PARTITIONS WHICH ARE p - AND q-CORE

J.-C. Puchta
Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB, United Kingdom
puchta@maths.ox.ac.uk

Received: 6/19/01, Revised: 9/1/01, Accepted: 9/6/01, Published: 9/12/01

Abstract

Let p and q be distinct primes, n an integer with $n>p^{2} q^{2}$. Then there is no partition of n which is at the same time p - and q-core. Hence there is no irreducible representation of S_{n} which is of p - and q-defect zero at the same time.

Let n be an integer. Then there is a natural bijection between the set of partitions of n and the irreducible representations of the symmetric group on n letters S_{n}. A representation of a finite group G with character χ is called of p-defect zero, if $|G|_{p} \mid \chi(1)$. In the case of the symmetric group this is known to be equivalent to the statement that the corresponding partition has no hook-number divisible by p, in this case the partition is called a p-core partition. Granville and Ono [2] proved that for any $t \geq 7$ and any n there is a t-core partition of n, thus for every $p \geq 7$ there is an irreducible representation of S_{n} with p-defect zero, an easier proof was given by Kiming [4].

In a recent paper Navarro and Willems [5] asked for relations between the p - and the q-blocks of representations. In this note we will show that the property of having defect zero exclude each other, if n is large enough compared to p and q. More precisely we will prove the following theorem.

Theorem 1. Let p and q be primes, n an integer with $n>p^{2} q^{2}$. Then there is no irreducible representation of S_{n} with p - and q-defect zero.

By the correspondence between irreducible representations of the S_{n} and partitions of n this will follow from the following statement.

Theorem 2. Let s and t be relatively prime integers, n an integer with $n>s^{2} t^{2}$. Then there is no partition of n which is at the same time s - and t-core.

Especially, the number of partitions which are simultaneously s - and t-core is finite. J. Kohles Anderson [3] proved a more precise version of this statement: The number of
partitions with this property is in fact equal to $\frac{1}{s+t}\binom{s+t}{t}$. However, the proof we give here seems to be simpler then the one given by her.

I would like to thank the referee for making me aware of [3].
The proof will use the description of t-core partitions introduced by Garvan, Kim and Stanton [1].

For the sequel we choose an arbitrary partition $n=\lambda_{1}+\ldots+\lambda_{k}$ of n and assume that it is t-core and s-core at the same time. We thus have to show that $n<s^{2} t^{2}$.

Consider the diagram of the partition, i.e. the set of cells whose first row consists of λ_{1} cells $(1,1),(1,2), \ldots,\left(1, \lambda_{1}\right)$, the second of λ_{2} cells and so on. Label a cell (i, j) with $j-i(\bmod s t)$, cells in column 0 are labeled in the same way. A cell at the end of a row is called exposed. Now divide the diagram into regions S_{k}, such that a cell belongs to S_{k} if and only if $s(k-1) \leq j-i<s k$, in the same way T_{k} denotes the cells with $t(k-1) \leq j-i<t k$. Now by [1], paragraph 2 , we know that if the partition is s-core, and there is an exposed cell labeled with i in the region S_{k}, then there is an exposed cell labeled with $\tilde{i} \equiv i(\bmod s)$ in every region S_{l} with $l \leq k$. Especially, there is some sequence $k_{\nu}, 0 \leq \nu \leq l, k_{0}=1$, such that $\lambda_{k_{\nu}} \equiv \lambda_{1}-\left(k_{\nu}-1\right)(\bmod s)$, $\left(k_{\nu+1}-k_{\nu}\right)<\lambda_{k_{\nu}}-\lambda_{k_{\nu+1}}<2 s-\left(k_{\nu+1}-k_{\nu}\right)$ and $\lambda_{k_{l}}<s$, i.e. $\lambda_{k_{\nu}}=\lambda_{1}-\nu s+k_{\nu}$. Assume that $l<t$. Since $\lambda_{k_{\nu}} \leq \lambda_{k_{\nu+1}}$, we have $k_{\nu+1} \leq k_{\nu}+s$, thus the partition under consideration consists of at most $l s<s t$ summands, each being st at most, thus we have $n \leq s^{2} t^{2}$.

Now if $l>t$, then the labels of the exposed cells in the rows k_{ν} run through a complete remainder system $(\bmod t)$, since s and t are coprime, the remainders of $\lambda_{k_{\nu}}-k_{\nu}=\lambda_{1}-\nu s, 0 \leq \nu<t$ are therefore all different. However, by [1] we know that if the partition is t-core, and there is an exposed cell in region T_{k} with the label i, then there is no exposed cell with a label $\bar{i} \equiv t-i-1 \quad(\bmod t)$ in any region T_{l} with $l \geq 1-k$. If λ_{1} is in region T_{k}, then $\lambda_{k_{t-1}}$ is in region T_{l} with $l \geq k-s$, thus $k-s<1-k$, i.e. $k \leq s / 2$. By the definition of T_{k} we have $\lambda_{1}<t(s / 2+1) \leq s t$.

Since the property of being a t-core partition is unchanged under conjugation, by the same reasoning we get that there are less than st summands, thus we obtain $n<s^{2} t^{2}$ again.

Thus in any case the assumption that our partition is at the same time s-core and t-core leads to the estimate $n<s^{2} t^{2}$ which proves our theorem.

References

[1] F. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101, No.1, 1-17 (1990)
[2] A. Granville, K. Ono, Defect zero p-block for finite simple groups, Trans. Am. Math. Soc. 348, No.1, 331-347 (1996)
[3] J. Kohles Anderson, Partitions which are simultaneously t_{1} - and t_{2}-core, to appear in Discrete Mathematics
[4] I. Kiming, A note on a theorem of A. Granville and K. Ono, J. Number Theory 60, No.1, 97-102 (1996)
[5] G. Navarro, W. Willems, When is a p-block a q-block?, Proc. Am. Math. Soc. 125, No.6, 1589-1591 (1997)

Mathematics Subject Classification: 05A17, 11P83, 20C30

