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Abstract

Fundamental solutions of Dirac type operators are introduced for a
class of conformally flat manifolds. This class consists of manifolds ob-
tained by factoring out the upper half-space of Rn by arithmetic subgroups
of generalized modular groups. Basic properties of these fundamental so-
lutions are presented together with associated Eisenstein series.

1 Introduction

A natural generalization to Rn of the classical Cauchy-Riemann operator has
proved to be the euclidean Dirac operator. Associated to this operator is a
Cauchy Integral Formula and other natural analogues of basic results from one
variable complex analysis. See for instance [4] and elsewhere. Further the eu-
clidean Dirac operator has been used in understanding boundary value problems
and aspects of classical harmonic analysis in Rn. See for instance [21, 41] and
elsewhere. This analysis together with its applications is known as Clifford
analysis.
On the other hand Dirac operators have proved to be extremely useful tools

in understanding geometry over spin manifolds. See for instance [30] and else-
where. Basic aspects of Clifford analysis over spin manifolds have been devel-
oped in [6, 7, 37]. Further in [25, 26, 27, 33, 35, 39] and elsewhere it is illustrated
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that the context of conformally flat manifolds provide a useful setting for devel-
oping Clifford analysis.
Conformally flat manifolds are those manifolds which possess an atlas whose

transition functions are Möbius transformations. Under this viewpoint confor-
mally flat manifolds can be regarded as higher dimensional generalizations of
Riemann surfaces, as pointed out for example in [35, 39]. These types of man-
ifolds have been studied extensively in a number of contexts. See for instance
[29, 40]. Following the classical work of N. H. Kuiper [29], one can construct
a whole family of examples of conformally flat manifolds by factoring out a
subdomain U ⊆ Rn by a Kleinian group Γ acting totally discontinuously on U .

Simple examples of conformally flat manifolds include spheres, hyperbolas, real
projective space, cylinders, tori, and the Hopf manifolds S1 × Sn−1. In [33, 25,
26] explicit Clifford analysis techniques have been developed for these manifolds.

In this paper we treat some special examples of hyperbolic manifolds of higher
genus with spinor structure. The manifolds that we consider arise from factor-
ing out upper half-space in Rn by an arithmetic congruence group, H, of the
generalized modular group Γp. Γp is the group that is generated by p translation
matrices (p < n) and the inversion matrix.
The associated manifolds are higher dimensional analogues of those classical
Riemann surfaces that arise from factoring out the complex upper half-plane by
the principal congruence subgroups of SL(2,Z). In two real variables these are
k-handled spheres.

Spinor sections on these manifolds can be constructed from automorphic forms
on H. Using these automorphic forms we set up Cauchy kernels or fundamental
solutions of the Dirac operators associated to these spin manifolds.

The basic theory of monogenic, Euclidean harmonic and more generally of k-
genic automorphic forms on this family of arithmetic groups is described in
[23] using generalized Eisenstein series. However, as shown in [23], even in the
monogenic case, the absolute convergence abscissa with respect to the general-
ized modular group of these generalized Eisenstein series is only p < n−2. Here
we overcome this convergence problem for the cases p = n− 2 and p = n− 1 by
adapting a classical trick of Hecke, mentioned for example in [18].
Dirac operators associated to upper half space endowed with the hyperbolic

metric and scalar perturbations of the hyperbolic metric and their associated
hyperbolic Laplace operators have received steady attention. See for instance
[1, 2, 13, 14, 15, 22, 31, 32, 38]. In this paper we introduce generalized Eisenstein
series, with respect to the groups considered here, that are solutions to the
these hyperbolic differential operators. We then use these series to introduce
fundamental solutions to a particular hyperbolic Dirac operator and also for the
hyperbolic Laplacian with respect to the manifolds considered here.

The lay out of the paper is as follows.
In Section 2 we introduce the background on Clifford algebras and Clifford
analysis that we shall need here.
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In Section 3 some of the geometry of these manifolds is described. In particular
direct analogues of fundamental domains described for arithmetic groups in 2
and 3 real variables are introduced. The Ahlfors-Vahlen approach to describ-
ing Möbius transformations in n real variables is used to introduce isometric
spheres to describe fundamental domains and their associated conformally flat
manifolds.
In Section 4 for the cases p = 1′ . . . , n − 3 generalized Eisenstein series are

introduced over the universal covering space, H+(Rn) = {x ∈ Rn : xn > 0},
of these manifolds and the projection operator from H+(Rn) to the manifold
is used to produce non-trivial solutions to Dirac type equations over a spinor
bundle. In this section the Hecke trick is adapted to introduce similar sections
for the cases p = n− 2 and p = n− 1.
In Section 5 we construct special variants of Poincaré type series which induce
the explicit Cauchy kernels for monogenic sections. Other generalized Poincaré
series are used to explicitly determine fundamental solutions to higher order
Dirac type operators on the manifolds. Basic properties of these fundamental
solutions are investigated. In particular results mentioned in Section 3 are used
to obtain Hardy space decompositions of the Lq spaces of compact strongly
Lipschitz hypersurfaces lying in the manifolds considered here. This is for q ∈
(1,∞). Further the techniques used here are adapted to introduce operators of
Calderon-Zygmund type in this context.

In Section 6 we develop the analogous results for k-hypergenic Eisenstein se-
ries and k-hyperbolic harmonic Eisenstein series. This function class includes
hypermonogenic Eisenstein series when k = n − 2 and hyperbolic harmonic
Eisenstein series also when k = n − 2. Analogous sections are set up over the
corresponding conformally flat manifolds. In the second part of Section 6 fun-
damental solutions to the Dirac operator and hyperbolic Laplacian associated
to these Eisenstein series are introduced and some of their basic properties are
investigated. In particular we also provide a hypermonogenic Hardy space de-
composition of the Lq space of a strongly Lipschitz hypersurface of the manifolds
considered here. Again q ∈ (1,∞).

Acknowledgement. The authors are very thankful to Aloys Krieg for helpful
discussions while preparing this paper.

2 Preliminaries

2.1 Clifford algebras

In this subsection we will introduce the basic information on Clifford algebras
that we need in this paper. We shall regard Euclidean space, Rn, as being
embedded in the real, 2n-dimensional, associative Clifford algebra, Cln, sat-
isfying the relation x2 = −‖x‖2 for each x ∈ Rn. In terms of the standard
orthonormal basis e1, . . . , en of Rn this relation becomes the anti-commutation

3



eiej + ejei = −2δij and a basis for Cln is given by

1, e1, . . . , en, . . . , ej1 . . . ejr
, . . . , e1 . . . en

where j1 < . . . jr and 1 ≤ r ≤ n. Each non-zero vector in Rn has a multiplicative
inverse, x−1 = −x

‖x‖2 . Up to a sign this is the Kelvin inverse of a non-zero
vector. For a = a0 + . . . + a1...ne1 . . . en ∈ Cln the nom of a is defined to
be ‖a‖ = (a2

0 + . . . a2
1...n)

1
2 . The reversion anti-automorphism is defined by

∼: Cln → Cln :∼ ej1 . . . ejr
= ejr

. . . ej1 . For a ∈ Cln we write ã for ∼ a.
Any element a ∈ Cln may be uniquely decomposed in the form a = b + cen,

where b, c ∈ Cln−1. Based on this decomposition one defines the projection
mappings P : Cln → Cln−1 and Q : Cln → Cln−1 by Pa = b and Qa = c.
Further we define Q?a to be en(Qa)en. Note that if we define â to be b − cen

then
P (a) =

1
2
(a+ â) (1)

and
Q(a) =

1
2
(a− â). (2)

2.2 PDE’s related to the Dirac operator in Rn and hyper-
bolic space

Monogenic and k-genic functions.
The Dirac operator, D, in Rn is defined to be ∂

∂x1
e1 + ∂

∂x2
e2 + · · · + ∂

∂xn
en.

Suppose that U is a domain in Rn and f and g are pointwise differentiable
functions defined on U and taking values in Cln. The function f is called left
monogenic or left Clifford holomorphic if it satisfies the equation Df = 0 on
U . Similarly g is called right monogenic, or right Clifford holomorphic if it
satisfies the equation gD = 0 on U . Here gD := Σn

j=1
∂g(x)
∂xj

ej . Due to the non-
commutativity of Cln for n > 1, both classes of functions do not coincide with
each other. However, f is left monogenic if and only if f̃ is right monogenic. The
left and right fundamental solution to the D-operator is called the Euclidean
Cauchy kernel and has the form G1(x− y) = 1

ωn

x−y
‖x−y‖n . Here ωn is the surface

area of the unit sphere in Rn. The Dirac operator factorizes the Euclidean
Laplacian ∆ =

∑n
j=1

∂2

∂x2
j
, viz D2 = −∆. Every real component of a monogenic

function is hence harmonic. More generally, functions satisfying Dkf = 0 for
a positive integer k are called left k-genic, while functions satisfying gDk = 0
are called right k-genic. Note that when k is even, say k = 2l for some positive
integer l, then D2l = (−4)l and in this case left and right k-genic functions
coincide.
The fundamental solution to the operator Dk for k < n is Gk(x − y) =
Ck

x−y
‖x−y‖n−k+1 when k is odd and Gk(x−y) = Ck

‖x−y‖n−k when k is even. Further
Ck is a real positive constant chosen so that Dk−1Gk(x − y) = G1(x − y). In
what follows we shall write G1(x− y) simply as G(x− y).
Ahlfors-Vahlen matrices and iterated Dirac operators.
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Following for example [3, 9], Möbius transformations in Rn can be represented
as

m : Rn ∪ {∞} → Rn ∪ {∞} : m(x) = (ax+ b)(cx+ d)−1

with coefficients a, b, c, d from Cln that can all be written as products of vectors
from Rn. Further ad̃ − bc̃ ∈ R\{0} and ãc, c̃d, d̃b, b̃a ∈ Rn. These conditions
are often called Vahlen conditions.

The set that consists of Clifford valued matrices
(
a b
c d

)
whose coefficients

satisfy the previously mentioned conditions is a group under matrix multiplica-
tion. It is called the general Ahlfors-Vahlen group. It is denoted by GAV (Rn).

The general linear Ahlfors-Vahlen group GAV (Rn) is a generalization of the
general linear group GL(2,R). The particular subgroup

SAV (Rn) = {M ∈ GAV (Rn) | ad̃− bc̃ = 1}

is called the special Ahlfors-Vahlen group and it is purely generated by the
inversion matrix and translation type matrices, as proved for instance in [9].
The projective special Ahlfors-Vahlen group is the group

PSAV (Rn) ∼= SAV (Rn)/{±I}

where I is the identity matrix.
The subgroup SAV (Rn−1) of SAV (Rn) has the special property that it acts
transitively on the upper half space H+(Rn) = {x = x1e1 + . . . + xnen ∈ Rn :
xn > 0}.

Now assume that m(x), = M < x >, is a Möbius transformation represented
in the above mentioned form. It is shown in [23] and elsewhere that if f is a
left k-genic function in the variable y = m(x) = (ax + b)(cx + d)−1, then the
function Jk(M,x)f(M < x >) is again left k-genic but now in the variable x.
Here

Jk(M,x) =

{
c̃x+d

‖cx+d‖n−k+1 k odd
1

‖cx+d‖n−k k even

In what follows we always restrict attention to the cases where k < n. This type
of invariance for k-genic functions under Möbius transformations is seen as an
automorphic invariance.
It may now be seen that if f is a function that is left k-genic on H+(Rn) then
so is Jk(M,x)f(M < x >), for any M ∈ SAV (Rn−1). In what follows we shall
write J(M,x) for J1(M,x).

k-hypergenic functions.
Left k-hypergenic functions are defined as the null-solutions to the system

Mkf := Df +
kQ?f

xn
= 0, xn 6= 0,
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where k ∈ R. This is a Hodge-Dirac equation for upper half space equipped with

the metric x
−2k
n−2
n

n∑
j=1

dx2
j . In the case k = 0 these are precisely left monogenic

functions. A similar definition can be given for right k-hypergenic functions.

It is pointed out in [38] and elsewhere that

−M2
kf = (4Pf − k

xn

∂Pf

∂xn
) + (4Qf − k

xn

∂Qf

∂xn
+

k

x2
n

Qf).

The operator4− k
xn

∂
∂xn

is the Laplacian for H+(Rn) with respect to the metric

x
−2k
n−2
n

∑n
j=1 dx

2
j . We will denote it by 4k and we shall call it the k-hyperbolic

Laplacian. We will denote the operator 4k + k
x2

n
by Wk. Functions that are

annihilated by the k-hyperbolic Laplacian will be called k-hyperbolic harmonic
functions. When k = n − 2 this operator is the hyperbolic Laplacian and
functions that are annihilated by this operator are called hyperbolic harmonic
functions. The operators 4k and Wk are special cases of the Weinstein equation
described in [1, 31] and elsewhere.
Under a Möbius transformation y = M < x >= (ax + b)(cx + d)−1 a k-

hypergenic function f(y) is transformed to the k-hypergenic function

F (x) := Kk(M,x)f(M < x >), (3)

where Kk(M,x) = c̃x+d
‖cx+d‖n−k . See for instance [15, 38]. The particular solutions

associated to the case k = n−2 coincide with the null-solutions to the hyperbolic
Hodge-Dirac operator with respect to the hyperbolic metric on upper half space.
These are often called hyperbolic monogenic functions or simply hypermono-
genic functions [14, 32]. Note that when k is even then Kk(M,x) = Jk+1(M,x).
As explained in [14, 38] the basic hypermonogenic kernels for H+(Rn) are given
by

p(x, y) =
1
ωn
xn−2

n yn−1
n

(x− y)
‖x− y‖n

en
(x− ŷ)
‖x− ŷ‖n

and

q(x, y) = yn−2
n (

1
‖x− ŷ‖n−2

G(x− y) +
1

‖x− y‖n−2
G(x− ŷ)) = yn−2

n DxH(x, y)

where Dx is the Dirac operator with respect to the variable x and H(x, y) =
1

(n−2)ωn

1
‖x−y‖n−2‖x−ŷ‖n−2 .

These kernels provide analogues of the Cauchy kernel G(x− y) for hypermono-
genic functions. More precisely if f(x) is a left hypermonogenic function defined
on a domain U ⊂ Fp[N ] then

f(y) = P (
∫

∂V

p(x, y)
n(x)
xn−2

n

f(x)dσ(x)) +Q(
∫

∂V

q(x, y)n(x)f(x)dσ(x) (4)

where V is a subdomain of U whose closure is compact and lies in U . Further
y ∈ V .
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Using Equations (1) and (2) it is shown in [14] that Equation (4) can be
rewritten as

f(y) = yn−1
n (

∫
∂V

E(x, y)n(x)f(x)dσ(x) +
∫

∂V

F (x, y)n̂(x)f̂(x)dσ(x))

where E(x, y) = 2n−1

‖x−ŷ‖n−2G(x− y) and F (x, y) = 2n−1

‖x−y‖n−2G(x̂− y).
It is shown in [1] that ifM ∈ SAV (Rn−1) then a k hyperbolic harmonic function
f(y) is transformed to the k- hyperbolic harmonic function Lk(M,x)f(M < x >
) where y = M < x > and Lk(M,x) = 1

‖cx+d‖n−k−2 .
Following [13] and [31] respectively we also have by direct computation:

Proposition 1 (i) A function f is left k-hypergenic if and only if f
xk

n
en is left

−k-hypergenic.
(ii) A function h is k-hyperbolic harmonic if and only if x−k

n h(x) is a solution
to the Weinstein equation W−ku = 0.

It should also be noted that xk+1
n is a solution to the equation 4′

ku = 0. This
result may be obtained by direct computation.
In [1] it is shown that if u(y) is a solution to4′

ku = 0 then so is Lk(M,x)u(M <
x >) where y = M < x >.
A function that is annihilated by the operator 4′

k is an eigenfunction of the
operator x2

n4k with eigenvalue −k.

3 Subgroups of generalized modular groups, their
fundamental domains and associated confor-
mally flat manifolds

3.1 Arithmetic subgroups of the Ahlfors-Vahlen group

Arithmetic subgroups of the special Ahlfors-Vahlen group that act totally dis-
continuously on H+(Rn) are for instance considered in [9, 11, 12] and for the
three dimensional case in [34].
First let us introduce the ring

Op :=
∑

A⊆P (1,...,p)

ZeA p ≤ n− 1.

This ring of course lies in the subalgebra Clp. In what follows, let

J :=
(

0 −1
1 0

)
, Te1 :=

(
1 e1
0 1

)
, . . . , Tep :=

(
1 ep

0 1

)
.

We recall, cf. [23]:
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Definition 1 For p < n, the special hypercomplex modular groups are defined
to be Γp := 〈J, Te1 , . . . , Tep

〉. For a positive integer N the associated principal
congruence subgroups of Γp of level N are then given by

Γp[N ] :=
{(

a b
c d

)
∈ Γp

∣∣∣ a− 1, b, c, d− 1 ∈ NOp

}
.

As the group SL(2,Z) is generated by
(

0 −1
1 0

)
and

(
1 1
0 1

)
it can be seen

that Γp is a natural generalization to Rn of SL(2,Z). It follows that the group
Γp[N ] is a natural generalization of arithmetic subgroups of SL(2,Z) described
in [18] and elsewhere.
One can readily adapt arguments given in [18] to see that the group Γp acts

totally discontinuously on H+(Rn). As Γp[N ] ⊂ Γp for each positive integer N
it follows that Γp[N ] also acts totally discontinuously on H+(Rn). Consequently
H+(Rn)/Γp[N ] is a conformally flat manifold. We will denote this manifold by
Mp[N ].

3.2 Fundamental domains and their associated conformally
flat manifolds

It is known that all discrete arithmetic subgroups Γ of Ahlfors-Vahlen’s group
SAV (Rn−1) possess a fundamental domain in H+(Rn). See for example [10]
where the general n-dimensional case is treated in condensed form. A very de-
tailed description of the fundamental domains in the particular three-dimensional
case can be found in [12]. Just to recall: For a discrete subgroup, Γ, of
SAV (Rn−1) a fundamental domain F(Γ) ⊂ H+(Rn) is a relatively closed do-
main in H+(Rn) with the two properties:

1. H+(Rn) = ∪M∈ΓM〈F(Γ)〉
2. int F(Γ) ∩M〈int F(Γ)〉 6= 0,M ∈ Γ,=⇒M = ±I.

One can describe the geometry of a fundamental domain of a discrete group Γ
acting on the upper half space in C in terms of the set of its isometric circles
[5, 17].

The isometric circle for a Möbius transformation az+b
cz+d where

(
a b
c d

)
∈

SL(2,Z) with c 6= 0 would be the circle

{z ∈ H+(C) : ‖cz + d‖ = 1}.

In [5] it is shown that the role played by isometric circles in introducing funda-
mental domains for the arithmetic subgroups of the modular group SL(2,Z),
also referred to as Ford domains, can be carried over to upper half space in
Rn. In this context the isometric circles are replaced by isometric spheres.
So given a Möbius transformation (ax + b)(cx + d)−1 induced by a matrix
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M =
(
a b
c d

)
∈ SAV (Rn) with c 6= 0 we have that

∥∥∥∂[(ax+ b)(cx+ d)−1]
∂xj

∥∥∥ =
1

‖cx+ d‖2
for j = 1, . . . , n.

Consequently for such a Möbius transformation its isometric sphere is defined
to be the sphere {x ∈ Rn : ‖cx + d‖ = 1}. This is a sphere in Rn centered
at −dc−1 and of radius ‖dc−1‖. Let us denote this isometric sphere by SM .
Following [5, 42] in complete parallel to the complex case it may be shown that
M < SM >= SM−1 . In analogy to the complex case we say that the Möbius

transformation (ax + b)(cx + d)−1 induced by M =
(
a b
c d

)
∈ SAV (Rn)

with c 6= 0 is hyperbolic if the isometric spheres SM and SM−1 are external.
It is elliptic if they intersect and M < x > is parabolic if SM and SM−1 are
tangent. It should be noted that as in the case of isometric circles the interior
B(−dc−1, ‖dc−1‖), of the isometric sphere SM is mapped via M to the exterior
of the isometric sphere SM−1 .

Suppose H is a discrete subgroup of SAV (Rn−1) that acts totally discontin-
uously on Rn, and F(H) is its associated fundamental domain. If one glues
exactly the equivalence points of the boundary parts ∂Fp under the group ac-
tion together, then one obtains a conformally flat manifold. This results from
the factorization H+(Rn)/H. These manifolds belong to the general class of
hyperbolic manifolds.

Let us give some simple examples.

For illustration, let us consider as a concrete example the group Γ1[4]. This
group is isomorphic to the classical arithmetic group Γ[4]. In [5, 16] it is shown
that one fundamental domain for H+(C)/Γ[4] is the open set in H+(C) bounded
between the lines x = −1 and x = 3 and the 8 isometric circles of radius 1

4 and
centered on the x axis at −3

4 , . . . , 2
3
4 respectively. These are the isometric circles

for the Möbius transformations

M1 < z > =
5z + 4
−4z − 3

, . . . ,M8 < z > =
−3z + 8
4z − 11

, M1, . . . ,M8 ∈ Γ[4],

respectively. To obtain the corresponding Riemann surface one identifies the two
lines {z = x+ iy : x = −1} and {z = x+ iy : x = 3} and the isometric semicircle
lying in upper half space associated with M1 < z > with the isometric semicircle
associated with M8 < z >. Further for j = 2, 4, 6 the isometric semicircles lying
in upper half plane and associated with the Möbius transformation Mj < z > is
identified with the isometric semicircle lying in upper half space and associated
with Mj+1 < z >. If we consider the action of Γ1[4] on H+(Rn), then the
isometric semicircles associated with M1, . . . ,M8 are replaced by the isometric
hemispheres C1, . . . , C8 lying in upper half space H+(Rn) and now associated
with the Möbius transformations

M ′
1 < x >= (5x+4e1)(4e1x−3)−1, . . . ,M ′

8 < x >= (−3x+8e1)(−4e1x−11)−1.
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Furthermore the lines x = −1 and x = 3 are replaced by the half hyperplanes
C9 = {x ∈ H+(Rn) : x1 = −1} and C10 = {x ∈ H+(Rn) : x1 = 3}. A
fundamental domain associated to the action of Γ1[4] on H+(Rn) is the domain
in H+(Rn) with boundary C1 ∪ . . . ∪ C10. This domain is unbounded in the
variables x2, . . . , xn−1 and xn. Consequently the boundary of this fundamental
domain has nontrivial intersection with unbounded open subsets of ∂H+(Rn).
To obtain the conformally flat manifold H+(Rn)/Γ1[4] we now identify C9 with
C10, C1 with C8 and Cj with Cj+1 for j = 2, 4, 6.

The group Γ2 is isomorphic to the special linear group over the Gaussian integers
SL2(Z[e1]), where Z[e1] is the lattice of Gaussian integers {p + qe1 : p, q ∈ Z}.
This group acts totally discontinuously on the modified upper half-space

H+(R⊕ Rn−1) = {x0 + x1e1 + · · ·+ xn−1en−1 : xn−1 > 0}.

Of course the group SL2(Z[e1]) is essentially the Picard group SL2(Z[i]), the
subgroup of SL2(C) with coefficents in the lattice of Gaussian integers {p+ qi :
p, q ∈ Z}. Following for example [28], one may determine that one fundamental
domain for SL2(Z[e1]) is F2 := {x = x0+x1e1+. . .+xn−1en−1 ∈ H+(R⊕Rn−1)
| ‖x‖ ≥ 1, 0 < xj <

1
2 , j = 0, 1}.

It follows from our constructions that standard methods of constructing fun-
damental domains for Γ1[N ] in one complex variable and for Γ2[N ] in three
real variables described in [17, 16, 28] and elsewhere extend readily to give us
examples of fundamental domains for Γ1[N ] and Γ2[N ] in n-real variables.
Notice that for a given discrete subgroup Γp[N ] there are infinitely many choices
of fundamental domain. If U is a particular fundamental domain for Γp[N ] then
so is M < U > for each M ∈ Γp[N ]. The fundamental domain we will choose
to work with will be denoted by Fp[N ] and it will be a fundamental domain
for Γp[N ] that lies in the set U(p,N) = {x ∈ H+(Rn) : −N

2 ≤ xi ≤ N
2 for

i = 1, . . . , p}, and it will be unbounded in the variables xp+1, . . . , xn.

4 Monogenic Eisenstein series on Γp[N ] and the
Hecke trick

H+(Rn) is the universal covering space of the class of manifolds Mp[N ] we are
considering here. As a consequence, there exists a well-defined projection map
p : H+(Rn) → Mp[N ] : x 7→ x (mod Γp[N ]). Let us write x′ for p(x) where
x ∈ H+(Rn). For each open set U ⊆ H+(Rn) we write U ′ for p(U) which in
turn is an open subset of Mp[N ]. Further for each set S ⊂ Fp[N ] we will write
S′ for p(S).

In this section we give some elementary examples of automorphic forms on the
groups Γp[N ] (with N ≥ 3). More precisely, the examples we give here are
invariant under the action of Γp[N ] up to the particular automorphic weight
factor J(M,x). These then project down to form non-trivial examples of mono-
genic sections on the associated families of conformally flat manifolds. These
sections take values in a fixed spinor bundle F1.
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More precisely this bundle is constructed over Mp[N ] by identifying each pair
(x,X) with (M < x >, J(M,x)X) for every M ∈ Γp[N ] where x ∈ H+(Rn),
and X ∈ Cln.

It should be noted that as (ax + b)(cx + d)−1 = (−ax − b)(−cx − d)−1 then
usually there is an ambiguity of sign in the previous identification of X with
J(M,x)X. However as −I does not belong to the group Γp[N ] for N > 2 there
is no ambiguity of sign in this particular case and so the bundle F1 is globally
well defined.

Definition 2 Suppose that U ′ is a domain in Mp[N ] and f : U ′ → F1 is a
section that locally is annihilated on the left by the Dirac operator, D, then f is
called a (left) monogenic section.

In the previous definition we locally used the Dirac operator, D. In fact we have
introduced a Dirac operator DMp[N ] that acts globally on sections in F1. This
Dirac operator is in fact the Atiyah-Singer operator, or Atiyah-Singer-Dirac
operator, cf. [30].

In [23] it is noted that when N = 1 or N = 2 the matrix −I belongs to
ΓN . Consequently any function that satisfies f(x) = J(M,x)f(M〈x〉) for all
M ∈ Γp[N ] and each x ∈ H+(Rn) must satisfy f(x) = −f(x) and so vanishes
identically. For this reason we shall unless otherwise specified work in this paper
with the cases N ≥ 3.

For N ≥ 3, as −I is not in Γp[N ] it is possible to construct non-trivial monogenic
functions that satisfy f(x) = J(M,x)f(M, 〈x〉) for all M ∈ Γp[N ]. To introduce
these types of Eisenstein series we shall need the following convergence lemma
which is proved in [23].

Lemma 1 (Convergence lemma) For all α > p+ 1 and all N ∈ N the series∑
M :Γp[N ]\Tp[N ]

1
‖cx+ d‖α

converges uniformly on each compact subset of H+(R). Here M : Γp[N ]\Tp[N ]
denotes a sum over representatives of the left coset space Γp[N ]\Tp[N ].

Now following [23] we introduce the following generalized Eisenstein series.

Definition 3 For p < n− 2 the monogenic Eisenstein series attached to Γp[N ]
are then defined by

Ep,N (x) =
∑

M :Γp[N ]\Tp[N ]

J(M,x). (5)

Here the notation M : Γp[N ]\Tp[N ] means that the matrices M run through a
system of representatives of right cosets in Γp[N ] modulo the translation group
Tp[N ]. The convergence lemma insures the convergence of the Series (5).
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Here we shall assume that each representative M from the left coset space
Γp[N ]\Tp[N ] is chosen so that M(Fp[N ] lies in the set U(p,N).
Since the identity matrix is a representative from the coset space Γp[N ]\Tp[N ]
and J(I, x) = 1 and as limx→∞ J(M,x) = 0 for each M ∈ Γp[N ]\Tp[N ] with
M 6= I then limxn→+∞Ep,N (enxn) = 1. Consequently the Series (5) does not
vanish identically when N ≥ 3.
One can directly verify by a rearrangement argument, [23], that the Series (5)

satisfies the transformation rule

Ep,N (x) = J(M,x)Ep,N (M < x >) ∀M ∈ Γp[N ].

Hence the generalized Eisenstein series (5) project down to non-trivial mono-
genic sections with values in the spinor bundle F1 over the manifold Mp[N ].

Remark. If we extend the sum in Expression (5) to the whole group Γp[N ],
the series would diverge. This is due to the fact that the summation of the
expressions J(M,x) over the translation group Tp[N ] diverges.

By adapting the so called Hecke trick we can get convergent Eisenstein series in
the remaining two cases p = n− 2 and p = n− 1. This is a classical method to
introduce Eisenstein and Poincaré series of lower weight. See for instance [18].
In analogy to the one complex variable and several complex variable cases let
us introduce the following adapted Eisenstein series

Ep,N (x)(x, s) =
∑

M :Tp[N ]\Γp[N ]

(
xn

‖cx+ d‖2

)s

J(M,x), (6)

where s is a complex auxiliary parameter. In view of the convergence lemma
these series are a priori normally convergent and complex-analytic in s whenever
the real part of s is greater than −n+ 2 + p.
Whenever the real part of s is greater than −n + 2 + p, the expressions(

xn

‖cx+d‖2

)s

J(M,x) are not monogenic in the vector variable x. However, one

can show:

Proposition 2 The series Ep,N (x, s) possesses a continuous extension to the
complete complex s-semiplane {s = u+ iv ∈ C : v ≥ 0}.

The limit

Ep,N (x) := lim
s→0+

∑
M :Tp[N ]\Γp[N ]

(
xn

‖cx+ d‖2

)s

J(M,x) (7)

will then provides us with a left monogenic Eisenstein series for the larger groups
Γn−2[N ] and Γn−1[N ] which then of course has the desired invariance behavior
under the respective actions of Γn−2[N ] and Γn−1[N ].

The proof of the continuous extension of the series Ep,N (x, s) towards s → 0+

can be done in the same way as the classical proof of the holomorphic Hilbert
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Eisenstein series in several complex variables as presented for instance in [18]
pp. 165–172. Hence, we leave the detailed proof as an exercise for the reader
and restrict ourselves to only present here the features of the proof which are
different from the classical proof.

Without loss of generality we focus on the case p = n − 1, since the series
En−2,N (x, s) are subseries of En−1,N (x, s). As in the classical case, one expands
the Γn−1[N ]-periodic function En−1,N (x, s) into a Fourier series. This can be
done easily by first expanding the n− 1-fold periodic subseries

εn−1,N (x, s) =
∑

g∈NZn−1

G(x+ g)

(
xn

‖x+ g‖2

)s

(8)

into a Fourier series of the form∑
g∈ 1

N Zn−1

α(xn, g; s)e2πi<g,x>

and showing that this series has a continuous extension as s→ 0+. The Fourier
coefficients are basically given (up to a constant) by the following integral
(putting x := x1e1 + · · ·xn−1en−1):

α(xn, g; s) =
∫

Rn−1

Dy

[
xs

n

‖x+ y‖n−2+2s
e−2πi<x+y,g>

]
dx. (9)

We consider

=
∫

Rn−1

xs
n

(‖x‖2 + x2
n)

n−2
2 +s

e−2πi<x,g>dx

=
∫

Sn−3

2π∫
θ=0

∞∫
r=0

xs
nr

n−2

(r2 + x2
n)

n−2
2 +s

e−2πir‖g‖ cos(θ) sinn−3(θ)drdθdSn−3

= ωn−3

∞∫
r=0

xs
nr

n−2

(r2 + x2
n)

n−2
2 +s

r−
n−3

2 Jn−3
2

(2πr‖g‖)dr (10)

=
2

3−2s
2 (2π|g|) 2s−1

2 π
n−1

2 x
1
2
n

Γ(n+2s
2 − 1)

K 1−2s
2

(2π‖g‖xn) (11)

where we applied the substitution r := ‖x‖ and where θ is the angle between x
and g. Jn−3/2 and K1−2s/2 are the standard Bessel functions of first and second
type.
The function x

1
2
nK 1−2s

2
is entire-complex analytic in s. In particular, it is con-

tinuous at s = 0. This establishes the existence of the limit s→ 0+. Therefore,
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we may in particular interchange the application of the Dirac operator in (9)
with the integration process.

The rest of the analyticity proof can now be adapted directly from the classical
proof presented in [18] pp. 165. One re-expresses the complete series En−1,N (x)
as a series over the Fourier series of εn−1,N (x, s).
As the term lims→0

∑
M1,...,Mr

( xn

‖cx+d‖ )
sJ(M,x) is left monogenic, where summa-

tion is taken over any finite subset {M1, . . . ,Mr} of Γk[N ]\Tk[N ], it follows that
the functions En−2,N (x) and En−1,N (x) are left monogenic.

The projections of the functions En−2,N (x) and En−1,N (x) to sections over
Mp[N ] thus provide us also with non-trivial examples of monogenic sections on
the manifolds Mp[N ] with p = n− 2 and p = n− 1.
We shall need the following, cf. [23]:

Definition 4 Suppose for k odd that N ≥ 3 and for k even N ∈ N. Suppose
also that p < then the k-genic Eisenstein series attached to Γp[N ] are defined
to be the series

Ep,N,k(x) =
∑

M :Γp[N ]\Tp[N ]

Jk(M,x). (12)

Convergence of the Series (12) follows from Lemma 2.

5 Cauchy kernels for monogenic and k-genic sec-
tions

Here we use the Eisenstein series introduced in Definition 3 to introduce an
explicit formula for the Cauchy kernel or fundamental solution to the Dirac
operator on the manifolds Mp[N ] with p < n− 2. We then use the Hecke trick
introduced in the previous section to introduce the fundamental solutions for
the cases p = n− 2 and p = n− 1. We also introduce fundamental solutions to
the analogues of the operators Dk for k < n over Mp[N ] using the Eisenstein
series introduced in Definition 4. Further Calderon-Zygmund operators in this
context are introduced.

We now proceed to prove the first main result of this section:

Proposition 3 For p < n− 2 and for each x ∈ Fp[N ] the series∑
T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

J(TM, x)G(y − TM < x >). (13)

converges uniformly on any compact subset K of Fp[N ]\{x}.

Remark. Notice that the second series
∑

M :Γp[N ]\Tp[N ]

J(TM, x)G(y − TM <

x >) depends on the particular choice of the system of representatives of right
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cosets in Γp[N ] modulo Tp[N ] since the function G(y − TM < x >) is not
invariant under Tp[N ]. This notation is understood in the sense that one has
to specify first a particular system of representatives. The whole double sum
however then gets again independent of that particular choice since the first
sum extends ober the whole translation group Tp[N ].

Proof: It should first be noted that J(TM, x) = J(M,x) for each T ∈ Tp[N ]
and each M ∈ Γp[N ]. So from Lemma 1 for each fixed T ∈ Tp[N ] the series∑
M∈Γp[N ]\Tp[N ]

J(TM, x) converges uniformly on K for p < n − 2. Further the

series (13) can be rewritten as∑
T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

J(M,x)G(y − TM < x >).

In [23] it is shown that the series
∑

T∈Tp[N ]

G(y − T < x >) converges uniformly

for p < n − 1. As each representative M from M ∈ Γp[N ] is chosen so that
M(Fp[N ]) ⊂ U(p,N) then for each Tm ∈ Tp[N ]\{I} and each y ∈ Fp[N ] we
have that ‖G(y − TmM < x >)‖ ≤ ‖G(w −m)‖ where Tm < x >= x+m and
m ∈ Ze1 . . .Zep. Consequently it follows from Lemma 1 that the subseries∑

T∈Tp[N ]\{I}

∑
M :Γp[N ]\Tp[N ]

J(TM, x)G(y − TM < x >)

is uniformly convergent on K for p < n− 2.
Further for {B(x1, r1, . . . , B(xq, rq)} a finite covering of K by open balls whose
closure lie in Fp[N ]\{x} let r(K) denote the minimum radius of these balls.
Then for eachM ∈ Γp[N ] we have that ‖G(y−M < x >)‖ ≤ 1

ωn
r(K)1−n. It now

follows that the series ΣM :Γp[N ]\Tp[N ]‖J(M,x)G(y −M < x >)‖ is dominated
by the series 1

ωn
r(K)1−nΣM :Γp[N ]\Tp[N ]‖J(M,x)‖. Consequently it follows from

Lemma 2 that the subseries ΣM :Γp[N ]\Tp[N ]J(M,x)G(y−M < x >) is convergent
on K for p < n− 2.
It now follows that the series (13) is uniformly convergent on K for p < n− 2.
�
In fact the above proof can be readily adapted to show that the above series is
uniformly convergent on any compact subset of H+(Rn)\ ∪M∈Γp[N ] {M < x >
}. Moreover it may be readily seen that this series defines a right monogenic
function, Cp,N (x, y), in the variable y on the domain H+(Rn)\ ∪M∈Γp[N ] {M <
x >}. Further as the function J(M,x)G(w −M < x >) is left monogenic in x
the function Cp,N (w, x) is left monogenic in x.
It should be noted that it follows from the definition of a fundamental domain
that the kernel Cp,N (x, y) has precisely one singularity in the domain Fp[N ].This
singularity is of order n− 1.

Proposition 4 The kernel Cp,N (x, y) satisfies the asymmetry relation Cp,N (x, y) =
−C̃p,N (y, x).
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Proof: Notice that

G(y −M < x >) = G(y − (ax+ b)(cx+ d)−1) = G(y − (c̃x+ d)−1(ãx+ b))

= G(y − (xc̃+ d̃)−1(xã+ b̃)) = (xc̃+ d̃)−1‖xc̃+ d̃‖n (xc̃+ d̃)y − xã− b̃

‖(xc̃+ d̃)y − xã− b̃‖n

= (c̃x+ d)−1‖cx+ d‖n (xc̃+ d̃)y − xã− b̃

‖(xc̃+ d̃)y − xã− b̃‖n
.

So J(M,x)G(y −M < x >) = (xc̃+d̃)y−xã−b̃

‖(xc̃+d̃)y−xã−b̃‖n
.

Now
(xc̃+ d̃)y − xã− b̃ = xc̃y + d̃y − xã− b̃

= x(c̃y − ã) + d̃− b̃ = −x(−c̃+ ã) + d̃y − b̃

= (−x+ (d̃y − b̃)(−c̃y + ã)−1)(−c̃y + ã) = (−x+M? < y >)(−̃yc+ a)

where M? =
(

d̃ −b̃
−c̃ ã

)
∈ Γp[N ]. Consequently

J(M,x)G(y −M < x >) = G(M? < y > −x)J̃(M?, y).

As ? : Γp[N ] → Γp[N ] : M →M? is an isomorphism it follows that Cp,N (x, y) =
−C̃p,N (y, x). �
A further property of the kernel Cp,N (x, y) is given as follows.

Proposition 5 The kernel, Cp,N (x, y), satisfies the relation J(L, x)Cp,N (L <
x >, y) = Cp,N (x, y) for each L ∈ Γp[N ].

Proof: Now

J(M,L < x >)G(y − (ML) < x >) = J(L, x)−1J(ML,x)G(y − (ML) < x >)

= J(L, x)−1J(A, x)G(y −A < x >)

where A = ML. As ΘL : Γp[N ] → Γp[N ] : M →ML is a bijection we now have
that Cp,N (L < x >, y) = J(L, x)−1Cp,N (x, y). �
The projection C ′p,N (x′, y′) of the kernel Cp,N (x, y) is thus an F1 valued left
monogenic section in y′ that lives over the manifold Mp[N ].

We may therefore draw the conclusion that Cp,N is a monogenic Γp[N ]-periodic
function. Its projection is a section on Mp[N ] with only one point singularity.
This singularity is of the order of the Cauchy kernel.

Definition 5 A hypersurface S lying in Rn is called a strongly Lipschitz surface
if locally it is the graph of a real valued Lipschitz continuous function and the
Lipschitz constants for these local Lipschitz graphs are bounded.
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Theorem 1 (Cauchy’s integral formula for Mp[N ])
Suppose p < n− 2. Let U ⊂ Fp[N ] be a domain and V be a bounded subdomain
with a strongly Lipschitz boundary, S, lying in U . Then for each y′ ∈ V ′ and
every left monogenic section f ′ : U ′ → F1 we have

f ′(y′) =
∫

∂S′

C̃ ′p,N (x′, y′)dσ′(x′)f ′(x′), (14)

Proof: We can rewrite the kernel Cp,N (x, y) asG(x−y)+(Cp,N (x, y)−G(x−y)).
The term Cp,N (x, y)−G(x− y) has no singularity on the fundamental domain
Fp[N ] while DG(x− y) = δx=y, the Dirac delta function. The result follows on
projecting to the manifold Mp[N ]. �
This property has the following interpretation within the theory of automorphic
forms:
Recall that all the sections that are well-defined and monogenic on the whole
manifold Mp[N ] lift to the class of automorphic forms on Γp[N ] that have the
property of being monogenic on the whole upper half-space. In particular, it
locally reproduces the projections to Mp[N ] of the special monogenic Eisenstein
series Ep,N (x). Furthermore, it reproduces all the projections to Mp[N ] of the
general Poincaré series given in [23] of the type

Q(x, f̃) =
∑

M :Γp[N ]\Tp[N ]

J(M,x)f̃(M < x >).

where f̃ is an arbitrary bounded left monogenic function on H+(Rn) that is
invariant under the translation group Tp[N ].
For k < n, Lemma 1 and the proof of Proposition 3 can easily be adapted

to also obtain explicit formulas for kernels for k-genic sections on the manifold
Mp[N ].
More precisely we have

Proposition 6 For k < n and p < n− 1− k the series∑
T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

Jk(TM, x)Gk(y − TM < x >). (15)

is uniformly convergent on any compact subset of Fp[N ]\{x}.

We shall denote the kernel given by expression (15) by Ck,p,N (x, y). Note that
when k = 1 we get back the kernel Cp,N (x, y).
In the cases where k is even the kernel Ck,p,N (x, y) do not vanish in the partic-
ular cases where N = 1 or N = 2. This is because each term Jk(M,x)Gk(M <
x > −y) arising in Series (15) equal 1

‖cx+d‖n−k‖y−M<x>‖n−k . These are all
positive terms so Series (15) cannot vanish.
By very similar arguments to those used to establish Proposition 4 it may be

determined that when k is odd and N ≥ 3 then Ck,pN (x, y) = −C̃k,p,N (y, x)
and when k is even and N ∈ N then Ck,p,N (x, y) = Ck,p,N (y, x). Further by
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a minor adaptation of arguments given to prove Proposition 5 it may be seen
that Jk(L, x)Ck,p,N (L < x >, y) = Ck,p,N (x, y) for each L ∈ Γp[N ].
We may now consider new bundles, Fk constructed over Mp[N ] by making

the identification (x,X) with (M < x >, Jk(M,x)X) for each M ∈ Γp[N ] with
x ∈ H+(Rn) and X ∈ Cln. Note that in the cases where k is even the conformal
weight factor Jk(M,x) is real valued. So in these cases the bundles are not spinor
bundles.
We can now establish the following:

Theorem 2 Suppose that ψ′ : Mp[N ] → Fk is a Ck section with compact
support. Then for each y′ ∈Mp[N ]

ψ′(y′) = Dk
Mp[N ]

∫
Mp[N ]

C̃ ′k,p,N (y′, x′)ψ′(x′)dm′(x′) (16)

and
ψ′(y′) =

∫
Mp[N ]

C̃ ′k,p,N (x′, y′)Dk
Mp[N ]ψ

′(x′)dm′(x′) (17)

where C ′k,p,N (x′, y′) is the projection to Fk of the kernel Ck,p,N (x, y) and m′ is
the projection to Mp[N ] of Lebesgue measure on Fp[n]. Further p < n− 2 and
N ≥ 1 when k is even and N ≥ 3 when k is odd.

Proof: The section ψ′ lifts to a function ψ defined on the fundamental do-
main Fp[N ]. This function is Ck and has compact support. Now consider
Dk
∫
Fp[N ]

C̃p,N (x, y)ψ(x)dxn. This expression is equal to

Dk

∫
Fp[N ]

Gk(x− y)ψ(x)dxn +DkI(y) (18)

where I(y) =
∫
Fp[N ]

(C̃p,N (x, y)ψ(x)−Gk(x− y)ψ(x))dxn. The term I(y) is left
k-genic on Fp[N ]. So expression (18) reduces to Dk

∫
Fp[N ]

Gk(x − y)ψ(x)dxn

and this term is equal to ψ(y).
If instead of lifting ψ′ to the fundamental domain Fp[N ] we had lifted it to

the fundamental domain M < Fp[N ] > for some M ∈ Γp[N ] then ψ′ would
lift to the function ψ(u) where u ∈ M < Fp[N ] >. Again this function is Ck

with compact support in M < Fp[N ] >. In this case we would get by changing
variables back to x and y

J−k(M,y)ψ(M < y >) = Dk

∫
Fp[N ]

C̃p,N (x, y)J−k(M,x)ψ(x)dxn,

where J−k(M,x) = c̃x+d
‖cx+d‖n+k+1 when k is odd and J−k(M,x) = 1

‖cx+d‖n+k

when k is even. This establishes equation (16). Similar arguments gives us
equation (17). �
It remains to set up a monogenic Cauchy kernel for the cases p = n−2, p = n−1.
On placing p = n − 1 or p = n − 1 in the series for Cp,N (x, y) this series will
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now diverge. However, we can bypass this issue by again adapting the Hecke
trick. For each M ∈ Γp[N ] let us write the term xn

‖cx+d‖2 as H(M,x). It
should be noted that for each T ∈ Tp[N ] and each M ∈ Γp[N ] we have that
H(TM, x) = H(M,x). Now let us introduce the series∑

T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

H(TM, x)sJ(TM, x)G(y − TM < x >),

where s is the complex auxiliary parameter introduced in Proposition 2. As
H(TM, x) = H(M,x) and J(TM, x) = J(M,x) one can apply the Hecke trick
described in Section 3 to adapt the proof of Proposition 3 to establish the
following:

Proposition 7 The series∑
T∈Tn−2[N ]

∑
M :Γn−2\Tn−2[N ]

H(TM, x, )sJ(TM, x)G(y − TM < x >) (19)

is absolutely convergent on any compact subset of Fn−2[N ]\{y} and for any
s ∈ C whose real part is greater than zero.

Given that H(TM, x) = H(M,x) and J(TM, x) = J(M,x) the series (19) can
be rewritten as∑

T∈Tn−2[N ]

∑
M :Γn−2\Tn−2[N ]

H(M,x)sJ(M,x)G(y − TM < x >). (20)

Further one can combine the arguments used to establish Proposition 7 with
arguments presented in [23] to obtain

Proposition 8 The series∑
M :Γn−1[N ]\Tp[N ]

H(M,x)sJ(M,x)G(y −M < x >) +
∑

Tm,T−m∈Tn−1[N ]∑
M :Γn−1[N ]\Tn−1[N ]

H(M,x)sJ(M,x)(G(y−TmM < x >)+G(y−T−mM < x >))

(21)
is absolutely convergent on any compact subset of Fn−1[N ]\{y} and for any
s ∈ C whose real part is positive.

Let us denote the series (20) and (21) by Cn−2,N,s(x, y) and Cn−1,N,s(x, y)
respectively. From Proposition 2 it now follows that lims→0 Cn−2,N,s(x, y) and
lims→0 Cn−1,N,s(x, y) exist and are functions Cn−2,N (x, y) and Cn−1,N (x, y) re-
spectively defined onH+(Rn)×H+(Rn)\diagonalH+(Rn) where diagonalH+(Rn) =
{(x, x) : x ∈ H+(Rn).
Note that for each L ∈ Γp[N ]

H(M,L < x >) = H(ML,x).
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Consequently from the same arguments used to prove Proposition 5 we have
that J(L, x)Cn−2,N,s(L < x >, y) = Cn−2,N,s(x, y) and J(L, x)Cn−1,N,s(L <
x >, y) = Cn−1,N,s(x, y) for each L ∈ Γk[N ]. It follows that

lim
s→0

Cp,N,s(L < x >, y) = J(L, x)−1Cp,N (x, y)

for p = n− 2 and for p = n− 1. So J(L, x)Cp,N (L < x >, y) = Cp,N (x, y) also
for p = n− 2 and for p = n− 1.
By the same argument used to prove Proposition 4 we may see that Cp,N,s(y, x) =
−C̃p,N,s(x, y) for p = n − 2 and p = n − 1. Consequently Cp,N (y, x) =
−C̃p,N (x, y) for p = n− 2 and p = n− 1.

Notice that for p = n − 2 and p = n − 1 the functions Cp,N (x, y) have exactly
one point singularity in each fundamental domain. This becomes clear when
rewriting Cp,N (x, y) in the equivalent form G(x− y) + (Cp,N (x, y)−G(x− y)).
The term Cp,N (x, y)−G(x−y) has no singularities on the fundamental domain
Fp[N ].
Bearing these comments in mind we can adapt arguments given in [36] and

elsewhere to obtain:

Theorem 3 Suppose that U is a bounded domain in Fp[N ] with strongly Lip-
schitz boundary S lying in Fp[N ]. Suppose further that ψ : S → Cln belongs
to Lq(S) for some q ∈ (1,∞). Then for each smooth path λ(t) lying in U with
nontangential limit λ(0) = y ∈ S we have

lim
t→0

∫
S′
C̃ ′p,N (x′, λ(t)′)n′(x′)ψ′(x′)dσ′(x′) =

1
2
ψ′(y)

+P.V.
∫

S′
C̃ ′p,N (x′, y′)n′(x′)ψ′(x′)dσ′(x′)

for almost all y′ ∈ S′.

Further as the term Cp,N (x, y) − G(x − y) is bounded on S it follows from
arguments presented for instance in [36] that the singular integral

P.V.

∫
S′
C̃p,N (x′, y′)n′(x′)ψ′(x′)dσ(x′)

defines an Lq bounded operator ΣS′ : Lq(S′) → Lq(S′).
Similarly we have that if U , S and ψ are as in Theorem 3 but now λ is a smooth
path lying in Fp[N ]\(U ∪ S) with nontangential limit λ(0) = y ∈ S then

lim
t→0

∫
S′
C̃ ′p,N (x′, λ(t)′)n′(x′)ψ′(x′)dm′(x′) = −1

2
ψ′(y′)

+PV
∫

S′
C̃ ′p,N (x′, y′)n′(x′)ψ′(x′)dm′(x′)

for almost all y ∈ S′.
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It may easily be determined by adapting arguments from [36] and elsewhere
to the situation described here that the operator 1

2I + ΣS′ acting on Lq(S′) is
a projection onto the generalized Hardy space Hq,+ of left monogenic sections
on U whose nontangential maximal function on S′ belongs to Lq(S′). Here I
is the identity operator acting on Lq(S′). However for p ≤ n − 2 the operator
− 1

2I + ΣS′ is not necessarily a projection operator acting on Lq(S′).
To see this recall that in Section 3 the fundamental domain Fp[N ] is set up

so that for p ≤ n − 2 nontrivial open subsets of ∂H+(Rn) belong to ∂Fp[N ].
Suppose that w belongs to such an open subset then in general

lim
y→w

∫
S′
C̃ ′p,N (x′, y′)n′(x′)ψ′(x′)dσ(x′)

need not be zero.
To overcome this situation let us instead of considering the fundamental do-

main Fp[N ] let us instead consider the fundamental domain of Rn\Γp[N ] which
contains Fp[N ]. We shall denote this fundamental domain by Gp[N ]. It should
be noted that now w ∈ Gp[N ] and that if y(t) is a path in Gp[N ] that tends to
infinity then limt→∞

∫
S
C̃p,N (x, y(t))n(x)ψ(x)dσ(x) is zero.

Let us now introduce the generalized Hardy space Hq,−(S′) of left monogenic
sections defined on Np[N ]\(U ′ ∪ S′) whose nontangential maximal function
belongs to Lq(S′). Further Np[N ] is the conformally flat manifold obtained
through the factorization Rn\Γp[N ]. It may now be determined that the opera-
tor − 1

2I+ΣS′ is a projection operator from Lq(S′) onto Hq,−(S′). Consequently
we have:

Theorem 4 Suppose that S is as in Theorem 3. Then for q ∈ (1,∞) and
p ≤ n− 2

Lq(S′) = Hq,+(S′)⊕Hq,−(S′).

One can go further than this and set up operators of Calderon-Zygmund type
in this context. Suppose that φ : Rn → Cln is an odd, smooth function that is
homogeneous of degree zero. Now consider the kernel K(x− y) = φ(x−y)

‖x−y‖n . For
S a strongly Lipschitz surface lying in Rn then provided K(x− y) satisfies the
usual cancellation property described in [36] and elsewhere the singular integral
P.V.

∫
S
K(x − y)n(x)ψ(x)dσ(x) defines an operator KS : Lq(S) → Lq(S) of

Calderon-Zygmund type. From Lemma 1 and Proposition 3 it now follows that
as K(x) is homogeneous of degree 1− n the series

Kp,N (x, y) :=
∑

T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

K(TM < x > −y)J(M,x)

is uniformly convergent on each compact subset of H+(Rn)\ ∪M∈Γp[N ] {M <
y >}. Further, by the same arguments used to establish Proposition 5 we may
determine the following automorphic invariance of the kernel Kp,N (x, y).

Proposition 9 For each L ∈ Γp[N ] we have J(L, x)Kp,N (x, y) = Kp,N (L <
x >, y).
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Consequently we have:

Theorem 5 Suppose that p < n−2. Suppose also that S is a strongly Lipschitz
surface lying in Fp[N ]. Then the operator K ′

S′ defined by the singular integral
P.V.

∫
S′
K ′(x′, y′)n′(x′)ψ′(x′)dσ(x′) is Lq bounded for q ∈ (1,∞).

6 k-Hypergenic functions

In this section we turn to look at analogous results in the hyperbolic setting. In
the first subsection we introduce hypermonogenic Eisenstein series that project
to hypermonogenic sections defined on a particular spinor bundle introduced
here. However, the results produced in this first subsection automatically carry
over for k-hypergenic functions and even for k-hyperbolic harmonic Eisenstein
series. For this reason we treat all cases together in this subsection. In the
second subsection we focus on introducing the fundamental solutions on Mp[N ]
of hypermonogenic sections and hyperbolic harmonic functions together with
some of their basic properties.

6.1 k-hypergenic Eisenstein series

The simplest example of a k-hypergenic function is the constant function F (x) =
1. As pointed out in our preliminary section if f(y) is k-hypergenic in the
variable y = M < x > then Kk(M,x)f(M < x >) is a k-hypergenic function in
the variable x. Consequently upon applying this conformal weight factor to the
constant function F (y) = 1 and Lemma 1 one may now introduce k-hypergenic
Eisenstein series in upper half space as follows:

Proposition 10 [8] For p < n and arbitrary real k with k < n−p−2 the series

εk,p,N (x) :=
∑

M :Γp[N ]\Tp[N ]

Kk(M,x). (22)

is uniformly convergent on H+(Rn) and defines a k-hypergenic function.

Notice that in all cases where k < −1, these series converge even for p = n− 1.

In complete analogy to the proof of Proposition 6 one can show that

εk,p,N (x) = Kk(M,x)εk,p,N (M < x >) ∀M ∈ Γp[N ].

So the series εk,p,N (x) defines a k-hypergenic Eisenstein series for the group
Γp[N ]. Furthermore, for N ≥ 3 we have lim

xn→+∞
εk,p,N (enxn) = 1. This ensures,

that the series εk,p,N (x) are non-vanishing functions.

Following Proposition 1(i) and [8] if

f(x) = Kk(M,x)f(M < x >) ∀M ∈ Γp[N ],
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is a k-hypergenic automorphic form then the function

g(x) :=
f(x)en

xk
n

= K−k(M,x)g(M < x >) ∀M ∈ Γp[N ].

is a −k-hypergenic automorphic form.
This allows us readily to construct non-vanishing k′-hypergenic Eisenstein series
for positive k′ > 1 from the k-hypergenic Eisenstein series of negative k < −1,
simply by forming

E−k,p,N (x) :=
εk,p,N (x)en

xk
n

.

The series E−k,p,N (x) then satisfy the transformation law

E−k,p,N (x) := K−k(M,x)E−k,p,N (M < x >)

for all M ∈ Γp[N ]. Since the original series εk,p,N (x) are non-vanishing func-
tions, the series E−k,p,N (x) do not vanish, either.
In particular, this construction provides us with non-trivial hypermonogenic
Eisenstein series, which we obtain by putting k = −n+ 2, i.e.

En−2,p,N (x) :=
ε−n+2,p,N (x)en

x2−n
n

=
∑

M :Γp[N ]\Tp[N ]

1
x2−n

n

K−n+2(M,x)en.

These satisfy in particular

En−2,p,N (x) := K2−n(M,x)En−2,p,N (M < x >)

for all M ∈ Γp[N ].

Let us denote by Ek the particular spinor bundle over Mp[N ] constructed by
making the identification (x,X) ↔ (M < x >,Kk(M,x)X) for every M ∈
Γp[N ] where x ∈ H+(Rn) and X ∈ Cln. If an Ek valued section defined on a
domain U ′ of Mk[N ] lifts to a k-hypergenic function on the covering set U of
U ′ then that section is called a left k-hypergenic section.
We may now state:

The projection map applied to εk,p,N induces a well-defined non-vanishing k-
hypergenic section with values in the spinor bundle Ek.
By similar arguments to those used to introduce k-hypergenic Eisenstein series
in this section one may determine the following:

Theorem 6 For any positive integer N , for p < n and an arbitrary real k with
k < n− p− 2 the series

µk,p,N (x) :=
∑

M :Γp[N ]\Tp[N ]

Lk(M,x)

is uniformly convergent on H+(Rn) and defines a k-hyperbolic harmonic func-
tion satisfying µk,p,N (x) = Lk(M,x)µk,p,N (M < x >).
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Thus for this range of p we have introduced k-hyperbolic harmonic Eisenstein
series.
Following Proposition 1(i) and arguments leading to establishing Theorem 3

we now have:

Theorem 7 For any positive integer N , for p < n and an arbitrary real k with
k < n− p− 2 the series

Θk,p,N (x) := xk
n

∑
M :Γp[N ]\Tp[N ]

Lk

is uniformly convergent on H+(Rn). Moreover, Θk,p,N (x) is a solution to
the Weinstein equation Wku = 0. Further Θk,p,N (x) satisfies Θk,p,N (x) =
Lk(M,x)Θk,p,N (M < x >).

It follows from [11] that Θk,p,N is a Maass wave form.
Let us denote by Bk the particular bundle over Mk[N ] constructed by making
the identification (x,X) with (M < x >,Lk(M,x)X) for each M ∈ Γp[N ], with
x ∈ H+(Rn) and X ∈ Cln. We shall call a Bk valued section defined on an open
subset U ′ of Mk[N ] a k-hyperbolic harmonic section if it lifts to a k-hyperbolic
harmonic function on the lifting of U .
It follows from Theorem 4 that the Eisenstein series Θk,p,N (x) projects to a

well defined k-hyberbolic harmonic section defined on Bk.

6.2 hypermonogenic and hyperbolic harmonic kernels

A central aspect in the study of k-hypergenic sections on this class of manifolds
is again to ask for an explicit representation of the fundamental solutions on
such Mp[N ] and for an explicit Cauchy integral formula.

The simplest case is the particular case where k = n − 2, the case of (n − 2)-
hypermonogenic functions. This is the case that we shall deal with here.
Following similar arguments to those used to establish Proposition 3 we have:

Proposition 11 For p = 1
(i) The series

Ap,N (x, y) :=
∑

Tm,T−m∈Tp[N ]\{I}

∑
M :Γp[N ]\Tp[N ]

(Kn−2(TmM,x)+Kn−2(T−mM,x))

p(M < x >, y)

is uniformly convergent on any compact subset of H+(Rn)\∪M∈Γp[N ] {M < y >
}. Further the kernel Ap,N (x, y) satisfies the asymmetry relation Ap,N (x, y) =
−D̃p,N (y, x), and Kn−2(L, x)Ap,N (L < x >, y) = Ap,N (x, y) for each L ∈
Γp[N ].
(ii) The series

Bp,N (x, y) :=
∑

T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

K2−n(TM, x)q(TM < x >, y)
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is uniformly convergent on any compact subset of H+(Rn)\∪M∈Γp[N ] {M < y >
}.

In order to obtain a Cauchy integral formula for hypermonogenic functions in
the context we are considering here let us first note that the kernel p(x, y) is
hypermonogenic in the variable x. It follows that for each M ∈ Γp[N ]\I we
have that

P (
∫

∂V

p(M < x >, y)K̃n−2(M,x)
n(x)
xn−2

n

f(x)dσ(x)) = 0

for each function f which is left hypermonogenic in a neighbourhood of the
closure of the bounded domain V . Further we are assuming that M < x > 6= y
It follows that we now have the following version of Cauchy’s integral formula.

Theorem 8 Suppose that U is a domain in upper half space satisfying M(U) =
U for each M ∈ Γp[N ]. Suppose also that f : U → Cln is a left hypermonogenic
function satisfying Kn−2(M,x)f(M < x >) = f(x). Suppose further that V
is a bounded subdomain of U and that the closure of V lies in a fundamental
domain of Γp[N ]. Then for each y ∈ V and for p < n− 2

P (f(y)) = P

∫
∂V

Ãp,N (x, y)
n(x)
xn−2

n

f(x)dσ(x). (23)

To obtain a complete Cauchy integral formula for all of f(y) in this context let
us first note from Proposition 1(i) that if f(x) is right hypermonogenic then
enx

n−2
n f(x) is right hypermonogenic. Further in [14] it is shown that q(x, y) is

right (2− n)-hypergenic. Now consider the integral∫
∂M−1(V )

enu
n−2
n q(u, y)

n(u)
un−2

n

g(u)dσ(u)

where u = M < x > and un is the nth component of u. Further g is a C1

function defined on U , where U and V are as in Theorem 5. Under a conformal
change in variables this integral becomes∫

∂V

enq(M < x >, y)K̃2−n(M,x)n(x)Kn−2(M,x)g(M < y >)dσ(x).

It follows from Proposition 1(i) that q(M < x >, y)K̃2−n(M,x) is right (2−n)-
hypergenic in x. Consequently if U , V , y and f are as in Theorem 5 then

Q

∫
∂V

q(M < x >, y)K̃2−n(M,x)n(x)f(x)dσ(x) = 0

for each M ∈ Γp[N ]\{I}. Consequently we have

Theorem 9 Suppose U , V , y and f are as in Theorem 5 and p < n− 2 then

Q(f(y)) = Q(
∫

∂V

B̃p,N (x, y)n(x)f(x)dσ(x))en. (24)
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Combining Theorems 5 and 6 we have

Theorem 10 Suppose U , V , y and f are as in Theorems 5 and 6, and p < n−2
then

f(y) = P (
∫

∂V

Ãp,N (x, y)
n(x)
xn−2

n

f(x)dσ(x)) +Q(
∫

∂V

B̃p,N (x, y)n(x)f(x)dσ(x))en.

By the same arguments used to prove Proposition 3 we may deduce:

Proposition 12 The series

E2−n,N (x, y) :=
∑

T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

K2−n(TM, x)E(TM < x >, y)

and

F2−n,N (x, y) :=
∑

T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

K̂2−n(TM, x)F (TM < x >, y)

converge uniformly on each compact subset of H+(Rn)\ ∪M∈Γp[N ] {M < y >}.

By the same arguments used to prove Proposition 5 we can deduce:

Proposition 13 The kernels E2−n,N (x, y) and F2−n,N (x, y) satisfy the rela-
tionships K2−n(L, x)Ek,N (L < x >, y) = Ek,L(x, y) and K̂2−n(L, x)F2−n,N (L <
x >, y) = F2−n,N (x, y) for each L ∈ Γk[N ].

¿From results in [14] one may show that if ψ ∈ Lq(S), with q ∈ (1,∞) and S a
strongly Lipschitz hypersurface in H+(Rn) then the integral

yn−2
n (

∫
S

E(x, y)n(x)ψ(x)dσ(x)−
∫

S

F (x, y)n̂(x)ψ̂(x)dσ(x))

defines a hypermonogenic function on H+(Rn)\S. By the same arguments used
in [38] it may be determined that the integral

yn−2
n (

∫
S

E(M < x >, y)K̃2−n(M,x)n(x)ψ(x)dσ(x)

−
∫

S

F (M < x >, y) ˆ̃K2−n(M,x)n̂(x)ψ̂(x)dσ(x))

defines a hypermonogenic function on H+(Rn)\∂V for each ψ ∈ Lq(∂V ) with
q ∈ (1,∞) and S ⊂ Fp[N ]. Consequently we have:

Proposition 14 Suppose S ⊂ Fp[N ] and ψ ∈ Lq(∂V ) with q ∈ (1,∞). Further
suppose that p < n− 2. Then the integral

yn−2
n (

∫
S

Ẽ2−n,N (x, y)n(x)ψ(x)dσ(x)−
∫

S

F̃2−n,N (x, y)n̂(x)ψ̂(x)dσ(x))

defines a hypermonogenic function on H+(Rn)\ ∪M∈Γp[N ] {M < y >}.
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It is straightforward to verify using arguments given in [38] that the term

Kn−2(M,y)(M < y >n)n−2(
∫

M<S>

Ẽ2−n,N (M < x >,M < y >)n(M < x >)

ψ(M < x >)dσ(M < x >)

−
∫

M<S>

F̃2−n,N (M < x >,M < y >)n̂(M < x >)ψ̂(M < x >)dσ(M < x >))

is equal to

yn−2
n (

∫
S

Ẽ2−n,N (x, y)n(x)Kn−2(M,x)ψ(x)dσ(x)

−
∫

S

F̃2−n,N (x, y)n̂(x)K̂n−2(M,x)ψ̂(x)dσ(x)).

for each M ∈ Γp[N ]. This establishes a conformal invariance for our Cauchy
type integral.
Suppose now that w belongs to an open subset of ∂Fp[N ] ∩ ∂H+(Rn) then

lim
y→w

yn−2
n (

∫
S

Ẽ2−n,N (x, y)n(x)ψ(x)dσ(x)−
∫

S

F̃p,N (x, y)n̂(x)ψ̂(x)dσ(x) = 0

for each ψ ∈ Lq(S) with q ∈ (1,∞). Further for y(t) an unbounded path in
Fp[N ] we have

lim
t→∞

yn−2
n (

∫
S

Ẽ2−n,N (x, y(t))n(x)ψ(x)dσ(x)−
∫

S

F̃2−n,N n̂(x)ψ̂(x)dσ(x)) = 0

for each ψ ∈ Lq(S) with q ∈ (1,∞).
Let us now introduce the Hardy space Hq,+

n−2(S
′) of left hypermonogenic sec-

tions defined on U ′ whose nontangential limits lie in Lq(S′). Further let us
introduce the Hardy space Hq,−

n−2(S
′) of left hypermonogenic sections defined on

Mp[N ]\(U ′∪S′) whose nontangential limits on S′ lie in Lq(S′). Now by similar
arguments to those used in [38] and in Section 4 we have

Theorem 11 For q ∈ (1,∞)

Lq(S′) = Hq,+
n−2(S

′)⊕Hq,−
n−2(S

′).

Following arguments developed to establish Theorem 2 and results in [38] we
also have:

Theorem 12 Suppose that p < n− 2. Further suppose ψ′ : Mp[N ] → E2−n is
a C1 function with compact support. Then for each y′ ∈Mp[N ]

ψ′(y′) = Mn−2y
′n−2
n (

∫
Mp[N ]

Ẽ′2−n(x′, y′)ψ′(x′)dm′(x′)

−
∫
Mp[N ]

F̃ ′2−n(x′, y′)ψ̂′(x′)dm′(x′).
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We last turn to look at a hyperbolic harmonic kernel. In [14] it is shown
that the function 1

‖x−y‖n−2‖x̂−y‖n−2 is hyperbolic harmonic in the variable y.

Consequently the kernel H(x, y) := 2n−2

ωn

xn−2
n

‖x−y‖n−2‖x̂−y‖n−2 is also hyperbolic
harmonic in the variable y.
Adapting arguments given in [38] it can be shown that for any C2 function
ψ : H+(Rn) → Cln with compact support one has

ψ(y) = W2−n

∫
H+(Rn)

H(x, y)ψ(x)dm(x)

for each y ∈ H+(Rn).
Now let us introduce the series

Hp,N (x, y) := yn−2
n

∑
T∈Tp[N ]

∑
M :Γp[N ]\Tp[N ]

L2−n(TM < y >, x)H(TM < y >, x).

It follows from Lemma 1 and a straightforward adaptation of the proof of
Proposition 3 that this series converges uniformly on any compact subset of
H+(Rn)\ ∪M∈Γp[N ] {M < y >} for p < n− 3 and for any N . Consequently the
kernel Hp,N (x, y) is hyperbolic harmonic in the variable y. Also as each term in
the series for Hp,N (x, y) is positive it follows that Hp,N (x, y) does not vanish for
N = 1 and N = 2. By similar arguments to those used to establish Proposition
5 it follows that Hp,N (y, x) = Hp,N (L < y >, x) for each L ∈ Γp[N ].
Let us now construct a bundle overMp[N ] by making the identification (x,X) ↔
(M < x >, 1

‖cx+d‖2n−4X). We denote this bundle by B. We now have in com-
plete analogy to Theorem 10:

Theorem 13 Suppose that p < n − 3, Further suppose ψ′ : Mp[N ] → B is a
C2 section with compact support. Then for each y′ ∈Mp[N ]

ψ′(y′) = 4′
n−2

∫
Mp[N ]

H ′
p,N (x′, y′)ψ′(x′)dm′(x′)

where 4′
n−2 is the projection to Mp[N ] of the operator 4n−2.
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