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High Precision Evaluation of the Selfpatch Integral
for Linear Basis Functions on Flat Triangles

Ignace Bogaert and Daniel De Zuttégllow, IEEE

Abstract—The application of integral equations for the fre- to parameterize this triangle
quency domain analysis of scattering problems requires the
accurate evaluation of interaction integrals. Generally peaking, 3
the most critical integral is the selfpatch. However, due tothe r= Z)‘iri' (1)
non-smoothness of the Green function, this integral is alsthe i—1
toughest to calculate numerically. In previous work, the sarce . ) . ) L . .
and test integrals have been determined analytically for te & The following discussion will be limited to linear basis fun
singularity, i.e. the static kernel. In this work we extend his result  tions, which includes the important cases of RWG and linear-
tTOtTE terms of the ;Cifhm fé"7 anG {?7172&1374} _thalttocct:_ururgthe linear basis functions [5], [6]. Therefore, we only need to
aylor expansion of the Green function. Numerical testing bows ; P
that truncating the Taylor series beyondn = 4 yields a highly consider the following integral
accurate result for % and % discretizations. These analytical

. . ’ 1 p1=X2 pl p1—=X)
formulas are also very robust when applied to highly irregulr I, = 4A2// // )\;/\qu(r — ') dN;dNyd A d g,
0Jo 0Jo

triangles.
Index Terms—Selfpatch, Triangular domains, Linear basis @
functions, Analytical, High accuracy with wavenumber:, Green function
e—jk|r—r/|
l. INTRODUCTION Gr(r—r') = ey m—E @)

( :ALC_ULAT'NG interaction integrals is imperative whenang 4 the surface area of the triangle. The position veetor
solving integral equations using the method of momentsg. yefined similarly to (1)

For patches that do not touch at all, the interaction inlegran

be computed up to high precision by simply utilizing Gaus- . 3 ,

sian quadrature. For touching patches, the non-smoothness r= Z)\ﬂ“i- (4)

of the Green function makes the calculation of the integrals =1

nontrivial. Although there exists a host of techniques fatlearly, if I, is known, the integrals

integrating the Green function over the source triangle [1] N

[2], the subsequent test integration is usually perfornmssagia o [ T2 N s s

simple Gaussian quadrature rule for triangles. The intedjod I =44 /0/0 /0/0 MG (r — 1) dAydAzdArdA,

the test integration is bounded, but still exhibits disguuities (5)

in its first derivative. Therefore, Gaussian quadraturezeayes 1p1-X2 p1 p1—A,

relatively slowly with increasing integration order. This I:4A2// // Gr(r — ") dN{d\yd\1d)e, (6)

especially true for the selfpatch, i.e. the interactioregnal 070 070

of a triangle with itself. The selfpatch is at the same time thcan be easily computed from integral (2) as follows

most singulaand the most dominant integral, so that formulas

for its accurate and fast calculation are certainly of value I 23: 7 )
In previous work [3], [4], explicit formulas were given for P P

the selfpatch with the static Green function, i.e. %lekernel. qzl

In this work, we will supply additional formulas for kernedé = Z I ®)

the formR", Vn € {0,1, 2, 3,4}. As will be shown in Section — P

11, this allows the highly accurate and fast evaluation loé t P

selfpatch when the frequency differs from zero. We therefore turn to the computation of integral (2). Assugni
Let the triangle for which we wish to calculate the selfthat the size of the triangle is significantly smaller thae th

patch have vertices;, r» andr5. The familiar barycentric Wavelength3%, it makes sense to expand the Green function

coordinateg A1, A2, A3) with A3 = 1 — X\; — Xy will be used (3) into a Taylor series in the wavenumbker This in turn

converts the selfpatch integral to a Taylor series
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with I}, defined as expressions fon = —1 in equation (10), i.e. the selfpatch with
+ kernel:
1—X2 1-X5 /|
// // )\’ — ————dMdN\yd A d)s. 1 1
-1 _ 2 2 ny
(10) Iy = 120 [671 + (i -15-13) (73 - ﬁ)}

Strictly speaking, series (9) converges absolutely focaih- + b—h l3-h (15a)
plex k. However, if the triangle is electrically large, i.e. if 6013 6013

|k rmin > 1, with ry;, the radius of the smallest sphere
encircling the triangle, convergence may require a lot ohie
and may even be numerically unstable. Therefore this Taylor 1= 1 9 12— 12— 1) Iy
representation is only practical when the electrical sizthe 237 g0 T 2B\ I3
triangle is sufficiently small. Except in the simulation adry lb—1, I3—1
good conductors, this is almost always the case in practice. - 4012 a0

In the following sections, explicit expressions ffF; and
IYs, Vn e {—1,..,4} will be given. These expressions In these expressions, the logarithing are defined as
depend solely on the three side lengths of the triangle

(15b)

l; .
I = |rs — 72, (11a) In; = —In (1 - 25) vie{1,2,3} (16)
ly = |ry — 73], (11b) with the triangle perimeteP = I, + Iz + (3. The parameters
Tn
I3 =|re — 1], (11c) 3

=> llin (17)

i=1

and cyclically permuting these lengths in the formulasdgel
the expressions for all;’ .

were also introduced to reduce the notational burden. Note
that the~, are invariant under permutation of the triangle’s
vertices, so they remain the same in the formulas for 3|l
We will also define the parameté) as

For even powers oR, the selfpatch is very easily obtained
because the integrand is a polynomial of degreeThe
following results are obtained:

Il. ANALYTICAL CALCULATION OF I;fq

A. Bvenn

Q = 1642, (18)

o 0 1 where A is still the surface area of the triangle. One of the
Lai=1ls=g. (12) reviewers pointed out that, for extremely elongated triesg
the argument — 2% of the logarithm in Eqn. (16) is calcu-

203 + 213 + 13

lated inaccurately. For these extremely elongated tre&s)dhe

I = YRR (13a) following more stable formula for calculating— 2% can be
derived
13 +13+302 L, 1
134 = W' (13b) 1-25 =% [l +1)* = 13],
- 41 1213 2 [ Qg
(13— 12)2 + (12 — 13)% + 41313 + 24013 + 13) + 111} =, o (3) (19)
Iill _ \"3 1 1 2 2"3 3 2 17
9072000 (14a) With the anglesw; associated with vertices; calculated by
means of the well-knowatan2 function
2 _ 72)\2 2(712 2 4 4 4
I, - 413 - 13)* + 411(2,5-561&)); 91 + 914 + 371} (14b) 0 = atan2 (44, (12 + 2+ 12) — 212) (20)
B. Odd Equation (19) is stable as long as the surface ateaf the
. n

triangle can be accurately determined from, ro and rs.

For odd n, the integrandR™ is no longer a polynomial. This is always the case in good meshes, since otherwise no
In this case, the dimensionality of the integration can b¥ccurate surface integration is possible.
reduced by first convolving the source and test triangles.The convolution technique can be applied to integrands
Then the remaining two integrations can be performed incd the form R™ without significant change. Indeed, only
straightforward manner, albeit after lengthy calculasiohhis the two outer integrations are different whenchanges, the
technique has been used before, in [3], and has led to atallyticonvolution remains the same. Using this technique, weilobta
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the following explicit formulas fom = 1

Q 2 2 2 Iny
L= 10y +3(2 -2 -1 -
117 70320 | V78 =+ ( 11t 3) 5 5

(1411 + 1715 + 1713)

20160
(BP0 W) (D) (e —1)?
672013 672013
(13 + lg)(lg - 13)2 (313 — ll)(213 + ll)(l3 — ll)
201612 1008022
(Bl —lL)(2la 4+ 11)(l2 — 1)
21
* 1008022 ’ (212)
Q Iny
(L +13)%(Is— 1) (L +1)*(—h)?
268813 268813
Tlo +7l3+ 100, (I3 + 12)(l2 — I3)?
8064 403212
Li(ls +50)(s =1 li(la +51)(l2 =11
b+ 1)(23 1) L+ 1)(22 1). (21b)
403215 403213

For n = 3 we find

Q2 2 2 2
I3 14 512 —12 -1 —
L1 = 15182880 s +5(17 =15 = 13) | 7
(I3 +1)' s —1)°  (Lh+1)*(la —h)°
154828815 15482881$
CEIONCERS
55296011
(148 + 5lls + 4183) (I + 1) (Is — 1)®
1161216015
(148 4 5laly + 4113) (11 + 12)2(ls — 1)?
1161216073
n (111% + 20513 + 111%)(12 + 13)(13 - lg)z
165888012
(o — 11)(8613 4 231311 + 191313 + 51213 — 1317)
1161216072
(I5 — 11)(8614 4 23131, + 191313 + 51315 — 1317)
1161216012
n (lz + 13)(2681§ — 16915135 + 2681%)
23224320
l (5612 + 8(I3 + l2)l1 + 23(12 + 12))
7741440 ’

In;
i

(22a)

Fig. 1. The four test triangles.

Q2 2 2 2 In;
Bo=—2 |2y —5(2—12—1 _
23 = Tqa3es0 |20~ P — 2 =) (o7 7

_ (ll + 12)4(12 - ll)5 B (ll + 13)4(13 — ll)5

44236818 44236818
C(+ I3)3(l5 — I2)*
11059201
N (1712 + 5laly + 3812)(1y + 12)%(ly — 11)?
331776014
N (1712 + 5lsly + 3812)(1y + I5)2(I3 — 11)?
331776012
(Iy — 1) (12 + 312)(2512 + Tlyly — 212)
a 331776012
(I3 — 1) (13 + 312)(2512 + Tl3ly — 212)
B 331776012
(lg + 13) (1113 + 213l + 1112) (I3 — 12)?
331776012
12 4+ 12 lo + 13 23
+h (2?:157620) 1 (92160) +1 829440

(lg + 13)(2812 — 29130, + 2812 )
2211840 '
Although these formulas are more lengthy than those in (15),
they do not require the evaluation of additional logarithms
or square roots. Apparently, only three logarithms andethre
square roots are required for the explicit evaluation okast
the six first terms in series (9), which is very efficient.

(22b)

IIl. NUMERICAL RESULTS

The previously given formulas were implemented in Matlab
and compared to a brute-force adaptive integration routine
Four different, increasingly sharp, triangles were used:

ri=[0 0 0], (23)
ro = [47F 0 0], (24)
r3=1[0 1 0]. (25)

with m € {1,2,3,4}. These triangles are shown in Figure 1
and are designed to investigate the robustness of the madlyt
formulas when the triangle becomes highly irregular.

The convergence of the Taylor series (9) is now investigated
For this, we truncate the series after the term and compute
the relative error with respect to the adaptive routine. In
Figures 2 and 3, the relative error for integral (6) is plotss
a function of the truncation bound For Figures 2 and 3, the
wavenumber$.333m~! ando. 8889m‘1 are respectively used.
This corresponds to é and o discretization for the largest
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—e—Triangle 1
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—&— Triangle 4|

Relative error

IV. CONCLUSION

Exact, closed form expressions for the first six terms in the
Taylor expansion of the selfpatch integral have been pteden
The evaluation of these terms requires only three logasthm
and three square roots plus elementary operations. Foesur t
cases, it was shown that these first six terms are sufficient
to obtain a2 10~* and 2 10~° relative accuracy for2
and % discretizations respectively. Therefore, no additional
integration of a nonsingular part is necessary. Hence this
way of evaluating the selfpatch is extremely efficient. The

L L L L L
-1 0 1 2 3 4

Fig. 2. The relative error on the selfpatch with= 1.333m~! when all
terms up toR™ are calculated analytically.
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Fig. 3. The relative error on the selfpatch with= 0.8889m~! when alll
terms up toR™ are calculated analytically.

test triangle (Triangld in Figure 1). This explains why series
(9) converges faster in Figure 3. When the Taylor series is
truncated after thek* term, utilizing the analytical formulas
from this paper, an accuracy arouddl0—* and2 1077 is
obtained for a% and % discretization respectively. For the
thinner triangles, the convergence is even faster sincgethe
have a smaller electrical size. The thinner triangles afeavs
that the formulas from this paper are as effective for eltedja
triangles as for more regular triangles.

For testing the computational efficiency, the formulas from
this paper were implemented in the C programming language.
Our numerical experiments show that, on an AMD Opteron
244 processor1(8 GHz), the evaluation ob million self-
patches (all nine componentsBf,) required onlyl9 seconds.

It is useful to compare this to the time needed for evaluating
a complex exponentiaE the Green function with canceled
singularity), which is one of the dominant costs in statehef t
art singularity cancellation schemes [1]. 18 seconds, the
same AMD processor was able to calculate aro@dillion
exponentials. This means that calculating the entire atlfp
using the formulas from this paper is roughly equivalent to
evaluating onlyl3 exponentials. Clearly this is very efficient,
especially when considering that both the source and test
integration have been taken into account exactly.

analytical formulas also have the additional advantageofd
very robust for highly irregular triangles.
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