
On a special type of solutions

of arbitrary higher spin Dirac operators

H. De Schepper†, D. Eelbode∗, T. Raeymaekers†

∗Department of Mathematics and Computer Science, University of Antwerp

Campus Middelheim, G-Building, Middelheimlaan 1, 2020 Antwerpen, Belgium
†Clifford research group, Department of Mathematical Analysis, Ghent University

Galglaan 2, 9000 Ghent, Belgium

E-mail: hds@cage.ugent.be, david.eelbode@ua.ac.be, tr@cage.ugent.be

Abstract. In this paper an explicit expression is determined for the elliptic higher

spin Dirac operator, acting on functions f(x) taking values in an arbitrary irreducible

finite-dimensional module for the group Spin(m) characterized by a half-integer highest

weight. Also a special class of solutions of these operators is constructed, and the

connection between these solutions and transvector algebras is explained.

PACS numbers: 2.20Qs, 2.30Px

Submitted to: J. Phys. A: Math. Gen.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55759921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Solution of higher spin Dirac operators 2

1. Introduction

Classical Clifford analysis is usually defined as a function theory generalizing complex

analysis to the case of arbitrary dimension m ∈ N (considered as a formal parame-

ter), and at the same time refining classical harmonic analysis in R
m. The main object

of study in this theory is the so-called Dirac operator, which generalizes the Cauchy-

Riemann operator and factorizes the Laplacian ∆m. We refer the reader to [1, 2, 3] or to

the overview paper [4] for a general introduction to this branch of classical analysis. From

a more algebraic point of view, the Dirac operator can be defined as the unique (up to

a multiplicative constant) first-order differential operator acting on spinor-valued func-

tions, which is spin-invariant. To be more precise: this operator is in fact conformally

invariant, a property which is usually described in terms of Vahlen matrices in Clifford

analysis, but for most purposes it suffices to consider the rotational invariance, w.r.t.

a suitable action of the spin group. Within the setting of conformal (or Riemannian)

geometry the construction of such (invariant) operators is well-known, see e.g. [5, 6, 7],

and can be established using the method of generalized gradients. It should however be

stressed that the questions addressed in Clifford analysis are of a completely different

nature: one is mainly interested in the space of polynomial solutions, integral repre-

sentations for arbitrary solutions, integral transforms, etc... Since a few years, Clifford

analysis has turned out to be a very elegant framework to study this type of problems

not only for the classical Dirac operator, but also for far-reaching generalizations of it

acting on functions which take their values in arbitrary half-integer irreducible spin-

representations. The earliest generalizations involved the so-called Rarita-Schwinger

operator, again inspired by equations coming from theoretical physics; in [8, 9] one can

find the function theoretical fundaments for spin-invariant operators acting on functions

taking values in irreducible modules with highest weight (k + 1
2
, 1

2
, · · · , 1

2
). The present

paper is part of a program to establish and study the most general possible operator

(and its solutions), in which both the dimension and the highest weight vector of the

underlying value space are treated as parameters: this is the subject of Clifford analysis

for higher spin Dirac operators.

This paper is organized as follows: after an introduction to the language of Clifford

analysis in section 2, we establish the general higher spin Dirac operator in section

3, as a first-order differential operator acting on functions in several vector variables.

Subsequently, we introduce a special class of solutions in section 4 and investigate their

connection with transvector algebras in section 5.

2. Clifford Analysis

Let (e1, . . . , em) be an orthonormal basis for the Euclidean vector space R
m, and denote

by Rm the real Clifford algebra generated by these basis elements, together with the

defining relations eiej + ejei = −2δij, i, j = 1, . . . ,m. The complex Clifford algebra Cm

is then defined as Cm := Rm ⊗R C. Any element x of R
m can be embedded inside the
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Clifford algebra, by means of x →֒
∑

ejxj. The scalar valued Euclidian inner product

can then be defined as

〈x, y〉 = −
1

2
(x y + y x) =

m
∑

j=1

xjyj

Inside the complex Clifford algebra Cm, one can define the spinor space(s) S
± as a

minimal left ideal, using a primitive idempotent. Note that the parity of spinors only

needs to be taken into account in case of even dimension m = 2n. From now on we

will often omit this reference to the parity of the spinors, which amounts to saying that

we will be mostly dealing with odd dimensions m = 2n + 1. However, up to a minor

addition of ± signs, our results will also hold for the case of even dimensions: this will

be mentioned whenever it is needed. The vector space S defines the basic half-integer

representation for the spin group Spin(m), described by the highest weight (1
2
, 1

2
, · · · , 1

2
)

under the action ψ 7→ sψ for all ψ ∈ S and s ∈ Spin(m). Note that the spin group can

itself be realized inside the Clifford algebra by

Spin(m) =
{

s =
2k
∏

j=1

sj : k ∈ N , sj ∈ Sm−1
}

where Sm−1 ⊂ R
m denotes the unit sphere in R

m. The classical Dirac operator in R
m is

given by ∂x =
∑

j ej∂xj
. This is the unique spin-invariant first order differential operator

acting on S-valued functions f(x) on R
m, with respect to the regular representation

f(x) 7→ sf(s̄xs). We call such an S-valued function monogenic in x if it satisfies ∂xf = 0.

The Dirac operator ∂x and the vector variable x generate the Lie superalgebra osp(1, 2),

which is a concise way to summarize the most crucial operator identities in Clifford

analysis. We e.g. have the following relation, which will be used later:

{x, ∂x} := x ∂x + ∂xx = −2
(

Ex +
m

2

)

where Ex =
∑

j xj∂xj
is the Euler operator on R

m.

It is crucial to observe that not only the spinor space S, but also other half-integer

Spin(m)-representations can be characterized in the language of Clifford algebras and

Clifford analysis, see e.g. [10]. This is done using the notion of Clifford analysis in

several vector variables ui ∈ R
m. From now on, we will denote ∂ui

by ∂i.

Definition 1 A function f : R
km → C : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called simplicial

harmonic if it satisfies the system

〈∂i, ∂j〉f = 0, for all i, j = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k

The vector space of C-valued simplicial harmonic polynomials which are li-homogeneous

in ui will be denoted by Hl1,...,lk , where, from now on, we assume l1 ≥ · · · ≥ lk.
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Definition 2 A function f : R
km → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called simplicial

monogenic if it satisfies the system

∂if = 0, for all i = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k

The vector space of S-valued simplicial monogenic polynomials which are li-homogeneous

in ui will be denoted by Sl1,...,lk , where again, from now on, we assume that l1 ≥ · · · ≥ lk.

The following definition involves weaker conditions on the S-valued functions, but will

nevertheless be crucial in what follows.

Definition 3 A function f : R
km → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called

monogenic if it satisfies ∂if = 0, for all 1 ≤ i ≤ k.

The vector space of S-valued monogenic polynomials which are li-homogeneous in ui

will be denoted by Ml1,...,lk , again with l1 ≥ · · · ≥ lk. Each of these polynomial vector

spaces can be seen as a module for the spin group, under the regular representation (or

so-called L-representation) given by

L(s)P (x1, . . . , xk) := sP (sx1s, . . . , sxks), s ∈ Spin(m)

In e.g. [10], it was proven that under this action, the Spin(m)-modules Hl1,···,lk (resp.

Sl1,···,lk) define a model for the irreducible highest weight representation characterized

by means of

Hl1,···,lk → (l1, · · · , lk, 0, · · · , 0) := (l1, · · · , lk)

Sl1,···,lk →

(

l1 +
1

2
, · · · , lk +

1

2
,
1

2
, · · · ,

1

2

)

:= (l1, · · · , lk)
′

As shown in the above notations, we will omit redundant zeros in the highest weight

vector, and denote the Cartan product by means of a prime. Note that in case m = 2n,

one should also add a parity index to the spaces of simplicial monogenics.

3. Construction of higher spin Dirac operators

The aim of this section is to find an explicit expression for the Spin(m)-invariant

differential operator

Ql1,...,lk : C1(Rm,Sl1,...,lk) → C0(Rm,Sl1,...,lk)

f(x;u1, . . . , uk) 7→ Ql1,...,lkf(x;u1, . . . , uk)

which will be our most general higher spin Dirac operator. Note that in the case where

m = 2n, these operators change the parity of the spinors (so called parity-reversion):

Ql1,...,lk : C1(Rm,S±
l1,...,lk

) → C0(Rm,S∓
l1,...,lk

)

The existence and uniqueness of such an invariant differential operator is guaranteed

because of Fegan’s result [6] on conformally invariant operators. As we are mainly
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focusing on rotational invariance in this paper, we can also invoke the Stein-Weiss paper

[7] on generalized gradients to explain this: it suffices to note that for any highest weight

module (l1, · · · , lk)
′ the tensor product with the standard representation C

m contains the

module (l1, · · · , lk)
′ as a summand. In abstract terms, we thus have:

C1(Rm, (l1, · · · , lk)
′)

∇
−→ C0(Rm,Cm ⊗ (l1, · · · , lk)

′)
π

−→ C0(Rm, (l1, · · · , lk)
′)

with π a suitable projection operator. Note that we put a limit on the number of

variables in terms of the dimension m = 2n + 1 (or m = 2n): we will always assume

that k < n. The case k = n is special, and leads to generalizations of the massless-field

operator, whereas the case k > n is often referred to in the literature as the non-stable

range. In the case k = 2, we will reobtain the operator Ql1,l2 introduced in [11, 12].

There, it was found that (up to a multiplicative constant)

Ql1,l2 =

(

1 +
u1∂1

m+ 2l1 − 2

)(

1 +
u2∂2

m+ 2l2 − 4

)

∂x

In the case k = 1, the operator reduces to

Ql1 =

(

1 +
u1∂1

m+ 2l1 − 2

)

∂x

This operator is known as the Rarita-Schwinger operator Rl1 , see e.g. [8, 9]. We will

now establish the general form of the higher spin Dirac operator by construction.

Theorem 1 Up to a multiplicative constant the higher spin Dirac operator

Ql1,...,lk : C1(Rm,Sl1,...,lk) → C0(Rm,Sl1,...,lk), f(x) 7→ Ql1,...,lkf(x)

takes the form

Ql1,...,lk =

(

k
∏

i=1

(1 + ciui∂i)

)

∂x (1)

where the constants ci are explicitly given by ci =
1

m+ 2li − 2i
.

Proof.

We need to show the existence of a nonzero set of constants ci, such that, when applying

the operator given by (1), it holds for all f in C∞(Rm,Sl1,...,lk) that

∂1Ql1,...,lkf = 0

and

〈ui, ∂i+1〉Ql1,...,lkf = 0, i = 1, . . . , k − 1

Indeed, since ∂i+1 = [∂i, 〈ui, ∂i+1〉], all other conditions contained in Definition 2 will

follow from the above ones. We thus only have k conditions to impose, which corresponds

to the fact that there are k constants to be determined in the expression for Ql1,...,lk .

Using standard operator identities from Clifford analysis, it follows from the condition

∂1

k
∏

i=1

(1 + ciui∂i)∂xf = 0
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that c1 = (m+ 2k1 − 2)−1, where we have used the fact that f is Sl1,...,lk-valued. Similar

calculations show that from the condition

〈ui, ∂i+1〉

k
∏

j=1

(1 + cjuj∂j)∂xf = 0, i ∈ {1, . . . , k − 1}

it follows that ci+1 = ci(1+2ci(li+1 − li − 1)−1), for all f ∈ C∞(Rm,Sl1,...,lk). Inductively

we thus arrive at ci = (m+ 2li − 2i)−1, as had to be proven. �

Note that one can also rewrite this operator without explicitly mentioning the precise

form of the highest weight fixing our values. Indeed, it suffices to replace each constant

ci by the corresponding action of a suitable Euler operator, which will automatically

generate the correct constant:

Q[k] =

(

k
∏

i=1

(

1 +
ui∂i

m+ 2Ei − 2i

)

)

∂x. (2)

Nevertheless the notation Q[k] is kept, referring to the length of the highest weight

vector, i.e. the number of non-trivial entries lj in its primed notation.

Remark

In addition to the theory of generalized gradients, one can also obtain this higher

spin Dirac operator by means of a suitable projection of the twisted Dirac operator

∂T
x : Hl1,···,lk ⊗ S → Hl1,···,lk ⊗ S. It is easily seen, using Klymik’s theorem, that this

tensor product of Spin(m)-modules contains the module Sl1,···,lk , together with (at most)

2k − 1 other irreducible summands. This means that the higher spin Dirac operator can

be defined as Ql1,...,lk := πl1,···,lk [∂
T
x ], with πl1,···,lk the projection operator acting as

Hl1,···,lk ⊗ S
πl1,···,lk−→ Sl1,···,lk

Note that this projection operator is different from the one appearing in the application

of the Stein-Weiss method. Finally, it should be noted that this definition can also be

rewritten in such a way that an inductive structure is revealed:

Ql1,...,lk = Ql1,···,lk−1
− 2ckπl1,···,lk−1

[uk]〈∂k, ∂
T
x 〉

In a forthcoming paper we will use this fact to describe general higher spin Dirac

operators in terms of twisted higher spin Dirac operators.

4. Type A solutions of higher spin operators

As in any function theory, the study of polynomial solutions of the involved differential

operators plays a crucial role, due to the fact that these are often used to decompose

arbitrary solutions belonging to appropriate L2-spaces. We will therefore take a closer

look at the homogeneous polynomial solutions of the higher spin Dirac operator (1).
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More specifically, and similarly to what has been done for the Rarita-Schwinger operator

and its generalizations, we will study so–called ”type A solutions”. Indeed, in general

two types of homogeneous polynomial solutions of higher spin Dirac operators are to be

distinguished: either the polynomial belongs to the kernel of the (twisted) Dirac operator

∂x, or the operator ∂x essentially maps its values to one of the other summands inside

the tensor product Hl1,···,lk ⊗ S, meaning that the projection operator πl1,···,lk then acts

trivially. The latter are the so-called ”type B solutions”, which can be characterized in

terms of twistor operators (see e.g. [8] for the case of the Rarita-Schwinger operator).

Type A solutions are then obviously polynomials in the kernel of ∂x as well as in the

respective kernels of the operators ∂1, . . . , ∂k; hence they must belong to the space

Ml0,...,lk defined earlier, where l0 now is an additional degree of homogeneity in x ≡ u0.

However, in order to ensure that these solutions have the correct values (i.e., simplicial

monogenics), we have to consider the following subspace.

Definition 4 For all (k + 1)-tuples of integers (l0, . . . , lk) ∈ N
k+1 satisfying the

dominant weight condition l0 ≥ · · · ≥ lk, we define the vector space

Ms
l0,...,lk

:=
{

M ∈ Ml0,...,lk : 〈u1, ∂2〉M = · · · = 〈uk−1, ∂k〉M = 0
}

The space Ms
l0,...,lk

now exactly corresponds to the type A solutions of the higher spin

Dirac operator Ql1,...,lk . We will study the algebraic structure of this vector space

by investigating how it decomposes into irreducible modules for the spin group, and

which invariant operators can be used to move between different summands inside this

Spin(m)-decomposition. As we will explain in the last section, this question is then

related to the topic of transvector algebras, see the monograph [13] and all references

mentioned therein.

First of all, let us define the standard general Lie algebra glk (with k ≥ 2), spanned

by the standard basis elements Eij, 1 ≤ i, j ≤ k, i.e. the matrices in C
n×n for which

(Eij)kl = δikδjl. Finite-dimensional irreducible representations for glk are in one-to-one

correspondance with k-tuples (λ1, . . . , λk) ∈ C
k such that λi − λi+1 ∈ Z

+. This k-tuple

is the highest weight (HW) of the corresponding representation, which we shall denote

by V(λ). This module contains, up to a multiple, a unique highest weight vector (HWV)

vλ such that Eiivλ = λivλ and Eijvλ = 0 for i < j. The reason why we mention these

results is the fact that there exists a nice isomorphism between the matrices Eij and the

(skew) Euler operators from Clifford analysis, namely Eii 7→ Ei +
m
2

and Eij 7→ 〈ui, ∂j〉,

for all i, j = 1, . . . , k and i 6= j. For k = 3, this explicitly yields






E11 E12 E13

E21 E22 E23

E31 E32 E33






→







E1 + m
2

〈u1, ∂2〉 〈u1, ∂3〉

〈u3, ∂1〉 E2 + m
2

〈u2, ∂3〉

〈u3, ∂1〉 〈u3, ∂2〉 E3 + m
2







Now, note that the vector space Sl1,...,lk satisfies, as a whole, the conditions for a HWV

(by this we mean that, technically speaking, we have as many copies as the dimension

of this vector space). In other words, Sl1,...,lk generates a glk-module under the action of



Solution of higher spin Dirac operators 8

the negative root vectors, given by

V(l1, . . . , lk)
∗ ∼=

(

l1 +
m

2
, · · · , lk +

m

2

)

The upper index ∗ is a shorthand notation for the shift of the HW over half the

dimension, and will frequently be used in what follows.The following can then easily

be proven, using the fact that [∂i, Epq] = δip∂q (for i 6= j).

Lemma 1 Each element Eij of the algebra glk acts as an endomorphism on the (total)

space of monogenic polynomials in several variables.

In other words, each spinor-valued polynomial of the form




∑

(pij)

(

∏

i,j

E
pij

ij

)



S(u1, · · · , uk), pij ∈ N (3)

is still monogenic in several variables. Here S(u1, . . . , uk) is simplicial monogenic and

the factor between brackets denotes an arbitrary word in the (skew) Euler operators

generating glk. This can also be formulated in the following way.

Lemma 2 The elements of the universal enveloping algebra U(glk) preserve the (total)

space of monogenic polynomials in k vector variables.

Moreover, no other words have this property, which is a crucial observation. To explain

what this means, we need the following auxiliary result.

Lemma 3 The vector variables {ui}
k
i=1 and their corresponding Dirac operators {∂i}

k
i=1

generate a model for the Lie superalgebra osp(1, 2k).

This can be proven by direct calculation, invoking rather well-known operator identities

between Clifford operators. When decomposing polynomial vector spaces in k vector

variables in terms of irreducible modules for the spin group, one needs two pieces of

information: highest weights, referring to which summands to include, and the so-

called embedding factors, referring to how to include these summands. For example,

it is well-known that the space of S-valued harmonics of degree k decomposes as

H(Rm,S) = Mk⊕xMk−1, and in this example the variable x plays the role of embedding

factor (as a multiplication operator). Obviously the situation of considering k vector

variables is similar, the only difference being that there are more possibilities for the

choice of the embedding factors. Since these factors have to be polynomial invariants, we

can easily list all those possibilities: they precisely correspond to products of elements

in the algebra osp(1, 2k), i.e. elements in the algebra U(osp(1, 2k)). Next, the well-

known PBW-theorem tells us that we can always rearrange these products according to

a chosen ordering. Choosing the ordering on the generators of osp(1, 2k) such that

(i) first all combinations involving the vector variables only are listed

(ii) then all elements in glk are listed

(iii) finally all combinations involving Dirac operators only are listed,
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it follows that the only elements in the universal enveloping algebra U(osp(1, 2k)) which

can be used as embedding factors, are elements in U(glk). Indeed: combinations

involving type (iii) will always act trivially on the space of simplicial monogenics,

whereas combinations involving type (i) will always belong to the Fischer complement

of the space of monogenic polynomials. The latter statement is based on the fact that

P(Rkm,S) = M(Rkm,S) ⊕
(

u1P(Rkm,S) + · · · + ukP(Rkm,S)
)

the sum between brackets obviously not being direct. We are then lead to the following

important conclusion.

Proposition 1 In order to decompose the polynomial vector space Ml1,···,lk into

irreducible modules for the spin group, it suffices to select all weight spaces having the

correct degree of homogeneity inside each of the glk-modules V(λ1, · · · , λk)
∗ generated by

the spaces of simplicial monogenics Sλ1,···,λk
.

Example

Despite the fact that the case k = 2 is rather trivial, it is still useful to illustrate the

procedure described above. Suppose that we want to decompose the vector space Ml1,l2 ,

l1 ≥ l2. We then need to consider the gl2-modules generated by the spaces Sp,q, p ≥ q.

The definition of Sp,q yields

V(p, q)∗ = Sp,q ⊕ 〈u2, ∂1〉Sp,q ⊕ · · · ⊕ 〈u2, ∂1〉
p−qSp,q

where it is easily verified that only a limited number of these modules will contribute

to the space Ml1,l2 . Selecting the ones showing the correct degree of homogeneity, we

thus indeed have that

Ml1,l2 = Sl1,l2 ⊕ 〈u2, ∂1〉Sl1+1,l2−1 ⊕ · · · ⊕ 〈u2, ∂1〉
l2Sl1+l2,0

This result was already obtained in e.g. [8].

In the general case, the procedure becomes more complicated since the weight spaces

in arbitrary glk-modules (with k > 2) occur with higher multiplicity, meaning that also

the decomposition for Ml1,···,lk will no longer be multiplicity-free.

As a direct consequence of Proposition 1, techniques from representation theory can

be used for glk+1 in order to obtain results on the space Ms
l0,...,lk

containing (l0-

homogeneous) type A solutions of the higher spin Dirac operator Ql1,···,lk . However

we should take into account that not all S-valued polynomials within the module

V(l0, . . . , lk)
∗ can be seen as type A solutions of Ql1,···,lk , since only a specific subspace of

it will show the right values. Hence, we still have to intersect the space of monogenics in

several variables with the respective kernels of the operators Eij, where 1 < i < j ≤ k+1.

Here we need to add a remark on the notations: as we have included the additional vector

variable x, formally denoted as u0 (and ∂x as ∂0), the isomorphism between the matrices

Eij and the (skew) Euler operators has shifted to

Eii 7→ Ei−1 +
m

2
, Eij 7→ 〈ui−1, ∂j−1〉, i, j = 1, . . . , k + 1, i 6= j
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Note that we thus needed to exclude E12 (corresponding to 〈x, ∂1〉) from the intersection

mentioned above, otherwise we would only retrieve spaces of simplicial monogenics as

a result. So, not all polynomials of the form (3) will contribute to the space Ms
l0,...,lk

:

certain restrictions have to be imposed. In order to describe these restrictions, it suffices

to realize that the desired polynomials should satisfy the conditions to be a HWV for

the algebra glk, whence the language of branching may be used. To this end, we define

the subspace V(λ)+ of V(λ) ≡ V(λ0, . . . , λk), containing all HWV of the subalgebra

glk ⊂ glk+1:

V(λ)+ = {η ∈ V(λ) : Eijη = 0, 2 ≤ i < j ≤ k + 1}

Moreover, we introduce a notation for the set of weight spaces in V(λ) realizing a copy

of the glk-module with highest weight µ = (µ1, . . . , µk). This means that for each of

the elements in the previous set, a subscript µ is added referring to the glk-module for

which it actually defines a HWV, viz

V(λ)+
µ = {η ∈ V(λ)+ : Eiiη = µi−1η, 2 ≤ i ≤ k + 1}

As V(λ) is generated by the operators Eij acting on the space Sλ, each element η ∈ V(λ)+
µ

is to be seen as a particular element of the form (3), with S(x, u1, . . . , uk) ∈ Sλ. Recall

that the dimension of the spaces V(λ)+
µ is either 0 or 1, with

dim
(

V(λ)+
µ

)

= 1 ⇔ λi−1 − µi ∈ Z
+ and µi − λi ∈ Z

+, for all i = 1, . . . , k

which is called the ”betweenness” condition, as it can be represented graphically –at

least for integer values of λi or integer values shifted over half the dimension– by

λ0 ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ λk−1 ≥ µk ≥ λk

In order to explain how this restricts the number of summands which can contribute

to the space of type A solutions of a higher spin Dirac operator, let us consider an

illustrative example with k = 2 and (λ0, λ1, λ2) = (4, 3, 1)∗. According to the branching

rules, when considering V(λ) as a gl2-module, only the following summands survive:

V(4, 3, 1)∗
∣

∣

∣

gl3

gl2

∼=
(

(4, 3)∗ ⊕ (4, 2)∗ ⊕ (4, 1)∗
)

⊕
(

(3, 3)∗ ⊕ (3, 2)∗ ⊕ (3, 1)∗
)

(4)

In the above expression each of the terms between brackets stands for a combination of

the following form, written in terms of the negative root vectors for gl3:

(

∑

a,b,c

Ea
21E

b
31E

c
32

)

S4,3,1

Moreover, the result should still belong to ker(E23), with E23 the unique positive root

vector characterizing the algebra gl2 ⊂ gl3. The algebra gl2 has Cartan elements E22

and E33, meaning that the six couples of integers above are in fact the degrees of ho-

mogeneity in (u1, u2). In this way limitations on the degree of homogeneity of the

embedding factors are obtained. Moreover, looking at the summands above (or at the
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betweenness condition for the most general case), it is clear that none of the embedding

factors will have an effect of the form (±1,∓1) on the degree in (u1, u2). So there is

no need to include the factor E32, which corresponds to the final result having to be

in ker(E23). As we will see in the next section, this statement is not yet precise: we

will prove that E32 can occur, but taking into account homogeneities, the embedding

factor as a whole will always behave as the term Ea
21E

b
31, which, in some sense, is the

leading term. For example, in order to have that (Ea
21E

b
31)S4,3,1 ↔ (4, 2) we must have

that (3 + a, 1 + b) = (4, 2), or (a, b) = (1, 1). In other words: the branching rules tell us

which degrees of homogeneity to expect for the (leading term in the) embedding factors.

We may now formulate the following general result.

Proposition 2 For each vector space Sλ0,···,λk
, the only summands inside the glk+1-

module V(λ0, · · · , λk)
∗ contributing to the space of type A solutions of the higher spin

Dirac operator in k dummy vector variables are of the form

ρd1,···,dk
Sλ0,···,λk

where ρd1,···,dk
∈ U(glk+1) is an embedding factor which is homogeneous of degree

(d1, · · · , dk) in (u1, · · · , uk). Moreover, the integers dj satisfy the following conditions:

λ0 ≥ λ1 + d1 ≥ λ1 ≥ λ2 + d2 ≥ · · · ≥ λk−1 ≥ λk + dk ≥ λk

or 0 ≤ dp ≤ λp−1 − λp (with 1 ≤ p ≤ k).

In the next section, an explicit form for these embedding factors ρd1,···,dk
is obtained,

using results on raising and lowering operators in transvector algebras. Note that these

factors will be unique up to a constant, which follows from the fact that the branching

from glk+1 to glk is multiplicity-free.

Example

Suppose we want to describe the space Ms
3,1,1, i.e. the space of 3-homogeneous type

A solutions of the operator Q1,1, studied in [14]. This is the invariant operator acting

on spinor-valued forms, see also [15]. Hence we are looking for 3-tuples of integers

(λ0, λ1, λ2)
∗ such that ρa,b Sλ0,λ1,λ2

⊂ Ms
3,1,1, meaning that the following conditions have

to be satisfied:

(λ0 − a− b, λ1 + a, λ2 + b) = (3, 1, 1) and

{

λ0 − λ1 ≥ a ≥ 0

λ1 − λ2 ≥ b ≥ 0

Now, obviously (a, b) = (0, 0) leads to the summand S3,1,1 ⊂ Ms
3,1,1, as was to be ex-

pected, since, in general, the solution d1 = · · · = dk = 0 will always be there. Any other

solution is non-trivial, which means that λ0 > 3. As λ1 ≥ λ2, the only other possibility is

(a, b) = (0, 1). Note that (λ0, λ1, λ2) = (5, 0, 0) is not allowed, as follows from the condi-

tion on b. This means that Ms
3,1,1

∼= S3,1,1⊕S4,1, which corresponds to the results of [14].

Let us now formulate the main conclusion of this section.
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Theorem 2 As a module for the spin group, the space Ms
l0,···,lk

decomposes into the

following irreducible summands:

Ms
l0,···,lk

=
⊕

(d1,···,dk)

ρd1,···,dk
Sλ0,···,λk

where (λ0, · · · , λk)
′ is a dominant weight satisfying

(λ0, λ1, · · · , λk) = (l0 +
k
∑

i=1

di, l1 − d1, · · · , lk − dk)

with li − li+1 ≥ di ≥ 0 for 1 ≤ i ≤ k − 1 and 0 ≤ dk ≤ lk. At the same time, this is the

decomposition of the space of l0-homogeneous type A solutions of the operator Ql1,···,lk .

Proof

First, it follows from the branching rules for glk+1 to glk that no embedding factor

ρd1,···,dk
can have a net effect of the form (±p,∓p) on the homogeneity degree in two

variables (ui, uj), with i, j ≥ 1 and p ∈ N. Indeed:

(λ2, · · · , λk)
′ ⊂ (λ1, · · · , λk)

′
∣

∣

∣

glk+1

glk

and any other summand which comes from the branching is obtained by adding positive

integers. This implies that the net effect of the factor ρd1,···,dk
can always be represented

with a leading term of the form ρd1,···,dk
= Ed1

21 · · ·E
dk

(k+1)1 + · · ·, where the numbers

(d1, · · · , dk) satisfy the betweenness conditions coming from the branching. If we then

fix the numbers (l0, · · · , lk), it suffices to find all the (k+1)-tuples (λ0, · · · , λk) for which

there exist positive integers dj such that we have an inclusion ρd1,···,dk
Sλ0,···,λk

⊂ Ml0,···,lk .

This is only possible if the conditions

(λ0 −

k
∑

i=1

di, λ1 + d1, · · · , λk + dk) = (l0, · · · , lk)

on the degrees of homogeneity are satisfied, and if moreover



















λ0 − λ1 ≥ d1 ≥ 0

λ1 − λ2 ≥ d2 ≥ 0
...

λk−1 − λk ≥ dk ≥ 0

These are the conditions coming from the branching rules. Using the restrictions on the

homogeneity, this can also be rewritten as li − li+1 ≥ di ≥ 0, for all 1 ≤ i < k, and

λk = lk − dk. This last equation tells us that 0 ≤ dk ≤ lk. �
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5. Relation with transvector algebras

The aim of this section is to obtain explicit expressions for the embedding factors ρd1,···,dk
,

i.e. the elements in U(glk+1) realizing the decomposition of the space Ms
l0,···,lk

into irre-

ducible summands under the spin group.

To this end, we first introduce the elements zi1 and z1i, i = 2, . . . k + 1, in the universal

enveloping algebra U(glk+1):

zi1 =
∑

i>i1>···>is>1

Eii1Ei1i2 · · ·Eis−1isEis1(hi − hj1) · · · (hi − hjr
)

z1i =
∑

i<i1<···<is≤k+1

Ei1iEi2i1 · · ·Eisis−1
E1is(hi − hj1) · · · (hi − hjr

)

In these definitions, s runs over nonnegative integers, hi = Eii − i + 1 and {j1, . . . , jr}

is the complementary subset to {i1, . . . , is} in the set {1, . . . i− 1} or {i+ 1, . . . , k+ 1}.

For example, when k = 3 we have that

z41 = E41(h4 − h2)(h4 − h3) + E43E31(h4 − h2) + E42E21(h4 − h3) + E43E32E21

Although this definition seems rather ad hoc, one can actually construct these operators

using the language of extremal projection operators, see e.g. [13, 16] and the references

mentioned therein. These operators have the following property.

Lemma 4 Let η ∈ V(λ)+
µ , µ = (µ1, . . . , µk). Then, for any i = 2, . . . , k + 1, we have

zi1η ∈ V(λ)+
µ+δi−1

, z1iη ∈ V(λ)+
µ−δi−1

where the weight µ± δi−1 is obtained from µ by replacing µi−1 by µi−1 ± 1.

This was proven in [16]. In the present setting of solutions of higher spin operators, the

lemma can be reformulated as: the operators zi1 and z1i, i = 2, . . . , k+1 will map a type

A solution of a higher spin Dirac operator to another type A solution (be it for another

operator, since the degree of homogeneity will change). More explicitly, the following

results hold.

Corollary 1 For every polynomial P (x;u1, · · · , uk) ∈ Ms
l0,···,lk

, we have

zi1P (x;u1, · · · , uk) ∈ Ms
l0−1,l1,···,li−2,li−1+1,li,···,lk

z1iP (x;u1, · · · , uk) ∈ Ms
l0+1,l1,···,li−2,li−1−1,li,···,lk

Example

When k = 2, we have that

z21 = E21 = 〈u1, ∂x〉

z31 = E32E21 + E31(h3 − h2) = 〈u2, ∂1〉〈u1, ∂x〉 + 〈u2, ∂x〉(E2 − E1 − 1)

z12 = E32E13 + E12(h2 − h3) = 〈u2, ∂1〉〈x, ∂2〉 + 〈x, ∂1〉(E1 − E2 + 1)

z13 = E13 = 〈x, ∂2〉.

(5)
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In view of Lemma 4, z31 raises the degree in u2 by one. More explicitly, this means

that the operator z31 maps l0-homogeneous solutions of the operator Ql1,l2 to (l0 − 1)-

homogeneous solutions of the operator Ql1,l2+1. Reconsidering the space Ms
3,1, we can

now write its direct sum decomposition in terms of the explicit embedding factors:

Ms
3,1,1 = S3,1,1 ⊕ (〈u2, ∂1〉〈u1, ∂x〉 + 〈u2, ∂x〉(E2 − E1 − 1))S4,1

Note that the Euler operators will only produce multiplicative constants, since they act

on homogeneous polynomials. In this way, we also see the aforementioned leading terms

in the example, up to a constant.

In order to explain the relation to the theory of transvector algebras, a few more

concepts have to be introduced. First, consider once more the universal enveloping

algebra U(glk+1) of glk+1, as well as the direct sum decomposition glk = gl−k ⊕ h ⊕ gl+k
of the subalgebra glk, where gl±k denotes the space of positive and negative root

vectors, and h is the Cartan algebra. Let R(h) be the field of fractions of h, then

the natural extension U′(glk+1) := U(glk+1) ⊗U(h) R(h) of U(glk+1) provides a means of

dividing by Euler operators, since the field of fractions exactly consists of all rational

operators whose nominator and denominator are linear combinations of the Eii. Next,

consider the left ideal J ′ := U′(glk+1)gl+k ⊂ U′(glk+1), as well as its normalizer

Norm(J ′) := {u ∈ U′(glk+1) : J ′u ∈ J ′}. J ′ being a twosided ideal in Norm(J ′),

one finally can define

Z(glk+1, glk) := Norm(J ′)/J ′

In the literature this quotient is known as the Mickelsson-Zhelobenko algebra. As was

shown e.g. in [13], the elements zi1 and z1i, i = 2, . . . , k + 1, form a set of generators of

this Mickelsson algebra Z(glk+1, glk).

Lemma 5 Let µ satisfy the betweenness condition stated above, and let vλ be the highest

weight vector of the module V(λ). Then the elements

vλ(µ) := zd1

21 · · · z
dk

(k+1)1 vλ

are nonzero, provided that (d1, · · · , dk) satisfies all conditions of Theorem 2. Moreover,

the space V(λ)+ is spanned by these elements vλ(µ).

Example

As before, take k = 2 and λ = (4, 3, 1)∗, and consider the module V(4, 3, 1)∗ generated

by the space S4,3,1. Lemma 5 then states that consecutive actions of the operators

z21 and z31 will produce a basis of the space V(4, 3, 1)∗ ∩ ker〈u1, ∂2〉. More precisely,

we obtain the following spaces, corresponding to the 6 possible choices for µ, and the

respective spaces of higher spin solutions to which they contribute, see (4):

S4,3,1 Ms(4, 3, 1)

z21S4,3,1 Ms(3, 4, 1)

z31S4,3,1 Ms(3, 3, 2)

z21z31S4,3,1 Ms(2, 4, 2)

z2
31S4,3,1 Ms(2, 3, 3)

z21z
2
31S4,3,1 Ms(1, 4, 3)
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Note however that this is not the decomposition of Ms
4,3,1. Indeed, using the correct

embedding factors, we get that the latter is equal to

Ms
4,3,1 = S4,3,1 ⊕ z21S5,2,1 ⊕ z2

21S6,1,1 ⊕ z31S5,3,0 ⊕ z21z31S6,2,0 ⊕ z2
21z31S7,1,0

Recall that the embedding factor, as a whole, should behave as Ea
21E

b
31, with this

term itself as a leading term. This might not be so obvious from the definitions and

lemmas stated above. Note though that the operators zi1 actually are defined up to

a constant factor, or more precisely: up to an expression in terms of Euler operators.

Since we are working within the field of fractions R(h), it is possible to divide zi1 by

(hi − hi−1) . . . (hi − h2), so that the resulting operators si1 (and likewise s1i) take the

form

si1 =
∑

i>i1>···>is>1

Eii1Ei1i2 · · ·Eis−1isEis1
1

(hi − hi1) · · · (hi − his)

s1i =
∑

i<i1<···<is≤k+1

Eii1Ei1i2 · · ·Eis−1isEis1
1

(hi − hi1) · · · (hi − his)

or still si1 = Ei1 + other operators, which proves the statement: it is now easily seen

that powers of the operators si1 or s1i indeed behave as the leading terms predicted

earlier. For instance, after rescaling, the four operators in (5) become


























s21 = 〈u1, ∂x〉

s31 = 〈u2, ∂x〉 + 〈u2, ∂1〉〈u1, ∂x〉
1

E2 − E1 − 1

s12 = 〈x, ∂1〉 + 〈u2, ∂1〉〈x, ∂2〉
1

E1 − E2 + 1
s13 = 〈x, ∂2〉.

So, the embedding factors defined in Proposition 2, and playing a crucial role in Theorem

2, are given by ρd1,d2,···,dk
= sd1

21 · · · s
dk

(k+1)1. This is a result of Lemma 5.
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[2] Delanghe R, Sommen F and Souček V 1992, Clifford analysis and spinor valued functions, Kluwer

Academic Publishers, Dordrecht.

[3] Gilbert J and Murray MAM 1991, Clifford algebras and Dirac operators in harmonic analysis,

Cambridge University Press, Cambridge.

[4] Delanghe R 2001, Clifford analysis: history and perspective, Comp. Meth. Funct. Theory 1, 107–

153.

[5] Branson T 1997, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151(2), 334–383.

[6] Fegan HD 1976, Conformally invariant first order differential operators, Quart. J. Math. 27, 513–

538.

[7] Stein EW and Weiss G 1968, Generalization of the Cauchy-Riemann equations and representations

of the rotation group, Amer. J. Math. 90, 163–196.
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