may even be numerically unstable. Therefore this Taylor
representation is only practical when the electrical size of the
triangle is sufficiently small. Except in the simulation of very
good conductors, this is almost always the case in practice.

In the following sections, explicit expressions forIn
1,1 and

In
2,3, ∀n ∈ {−1, ..., 4} will be given. These expressions

depend solely on the three side lengths of the triangle

l1 = |r3 − r2| , (11a)

l2 = |r1 − r3| , (11b)

l3 = |r2 − r1| , (11c)

and cyclically permuting these lengths in the formulas yields
the expressions for allIn

p,q.

II. A NALYTICAL CALCULATION OF In
p,q

A. Even n

For even powers ofR, the selfpatch is very easily obtained
because the integrand is a polynomial of degreen. The
following results are obtained:

I0
1,1 = I0

2,3 =
1

36
. (12)

I2
1,1 =

2l22 + 2l23 + l21
8640

, (13a)

I2
2,3 =

l22 + l23 + 3l21
5760

. (13b)

I4
1,1 =

(l23 − l21)
2 + (l21 − l22)

2 + 4l22l
2
3 + 24(l43 + l42) + 11l41

9072000
,

(14a)

I4
2,3 =

4(l22 − l23)
2 + 4l21(l

2
3 + l22) + 9l42 + 9l43 + 37l41
4536000

. (14b)

B. Odd n

For odd n, the integrandRn is no longer a polynomial.
In this case, the dimensionality of the integration can be
reduced by first convolving the source and test triangles.
Then the remaining two integrations can be performed in a
straightforward manner, albeit after lengthy calculations. This
technique has been used before, in [3], and has led to analytical

expressions forn = −1 in equation (10), i.e. the selfpatch with
1

R
kernel:

I−1
1,1 =

1

120

[

6γ1 + (l21 − l22 − l23)

(

γ3 −
ln1

l31

)]

+
l2 − l1

60l23
+

l3 − l1

60l22
(15a)

I−1

2,3 =
1

80

[

2γ1 − (l21 − l22 − l23)

(

γ3 −
ln1

l31

)]

−
l2 − l1

40l23
−

l3 − l1

40l22
. (15b)

In these expressions, the logarithmslni are defined as

lni = − ln

(

1 − 2
li

P

)

∀i ∈ {1, 2, 3} (16)

with the triangle perimeterP = l1 + l2 + l3. The parameters
γn

γn =

3
∑

i=1

lni

lni
. (17)

were also introduced to reduce the notational burden. Note
that theγn are invariant under permutation of the triangle’s
vertices, so they remain the same in the formulas for allIn

p,q.
We will also define the parameterQ as

Q = 16A2, (18)

whereA is still the surface area of the triangle. One of the
reviewers pointed out that, for extremely elongated triangles,
the argument1 − 2 li

P
of the logarithm in Eqn. (16) is calcu-

lated inaccurately. For these extremely elongated triangles, the
following more stable formula for calculating1 − 2 li

P
can be

derived

1 − 2
li

P
=

1

P 2

[

(l1 + l2)
2 − l23

]

,

=
4l1l2l3

P 2li
cos2

(αi

2

)

, (19)

with the anglesαi associated with verticesri calculated by
means of the well-knownatan2 function

αi = atan2
(

4A, (l21 + l22 + l23) − 2l2i
)

. (20)

Equation (19) is stable as long as the surface areaA of the
triangle can be accurately determined fromr1, r2 and r3.
This is always the case in good meshes, since otherwise no
accurate surface integration is possible.

The convolution technique can be applied to integrands
of the form Rn without significant change. Indeed, only
the two outer integrations are different whenn changes, the
convolution remains the same. Using this technique, we obtain
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the following explicit formulas forn = 1

I1
1,1 =

Q

40320

[

10γ3 + 3
(

l21 − l22 − l23
)

(

γ5 −
ln1

l51

)]

+
1

20160
(14l1 + 17l2 + 17l3)

−
(l1 + l3)

2(l3 − l1)
3

6720l42
−

(l1 + l2)
2(l2 − l1)

3

6720l43

+
(l3 + l2)(l2 − l3)

2

2016l21
+

(3l3 − l1)(2l3 + l1)(l3 − l1)

10080l22

+
(3l2 − l1)(2l2 + l1)(l2 − l1)

10080l23
, (21a)

I1
2,3 =

Q

16128

[

2γ3 − 3
(

l21 − l22 − l23
)

(

γ5 −
ln1

l51

)]

+
(l1 + l3)

2(l3 − l1)
3

2688l42
+

(l1 + l2)
2(l2 − l1)

3

2688l43

+
7l2 + 7l3 + 10l1

8064
+

(l3 + l2)(l2 − l3)
2

4032l21

−
l1(l3 + 5l1)(l3 − l1)

4032l22
−

l1(l2 + 5l1)(l2 − l1)

4032l23
. (21b)

For n = 3 we find

I3
1,1 =

Q2

15482880

[

14γ5 + 5(l21 − l23 − l22)

(

γ7 −
ln1

l71

)]

+
(l3 + l1)

4(l3 − l1)
5

1548288l62
+

(l1 + l2)
4(l2 − l1)

5

1548288l63

−
(l2 + l3)

3(l3 − l2)
4

552960l41

−
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2(l3 − l1)
3

11612160l42

−
(14l21 + 5l2l1 + 41l22)(l1 + l2)

2(l2 − l1)
3

11612160l43

+
(11l23 + 2l2l3 + 11l22)(l2 + l3)(l3 − l2)

2

1658880l21

+
(l2 − l1)(86l42 + 23l32l1 + 19l22l

2
1 + 5l2l

3
1 − 13l41)

11612160l23

+
(l3 − l1)(86l43 + 23l33l1 + 19l21l

2
3 + 5l31l3 − 13l41)

11612160l22

+
(l2 + l3)(268l23 − 169l2l3 + 268l22)

23224320

+ l1
(56l21 + 8(l3 + l2)l1 + 23(l22 + l23))

7741440
, (22a)

1 2 3 4

Fig. 1. The four test triangles.

I3
2,3 =

Q2

4423680

[

2γ5 − 5(l21 − l22 − l23)

(
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ln1

l71

)]

−
(l1 + l2)

4(l2 − l1)
5

442368l63
−

(l1 + l3)
4(l3 − l1)

5

442368l62

−
(l2 + l3)
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4

1105920l41

+
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3
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(17l23 + 5l3l1 + 38l21)(l1 + l3)

2(l3 − l1)
3
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−
(l2 − l1)(l

2
2 + 3l21)(25l21 + 7l2l1 − 2l22)

3317760l23

−
(l3 − l1)(l

2
3 + 3l21)(25l21 + 7l3l1 − 2l23)

3317760l22

+
(l2 + l3)(11l22 + 2l3l2 + 11l23)(l3 − l2)

2

3317760l21

+ l1
(l23 + l22)
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+ l21

(l2 + l3)

92160
+ l31

23

829440

+
(l2 + l3)(28l22 − 29l3l2 + 28l23)

2211840
. (22b)

Although these formulas are more lengthy than those in (15),
they do not require the evaluation of additional logarithms
or square roots. Apparently, only three logarithms and three
square roots are required for the explicit evaluation of at least
the six first terms in series (9), which is very efficient.

III. N UMERICAL RESULTS

The previously given formulas were implemented in Matlab
and compared to a brute-force adaptive integration routine.
Four different, increasingly sharp, triangles were used:

r1 =
[

0 0 0
]

, (23)

r2 =
[

4−m+1 0 0
]

, (24)

r3 =
[

0 1 0
]

. (25)

with m ∈ {1, 2, 3, 4}. These triangles are shown in Figure 1
and are designed to investigate the robustness of the analytical
formulas when the triangle becomes highly irregular.

The convergence of the Taylor series (9) is now investigated.
For this, we truncate the series after theRn term and compute
the relative error with respect to the adaptive routine. In
Figures 2 and 3, the relative error for integral (6) is plotted as
a function of the truncation boundn. For Figures 2 and 3, the
wavenumbers1.333m−1 and0.8889m−1 are respectively used.
This corresponds to aλ

7
and λ

10
discretization for the largest
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Fig. 2. The relative error on the selfpatch withk = 1.333m−1 when all
terms up toRn are calculated analytically.
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Fig. 3. The relative error on the selfpatch withk = 0.8889m−1 when all
terms up toRn are calculated analytically.

test triangle (Triangle1 in Figure 1). This explains why series
(9) converges faster in Figure 3. When the Taylor series is
truncated after theR4 term, utilizing the analytical formulas
from this paper, an accuracy around2 10−4 and 2 10−5 is
obtained for aλ

7
and λ

10
discretization respectively. For the

thinner triangles, the convergence is even faster since these
have a smaller electrical size. The thinner triangles also show
that the formulas from this paper are as effective for elongated
triangles as for more regular triangles.

For testing the computational efficiency, the formulas from
this paper were implemented in the C programming language.
Our numerical experiments show that, on an AMD Opteron
244 processor (1.8 GHz), the evaluation of5 million self-
patches (all nine components ofIp,q) required only19 seconds.
It is useful to compare this to the time needed for evaluating
a complex exponential (= the Green function with canceled
singularity), which is one of the dominant costs in state of the
art singularity cancellation schemes [1]. In19 seconds, the
same AMD processor was able to calculate around65 million
exponentials. This means that calculating the entire selfpatch
using the formulas from this paper is roughly equivalent to
evaluating only13 exponentials. Clearly this is very efficient,
especially when considering that both the source and test
integration have been taken into account exactly.

IV. CONCLUSION

Exact, closed form expressions for the first six terms in the
Taylor expansion of the selfpatch integral have been presented.
The evaluation of these terms requires only three logarithms
and three square roots plus elementary operations. For our test
cases, it was shown that these first six terms are sufficient
to obtain a 2 10−4 and 2 10−5 relative accuracy forλ

7

and λ
10

discretizations respectively. Therefore, no additional
integration of a nonsingular part is necessary. Hence this
way of evaluating the selfpatch is extremely efficient. The
analytical formulas also have the additional advantage of being
very robust for highly irregular triangles.
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