PARTITIONS WHICH ARE *p*- AND *q*-CORE

J.-C. Puchta

Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB, United Kingdom puchta@maths.ox.ac.uk

Received: 6/19/01, Revised: 9/1/01, Accepted: 9/6/01, Published: 9/12/01

Abstract

Let p and q be distinct primes, n an integer with $n > p^2q^2$. Then there is no partition of n which is at the same time p- and q-core. Hence there is no irreducible representation of S_n which is of p- and q-defect zero at the same time.

Let n be an integer. Then there is a natural bijection between the set of partitions of n and the irreducible representations of the symmetric group on n letters S_n . A representation of a finite group G with character χ is called of p-defect zero, if $|G|_p|\chi(1)$. In the case of the symmetric group this is known to be equivalent to the statement that the corresponding partition has no hook-number divisible by p, in this case the partition is called a p-core partition. Granville and Ono [2] proved that for any $t \geq 7$ and any n there is a t-core partition of n, thus for every $p \geq 7$ there is an irreducible representation of S_n with p-defect zero, an easier proof was given by Kiming [4].

In a recent paper Navarro and Willems [5] asked for relations between the p- and the q-blocks of representations. In this note we will show that the property of having defect zero exclude each other, if n is large enough compared to p and q. More precisely we will prove the following theorem.

Theorem 1. Let p and q be primes, n an integer with $n > p^2q^2$. Then there is no irreducible representation of S_n with p- and q-defect zero.

By the correspondence between irreducible representations of the S_n and partitions of *n* this will follow from the following statement.

Theorem 2. Let s and t be relatively prime integers, n an integer with $n > s^2 t^2$. Then there is no partition of n which is at the same time s- and t-core.

Especially, the number of partitions which are simultaneously s- and t-core is finite. J. Kohles Anderson [3] proved a more precise version of this statement: The number of partitions with this property is in fact equal to $\frac{1}{s+t} \binom{s+t}{t}$. However, the proof we give here seems to be simpler then the one given by her.

I would like to thank the referee for making me aware of [3].

The proof will use the description of t-core partitions introduced by Garvan, Kim and Stanton [1].

For the sequel we choose an arbitrary partition $n = \lambda_1 + \ldots + \lambda_k$ of n and assume that it is *t*-core and *s*-core at the same time. We thus have to show that $n < s^2 t^2$.

Consider the diagram of the partition, i.e. the set of cells whose first row consists of λ_1 cells $(1, 1), (1, 2), \ldots, (1, \lambda_1)$, the second of λ_2 cells and so on. Label a cell (i, j)with $j - i \pmod{st}$, cells in column 0 are labeled in the same way. A cell at the end of a row is called exposed. Now divide the diagram into regions S_k , such that a cell belongs to S_k if and only if $s(k-1) \leq j - i < sk$, in the same way T_k denotes the cells with $t(k-1) \leq j - i < tk$. Now by [1], paragraph 2, we know that if the partition is s-core, and there is an exposed cell labeled with i in the region S_k , then there is an exposed cell labeled with $\tilde{i} \equiv i \pmod{s}$ in every region S_l with $l \leq k$. Especially, there is some sequence $k_{\nu}, 0 \leq \nu \leq l, k_0 = 1$, such that $\lambda_{k_{\nu}} \equiv \lambda_1 - (k_{\nu} - 1) \pmod{s}$, $(k_{\nu+1} - k_{\nu}) < \lambda_{k_{\nu}} - \lambda_{k_{\nu+1}} < 2s - (k_{\nu+1} - k_{\nu})$ and $\lambda_{k_l} < s$, i.e. $\lambda_{k_{\nu}} = \lambda_1 - \nu s + k_{\nu}$. Assume that l < t. Since $\lambda_{k_{\nu}} \leq \lambda_{k_{\nu+1}}$, we have $k_{\nu+1} \leq k_{\nu} + s$, thus the partition under consideration consists of at most ls < st summands, each being st at most, thus we have $n \leq s^2 t^2$.

Now if l > t, then the labels of the exposed cells in the rows k_{ν} run through a complete remainder system (mod t), since s and t are coprime, the remainders of $\lambda_{k_{\nu}} - k_{\nu} = \lambda_1 - \nu s$, $0 \le \nu < t$ are therefore all different. However, by [1] we know that if the partition is t-core, and there is an exposed cell in region T_k with the label i, then there is no exposed cell with a label $\overline{i} \equiv t - i - 1 \pmod{t}$ in any region T_l with $l \ge 1 - k$. If λ_1 is in region T_k , then $\lambda_{k_{t-1}}$ is in region T_l with $l \ge k - s$, thus k - s < 1 - k, i.e. $k \le s/2$. By the definition of T_k we have $\lambda_1 < t(s/2 + 1) \le st$.

Since the property of being a t-core partition is unchanged under conjugation, by the same reasoning we get that there are less than st summands, thus we obtain $n < s^2 t^2$ again.

Thus in any case the assumption that our partition is at the same time s-core and t-core leads to the estimate $n < s^2 t^2$ which proves our theorem.

References

- F. Garvan, D. Kim, D. Stanton, *Cranks and t-cores*, Invent. Math. 101, No.1, 1-17 (1990)
- [2] A. Granville, K. Ono, Defect zero p-block for finite simple groups, Trans. Am. Math. Soc. 348, No.1, 331-347 (1996)
- [3] J. Kohles Anderson, Partitions which are simultaneously t_1 and t_2 -core, to appear in Discrete Mathematics
- [4] I. Kiming, A note on a theorem of A. Granville and K. Ono, J. Number Theory 60, No.1, 97-102 (1996)
- [5] G. Navarro, W. Willems, When is a p-block a q-block?, Proc. Am. Math. Soc. 125, No.6, 1589-1591 (1997)

Mathematics Subject Classification: 05A17, 11P83, 20C30