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We demonstrate symmetry breaking in ring-like networks composed of three

and four coupled nonlinear cavities, such as photonic crystal resonators. With

coupled mode theory we derive analytical conditions for the appearance of

asymmetric states. The rich dynamical behaviour is further demonstrated by

time-domain calculations, which show cyclical switching action that is useful

for multi-stable all-optical flip-flops. c© 2010 Optical Society of America
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1. Introduction

Structures with coupled nonlinear photonic cavities exhibit a rich and intricate dynamical

behaviour. This opens up a whole new range of applications such as photonic reservoir

computing [1], slow light engineering [2] and all-optical flip-flop operation [3]. Therefore it is

important to develop clear insights into the possible states and instabilities of progressively

more complex designs. By now, networks of hundreds of coupled cavities have been studied

experimentally in the linear regime [4] and the next logical step is to study the effects of

the non-linearities in smaller networks. Network motifs consisting of three or four nodes [5]

already have a significant degree of complexity, and here our aim is to examine the nonlinear

properties of such photonic cavity designs.

Symmetry breaking is a counterintuitive physical effect that describes the appearance of

asymmetric states while the structure under study, and its excitation, is completely sym-

metric. In previous work [3,6], it was shown that two coupled nonlinear cavities can exhibit

symmetry breaking: when equal power is injected on both sides of the coupled cavities, the

reflected output power is different on both sides of the cavities due to non-linear effects. The

symmetry breaking would not be possible in a linear structure. In this paper we couple multi-

ple passive cavities with a Kerr-based nonlinearity in a symmetric structure. In addition, the
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system is excited equally from all sides with a holding beam. We show that these symmetric

setups result in different nonlinear regimes than in the case of systems with two cavities,

with various kinds of asymmetric states. Furthermore, using time-domain studies in the case

of three and four coupled cavities, we demonstrate multi-state flip-flop operation [7, 8]. In

these cases a cyclical switching action is obtained.

Using coupled-mode theory we derive analytical conditions for the symmetry breaking

detuning requirements. Our description is quite general and therefore independent of the

exact implementation. The system could be implemented with compact nonlinear photonic

crystal cavities [9–11] or ring resonators [12]. Recently demonstrated hybrid material systems

are also a promising solution [13].

In section II, we discuss the behaviour of three cavities in a triangular configuration.

Using coupled-mode theory we derive an analytical condition for symmetry breaking in

this structure. Afterwards we look at the different asymmetric states under steady state

conditions and we conclude by studying the dynamical behaviour with the multi-state flip-

flop operation. In section III, we do the same for a configuration of four cavities: after deriving

an analytical condition for symmetry breaking and discussing the steady state behaviour,

we give insight in the switching between the asymmetric states.

2. Three coupled cavities

[Fig. 1 about here.]

2.A. Symmetry breaking condition

We apply coupled-mode theory on a symmetric structure consisting of three coupled nonlin-

ear cavities as depicted in Figure 1. The time dependence of the amplitude ai of the resonance

modes of the cavities is given by [15,16]:

da1

dt
=

[

i (ω0 + δω1) −
1

τ

]

a1 + df1 + db4 + df6 (1)

da2

dt
=

[

i (ω0 + δω2) −
1

τ

]

a2 + df2 + db5 + df4 (2)

da3

dt
=

[

i (ω0 + δω3) −
1

τ

]

a3 + df3 + db6 + df5 (3)

Here fi and bi are the forward and backward propagating mode amplitudes in the waveguides.

We assume the three cavities have the same resonant mode with center frequency ω0 and

with at least a three-fold symmetry (e.g. monopole) in order to have the same coupling d to

the three waveguides. The nonlinear frequency shift due to the Kerr nonlinearity is given by

δωi =
−|ai|2
P0τ 2

(4)
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with P0 the characteristic nonlinear power of the cavity [15] and τ the lifetime of the cavity

which can be related to the Q-factor as Q = ω0τ/2. A formula for the coupling d between

the waveguide modes and the cavity can be derived by applying energy conservation laws

on the coupled-mode equations [16] and we find

d = i

√

2

3τ
exp

(

i
φ

2

)

(5)

Here φ represents the phase depending on the waveguide length and the reflection properties.

For high-Q cavities and small detunings, φ will be quasi independent of the frequency.

The amplitudes of the forward and backward propagating waves are coupled by [17]:

f4 = exp(iφ)b4 + da1 (6)

b4 = exp(iφ)f4 + da2 (7)

Similar equations hold for the other waveguides.

The analysis will be done in the frequency domain so d/dt will be replaced by iω (with ω

the operating frequency). The forward and backward internal waveguide amplitudes can be

eliminated in equations (1-3) and we obtain:
[

i (ω0 − ω + δω1) −
1

τ

]

a1 + κ (2γa1 + a2 + a3) = −df1 (8)
[

i (ω0 − ω + δω2) −
1

τ

]

a2 + κ (2γa2 + a1 + a3) = −df2 (9)
[

i (ω0 − ω + δω3) −
1

τ

]

a3 + κ (2γa3 + a1 + a2) = −df3 (10)

with γ = exp(iφ) and κ = d2/(1 − γ2). In our further analysis, we will use dimensionless

cavity energies A = −|a1|2/P0τ , B = −|a2|2/P0τ and C = −|a3|2/P0τ , and a dimensionless

detuning ∆ = τ(ω0−ω). This detuning ∆ can be expressed also in terms of the linewidth δΩ

of the cavity mode as ∆ = 2(ω0 − ω)/δΩ. To examine the effect of symmetry breaking we

assume equal input powers and phases from all sides (i.e. f1 = f2 = f3). Elimination of f1

in the above equations gives:
[

−1

3
+ i (∆′ + A)

]

a1 =
[

−1

3
+ i (∆′ + B)

]

a2 (11)

=
[

−1

3
+ i (∆′ + C)

]

a3 (12)

with

∆′ = ∆ − 2 cos(φ) − 1

3 sin(φ)
(13)

We take the modulus squared of equation (11) and after factoring we get:

(A − B)
(

B2 + (A + 2∆′)B + A2 + 2∆′A + ∆′2 +
1

9

)

= 0 (14)
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A similar equation holds for the relation between A and C.

Apart from the symmetric solutions derived from the first factor (A = B = C), there is

also the possibility of an asymmetric solution (second factor) if the detuning ∆′ is chosen

correctly and if the solution is stable. The factor of the asymmetric solution can be seen as

a quadratic equation in B for which the discriminant has to be positive for the existence of

real solutions:

− 3A2 − 4∆′A − 4

9
> 0 (15)

This condition is fullfilled if A lies between the values

− 2∆′

3
± 2

√
9∆′2 − 3

9
(16)

Thus the asymmetric solution exists if |∆′| > 1/
√

3. In case of a self-focusing Kerr effect

(positive nonlinearity), A is negative and therefore the condition for symmetry breaking is:

∆′ >
1√
3

(17)

2.B. Static solutions

By solving the coupled-mode equations under steady state conditions, we can find the static

solutions as a function of the input power. In addition, a stability analysis needs to be

performed to determine which of the possible states are stable, and thus excitable in exper-

iments.

The linear stability analysis is done by evaluating the eigenvalues of the Jacobian matrix

for the obtained states. Therefore we rewrite equations (1-3) into 6 ODE’s where the phase

and amplitude are considered separately. The elements of the Jacobian matrix are obtained

by taking the derivatives of these equations to each of the variables (amplitude and phase of

ai). After evaluating this 6 × 6 Jacobian matrix in the possible solutions, we can determine

the corresponding eigenvalues. If the real part of all these eigenvalues is negative, the system

will move into the direction of the equilibrium point.

The stable output powers are depicted as a function of the input power in two different

configurations where the condition for symmetry breaking (Equation 17) is fulfilled (Fig-

ure 2). One can clearly observe that besides the symmetric solution (all output powers the

same and equal to Pin), asymmetric solutions show up for a certain range of input powers

(regions I, II and III). With increasing input power, we uncover a distinctive progression

through three possible symmetry breaking regimes. In region I of Figure 2a, we distinguish

solutions where two out of three output powers are equal and have a higher value than the

third output which is low. By increasing the input power, the two equal outputs split up

(region II) and the symmetry breaking in the system is complete: all three output powers

are different. This state then transforms to region III where two low output powers are equal
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and the third output is high. When we change the phase φ, we find the bifurcation depicted

in Figure 2b where the same states appear but in a different order. The parameters of the

two examples are chosen in order to show the three possible regimes in a single example, but

were not optimized for possible other conditions. Higher values for the detuning ∆ seem to

increase the extinction ratio but also moves the asymmetric regime to higher input powers.

However, we did not perform extensive analysis on this matter.

[Fig. 2 about here.]

To have more insight in the symmetric solution of Figure 2a, we depict the energy of the

resonant modes in the cavities as a function of the input power (Figure 3). It appears that the

symmetric solution itself exhibits also a bifurcation structure. Despite this bifurcation in the

cavity energies of the symmetric solutions, this asymmetry does not show up in the output

powers of Figure 2 because the two branches have equal output powers (cfr. conservation of

energy), but a different phase. In the lower branch, the symmetric solution becomes unstable

for certain input powers and in that range the asymmetric solutions are possible. This means

that we can avoid the symmetric solutions of the upper branch if we stay below the input

power threshold of Pin ≈ 4.5P0. For the second case (with φ = 2.0), this bistability in the

symmetric solution does not show up and we find that only stable asymmetric solutions

appear in the region of symmetry breaking.

[Fig. 3 about here.]

To see the influence of the parameters ∆ and φ, we depict the appearance of the different

states in Figure 4 for a constant input power of 3.0 P0. We can clearly observe the same

three regions as described before.

[Fig. 4 about here.]

2.C. Dynamic behaviour

We can study the dynamical behaviour by solving the equations 1-3 in the time domain. In

the third regime of Figure 2a, it is possible to switch between asymmetric states where one

of the outputs is high and the other two outputs are low. This results in multi-stable flip-flop

operation [7, 8]. When a short pulse is applied to two of the three ports, the system will

evolve to a state where the third output port has the high output power. In Figure 5, the

switching is done between the three possible output states. The time is expressed in units of

the characteristic lifetime τ of the cavity. A constant input power of 3.3P0 is injected in the

three cavities. To achieve switching, this input power is increased in two of the three input

ports to 3.5P0 during a time 30τ .
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We do the same for the bifurcation diagram of Figure 2b. We work in the same regime as

before and find that by injecting a single pulse in one of the output ports, the system switches

to a state where that output is high and the other outputs low. This is demonstrated for an

input power of 0.5 P0 which is increased to 1.2 P0 in case of a pulse (Figure 5b). We observed

robust switching behaviour: small variations on the input power do not cause switching and

a variation of 30% on the values of ∆ of the different cavities is possible when using higher

pulse powers.

[Fig. 5 about here.]

The switching times scale with the Q-factor of the cavity. If we assume the cavity has a

Q-factor of 4000, the switching time can be predicted to be 520 ps. This rather slow switching

speed is due the fact that the system has to travel over a large distance in phase space. It

can be reduced by also adjusting the phase of the injected pulses, as demonstrated for a

single cavity in [14]. The energy needed to enter the bistable regime is proportional to the

Kerr-nonlinearity and becomes lower if the mode has a small volume. In literature, we find

typically a value of 2.6 mW for photonic crystal cavities [15]. In silicon ring resonators with

a Q-factor of 14 000 an operational value of about 6 mW is necessary [12]. Two possible

suggestions for a practical implementation of the proposed scheme are depicted in Figure 6

as an illustration: the first using a photonic crystal cavity with a hexagonal symmetry in the

cavity mode and the other consisting of ring resonators coupled to waveguides.

[Fig. 6 about here.]

3. Four coupled cavities

3.A. Symmetry breaking conditions

The analysis for the symmetric structure of four coupled cavities (Figure 7) is similar to the

previous one.

[Fig. 7 about here.]

The time dependance of the resonant modes of the cavities is now:

da1

dt
=

[

i (ω0 + δω1) −
1

τ

]

a1 + df1 + db5 + df8 (18)

da2

dt
=

[

i (ω0 + δω2) −
1

τ

]

a2 + df2 + db6 + df5 (19)

da3

dt
=

[

i (ω0 + δω3) −
1

τ

]

a3 + df3 + db7 + df6 (20)

da4

dt
=

[

i (ω0 + δω4) −
1

τ

]

a4 + df4 + db8 + df7 (21)
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By using the same definitions as before and equations (6-7), we rewrite these in the following

form:
[

i (ω0 − ω + δω1) −
1

τ

]

a1 + κ (2γa1 + a2 + a4) = −df1 (22)
[

i (ω0 − ω + δω2) −
1

τ

]

a2 + κ (2γa2 + a1 + a3) = −df2 (23)
[

i (ω0 − ω + δω3) −
1

τ

]

a3 + κ (2γa3 + a4 + a2) = −df3 (24)
[

i (ω0 − ω + δω4) −
1

τ

]

a4 + κ (2γa4 + a3 + a1) = −df4 (25)

To find a condition for symmetry breaking, it is assumed that all inputs are equal (f1 = f2 =

f3 = f4). By combining the first and the third equation, we obtain an equation similar to

equation 12:
[

−1

3
+ i (∆′′ + A)

]

a1 =
[

−1

3
+ i (∆′′ + C)

]

a3 (26)

with

∆′′ = ∆ − 2

3
cot φ (27)

The same relation can be derived for B and D when combining the second and the fourth

equation.

When we apply the same reasoning as in the previous case of 3 coupled cavities, we

find the following condition for symmetry breaking with a self-focusing Kerr effect (positive

nonlinearity):

∆′′ >
1√
3

(28)

In Figure 8 the conditions for 3 and 4 coupled cavities are depicted graphically as a function

of ∆ and φ.

[Fig. 8 about here.]

3.B. Static solutions

We can solve the coupled-mode equations again under steady state conditions and perform

a stability analysis which takes now a Jacobian matrix of 64 elements to be evaluated at

each point. We can depict the stable output powers as a function of the input power for

a configuration where the symmetry breaking condition is fulfilled, see Figure 9. In this

configuration, there are two different asymmetric solutions. The first one to show up has a

left-right symmetry with two pairs of equal output power (e.g. A = B and C = D). In the

next solution, two opposing cavities have the same output power and the other two outputs

are respectively higher and lower (e.g. A = C and B < A < D). By increasing the detuning

a whole range of other states can be found, resulting in very complex state diagrams.
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[Fig. 9 about here.]

When analyzing the energy in the cavities, we observe a similar behaviour as in Figure 3

where we have a bifurcation in the symmetric solution which becomes unstable in the lower

branch.

3.C. Dynamic behaviour

As demonstrated in Figure 10, we can again switch between the different states by injecting

pulses. We describe in more detail the solution with two pairs of equal output. By injecting

a short pulse in a port with a high output, that output becomes low and the port at the

opposite side will become high. We inject the pulses by increasing the input power from

1.2 P0 till 1.4 P0 during a period of 5τ . A cyclical switching action ensues: the state rotates

as a result of the switching pulse.

[Fig. 10 about here.]

4. Conclusion

We demonstrated analytically and numerically symmetry breaking in structures composed

of 3 and 4 cavities. Intricate bifurcation behavior with different regimes is uncovered and

dynamical studies demonstrate multi-stable and cyclical flip-flop operation. With currently

hundreds of coupled cavities being studied experimentally in the linear regime [4], nonlinear

dynamics in smaller networks are the logical next step.
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Fig. 6. Two possible implementations of the proposed scheme using (a) pho-
tonic crystal cavities and (b) ring resonators.
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states are plotted with a thin line.
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Fig. 10. Switching between different states in a configuration of 4 cavities.
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