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Abstract 

The influence of illumination effects on the optimality of the dNBR (differenced Normalized 

Burn Ratio) was evaluated for the case of the 2007 Peloponnese (Greece) wildfires using a 

pre/post-fire Landsat TM (Thematic Mapper) image couple. Well illuminated pixels (south 

and south-east facing slopes) exhibited more optimal displacements in the bi-spectral feature 

space than more shaded pixels (north and north-west exposed slopes). Moreover, pixels 

experiencing small image-to-image differences in illumination obtained a higher optimality 

than pixels with a relatively large difference in illumination. To correct for illumination 

effects, the c-correction method and a modified c-correction technique were applied. The 

resulting median dNBR optimality of uncorrected, c-corrected and modified c-correction data 

was respectively 0.58, 0.60 and 0.71 (differences significant for p<0.001). The original c-

correction method improved the optimality of badly illuminated pixels while deteriorating the 

optimality of well illuminated pixels. In contrast, the modified c-correction technique 

improved the optimality of all the pixels while retaining the prime characteristic of 

topographic correction techniques, i.e. detrending the illumination-reflectance relationship. 

For a minority of the data, for shaded pixels and/or pixels with a high image-to-image 

difference in illumination, the original c-correction outperformed the modified c-correction 

technique. In this study conducted in rugged terrain and with a bi-temporal image acquisition 

scheme that substantially deviated from the ideal anniversary date scheme the modified c-

correction technique resulted in a more reliable change detection. 

Keywords: fire severity, Normalized Burn Ratio, index optimality, Landsat Thematic Mapper, Peloponnese, 

illumination effect, topographic correction, c-correction 

1 Introduction 

Wildfires play an important role in many ecosystems (Dwyer et al., 1999; Pausas, 2004; 

Riano et al., 2007) as they partially or completely remove the vegetation layer and affect post-

fire vegetation composition (Epting and Verbyla, 2005; Lentile et al. 2005; Telesca and 

Lasaponara, 2006). The fire impact can be described as (i) the amount of damage (Hammill 

and Bradstock, 2006; Gonzalez-Alonso et al., 2007; Chafer, 2008), (ii) the physical, chemical 

and biological changes (Landmann, 2003; Chafer et al., 2004; Cocke et al., 2005; Stow et al., 

2007; Lee et al., 2008) or (iii) the degree of alteration (Brewer et al., 2005; Eidenshink et al., 

2007) that fire causes to an ecosystem and is quantified as the severity of fire. In this context, 

the terms fire and burn severity are often interchangeably used. Fire severity estimates the 

short-term fire effect in the immediate post-fire environment (Lentile et al., 2006). An 

immediate post-fire assessment minimizes the interference with ecosystem’s response 



processes (such as vegetation recovery) and it is best suited for emergency rehabilitation plans 

(Key and Benson, 2005; Eidenshink et al., 2007). Burn severity, on the other hand, quantifies 

both short- and long-term impact as it includes response processes (Key and Benson, 2005), 

although the distinction between fire and burn severity has recently become subject for 

discussion (Keeley, 2009). In this study we focus on fire severity. 

Even though a considerable amount of remote sensing studies have focused on the use of the 

Normalized Difference Vegetation Index (NDVI) for assessing fire severity (Isaev et al., 

2002; Diaz-Delgado et al., 2003; Ruiz-Gallardo et al., 2004; Chafer et al., 2004; Hammill and 

Bradstock, 2006; Hudak et al., 2007), the Normalized Burn Ratio (NBR) has become accepted 

as the standard spectral index to estimate the severity of fire (e.g. Lopez-Garcia and Caselles, 

1991; Epting et al., 2005; Key and Benson., 2005; Bisson et al., 2008). The NBR relates to 

vegetation structure and moisture by combining near infrared (NIR) and mid infrared (MIR) 

reflectance and is defined as: 
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where TM4 and TM7 are respectively the NIR and MIR reflectance of Landsat Thematic 

Mapper (TM) imagery. Since fire effects on vegetation produce a reflectance increase in the 

MIR spectral region and a NIR reflectance drop (Pereira et al., 1999), bi-temporal image 

differencing is frequently applied on pre- and post-fire NBR images resulting in the 

differenced Normalized Burn Ratio (dNBR) (Key and Benson, 2005). Apart from the 

correlation with field data (Key and Benson, 2005; De Santis and Chuvieco, 2009), the 

performance of bi-spectral indices can be evaluated by assessing a pixel’s shift in the bi-

spectral feature space. As such, a pixel-based optimality measure, originating from the 

spectral index theory (Verstraete and Pinty, 1996), has been developed by Roy et al. (2006). 

They used the optimality concept to question the dNBR method as an optimal fire severity 

approach. As the optimality approach is pixel-based, it does not suffer from field sampling 

constraints and, as a consequence, can be applied on all burned pixels. The optimality value 

varies between zero (not at all optimal) and one (fully optimal). An optimal fire severity 

spectral index needs to be very sensitive to fire-induced vegetation changes and insensitive to 

perturbing factors such as atmospheric and illumination effects. 

These illumination effects are initiated by both topography and solar position at the moment 

of image acquisition and influence an object’s reflectance behavior. Differences in solar 

illumination due to topographic position cause a high variation in reflectance response for 

similar terrain features: well illuminated areas show higher reflectance values than expected, 

whereas in shaded areas reflectance is typically lower (Leprieur et al., 1988). Topographic 

effects consequently become more obvious in more rugged terrain. They influence any image 

processing technique based on individual band reflectance, such as Land Use Land Cover 

(LULC) classifications (Bishop and Colby, 2002; Riano et al. 2003; Mitri and Gitas, 2004). 

Hence, a range of topographic normalization techniques have been developed with the prime 

goal to detrend the illumination-reflectance relationship (Teillet et al., 1982; Civco, 1989; 

Vincini and Frazzi, 2003; Kobayashi and Sanga-Ngoie, 2008). Topographic effects in ratio-

images based analysis, however, are assumed to be minimal (Song and Woodcock, 2003) and 

are not considered in most studies using the NBR to assess fire severity. Key (2005) stated 

that poor illumination and increased shadow decreases the definition of fire effects and 

sharpness of dNBR images. Verbyla et al. (2008) showed that topography clearly affects both 

NBR and dNBR values. They simulated the incoming solar radiation and found a decreasing 

trend in post-fire NBR while insolation increased, whereas NIR reflectance, MIR reflectance 



and dNBR values increased with increasing insolation. Therefore, the focus of this research is 

to quantitatively evaluate illumination effects due to topography using the pixel-based 

optimality measure and to propose a topographic correction approach to become a more 

reliable fire severity assessment using the dNBR. This general objective is fulfilled by (i) 

disclosing the effect of illumination conditions on index performance in topographically 

uncorrected images, (ii) evaluating the effect of topographic correction on individual band 

reflectance, and (iii) evaluating the effect of topographic correction on the dNBR optimality. 

2 Methods 

2.1 Study area 

The study area is situated at the Peloponnese peninsula, in southern Greece (36°30’-38°30’ N, 

21°-23° E) (see figure 1). The topography is rugged with elevations ranging between 0 and 

2404 m above sea level. The climate is typically Mediterranean with hot, dry summers and 

mild, wet winters (see figure 2). For the Kalamata meteorological station (37°4’ N, 22°1’ E) 

the average annual temperature is 17.8 °C and the mean annual precipitation equals 780 mm. 

After a severe drought period several large wildfires of unknown cause have struck the area in 

the 2007 summer. The first large burn initiated at 26/07/2007 and the burns prolonged till 

01/09/2007. The fires consumed a large amount (more than 115 000 ha) of coniferous forest, 

broadleaved forest, shrub lands (maquis and phrygana communities) and olive groves. Black 

pine (Pinus nigra) is the dominant conifer species. Maquis communities consist of 

sclerophyllous evergreen shrubs of 2-3 m high (Polunin 1980). Phrygana is dwarf scrub 

vegetation (< 1 m), which prevails on dry landforms (Polunin 1980). The shrub layer is 

characterised by e.g. Quercus coccifera, Q. frainetto, Pistacia lentiscus, Cistus salvifolius, C. 

incanus, Erica arborea, Sarcopoterum spinosum. The olive groves consist of Olea europaea 

trees, whereas oaks are the dominant broadleaved species. 

2.2 Data and preprocessing 

For assessing fire severity of the summer 2007 Peloponnese fires the best available pre/post-

fire Landsat TM image couple (path/row 184/34) was chosen. The first cloud-free post-fire 

image was acquired at 28/09/2007 (solar elevation 46.43°, solar azimuth 150.18°). The pre-

fire image was chosen based on anniversary date acquisition, data quality and cloudiness. The 

pre-fire image dates from 23/07/2006 (solar elevation 62.89°, solar azimuth 123.30°). Both 

images are acquired in the Mediterranean summer drought period, which prolongs from June 

till September (see figure 2), and as such phenological differences are assumed to be minimal. 

The images were subjected to geometric, radiometric and atmospheric correction. 

The 2007 image was geometrically corrected using 34 ground control points (GCPs), recorded 

in the field with a Garmin eTrex Vista GPS (Global Positioning System) (5-10 m error in x 

and y). The resulting Root Mean Square Error (RMSE) was lower than 0.5 pixels. The 2006 

and 2007 images were co-registered within 0.5 pixels accuracy. All images were registered in 

Universal Transverse Mercator (zone 34S), with ED 50 (European Datum 1950) as geodetic 

datum. Topographical slope and aspect data were derived from 90 m SRTM (Shuttle Radar 

Topography Mission) elevation data (Jarvis et al., 2006) resampled to and co-registered with 

the Landsat images. 

Raw digital numbers (DNs) of the were scaled to at-sensor radiance values (Ls) (Chander et 

al. 2007) but with band-specific parameters proposed for Landsat TM data processed and 



distributed by the ESA (European Space Agency) (Arino et al. s.d.). The radiance to 

reflectance conversion was performed using the COST method of Chavez (1996): 
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where aρ  is the atmospherically corrected reflectance at the surface;  Ls is the at-sensor 

radiance (Wm
-2

sr
-1

); Ld is the path radiance (Wm
-2

sr
-1

); Eo is the solar spectral irradiance 

(Wm
-2

); d is the earth-sun distance (astronomical units); and zθ  is the solar zenith angle. The 

COST method is a dark object subtraction (DOS) approach that assumes 1 % surface 

reflectance for dark objects (e.g. deep water). After applying the COST atmospheric 

correction, pseudo-invariant features (PIFs), such as deep water and bare soil pixels, were 

evaluated in the images and no further relative normalization between the images was 

considered. 

As this study focuses exclusively on burned pixels, a burned area mask was created. This was 

done using a two-phase dNBR threshold (Garcia and Chuvieco, 2004). To avoid possible 

confusion with harvested crop land a rough fire perimeter (approximately 1 km outside the 

burned area) was manually digitized. Then, during the first phase, severely burned pixels were 

selected using a threshold of dNBR > 0.4. During the second phase a 15 by 15 pixels 

contextual algorithm was initiated with the core burn pixels as centers using a more relaxed 

dNBR > 0.1 threshold. The first phase reduces commission errors, while the second phase 

reduces omission errors (Chuvieco et al., 2008). The accuracy of the burned area mask is 

evaluated with the probability of detection and the probability of false alarm statistics (Giglio 

et al., 2008) using 242 reference sample points visited in the field and GPS-recorded in 

September 2008 (143 burned samples and 99 unburned samples in close vicinity of the burned 

area). The burned area map has a detection probability of 80% and a probability of false alarm 

of 5 %. In total 1 282 779 pixels were discriminated equaling approximately 115 000 ha. 

2.3 dNBR optimality 

For evaluating the optimality of the bi-temporal change detection the TM4-TM7 bi-spectral 

space was considered (see figure 3). If a spectral index is appropriate to the physical change 

of interest, in this case fire-induced vegetation depletion, there exist a clear relationship 

between the change and the direction of the displacement in the bi-spectral feature space 

(Verstraete and Pinty, 1996). In an ideal scenario a pixel’s bi-temporal trajectory is 

perpendicular to the first bisector of the Cartesian coordinate system. This is illustrated in 

figure 3 for the displacement from unburned (U) to optimally (O) sensed burned. Perturbing 

factors such as atmosphere and illumination decrease the performance of the index. Then a 

pixel’s displacement can be decomposed in a vector perpendicular to the first bisector and a 

vector along the post-fire NBR isoline to which the index is insensitive. For example, in 

figure 3, a pixel shifts from unburned (U) to burned (B) after fire. Here, the magnitude of 

change to which the index is insensitive is equal to the Euclidian distance OB . Thus the 

observed displacement vector UB can be decomposed in the sum of the vectors UO and OB, 

hence, following the expression of Roy et al. (2006) the index optimality is defined as: 

UB

OB
optimality −= 1           (3) 



As OB  can never be larger than UB , the optimality measure varies between zero and one. If 

the optimality measure equals zero, then the index is completely insensitive to the change of 

interest. An optimality score of one means that the index performs ideally. 

2.4 Correcting for illumination effects 

A variety of topographic correction techniques have been proposed in literature. Most of these 

methods correct for illumination effects based on the cosine of the incidence angle iγ , which 

is the angle between the normal to the ground and the sun rays, using a digital elevation 

model (DEM) and knowledge of the solar zenith and azimuth angle at the moment of image 

acquisition (Teillet et al., 1982): 

( )oazpzpi φφθθθθγ −+= cossinsincoscoscos
      (4) 

where iγ  is the incident angle; 
 

pθ  is the slope angle;
 zθ  is the solar zenith angle; 

 aφ  is the 

solar azimuth angle; and oφ  is the aspect angle. The illumination parameter iγcos  ranges 

between minus one to one. 

Teillet et al. (1982) introduced the cosine correction method by multiplying original 

reflectance values by the factor 
iz γθ coscos . Unfortunately, this Lambertian method 

overcorrects the image, especially in low illumination areas (Meyer et al., 1993; Riano et al., 

2003). To account for the overcorrection in the cosine method non-Lambertian semi-empirical 

techniques have been proposed, i.e. the Minnaert correction (Colby and Keating, 1998; 

Bishop and Colby, 2002) and the c-correction (Teillet et al., 1982). In this study we focus on 

the c-correction as this method has proven to give satisfying results in a whole range of 

applications (Meyer et al., 1993; Riano et al., 2003, Kobayashi and Sanga-Ngoie, 2008, 

Vicente-Serrano et al., 2008). 

In the c-correction method terrain corrected reflectance tρ  is defined as: 
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Where ck is a band specific parameter kkk mbc =  where bk and mk are the respective 

intercept and slope of the regression equation ikka mb γρ cos+= . 

In the original c-correction technique (see equation 5) terrain corrected reflectance tρ  is 

lower than the original reflectance aρ  when iγcos  is larger than zθcos  as then the correction 

factor kikz cc ++ γθ coscos  becomes smaller than one. If iγcos  is smaller than zθcos , 

terrain corrected reflectance tρ  is higher than the original reflectance aρ  as the correction 

factor then becomes larger than one. Thus the original c-correction technique normalizes 

reflectance depending on the solar zenith. However, remote sensing conditions are likely to be 

optimal at maximum illumination. Therefore we propose a modified c-correction method that 

corrects reflectance to a maximum illumination iγcos  of one, instead of normalizing as a 

function of the solar zenith angle: 












+

+
=

ki

k

at
c

c

γ
ρρ

cos

1
.         (6) 

2.5 Analysis 

The effect of the topographic correction is evaluated both in terms of individual band 

reflectance and in terms of dNBR optimality. The prime goal of any topographic correction 

technique is to detrend the illumination-reflectance relationship (Meyer et al., 1993; Ekstrand, 

1996, Soenen et al., 2008). Original reflectance values aρ  increase with increasing 

illumination iγcos . Topographic correction techniques should reduce the slope of the 

regression between these two variables (Meyer et al., 1993).  

Additionally, the effect of the topographic correction techniques is evaluated by comparing 

median index optimality of topographically corrected and uncorrected data among different 

aspect, slope, average illumination avgi,cosγ  and difference in illumination diffi ,cosγ  classes. 

The median is used because the optimality distributions functions appeared to be non-normal 

and because of its robustness in the presence of outlier values. 

In rugged terrain the degree of incoming solar radiation is largely determined by the 

topographical parameters aspect angle oφ  and slope angle 
pθ . Therefore, uncorrected and 

corrected dNBR optimality were compared among ten equal interval slope classes and eight 

different aspect classes: N ( oφ  > 337.5° or oφ  < 22.5°), NE (22.5° < oφ  < 67.5°), E (67.5° < 

oφ  < 112.5°), SE (112.5° < oφ  < 157.5°), S (157.5° < oφ  < 202.5°), SW (202.5° < oφ  < 

247.5°), W (247.5° < oφ  < 292.5°), NW (292.5° < oφ  < 337.5°). 

When the acquisition parameters (the solar zenith angle zθ  and the solar azimuth angle aφ ) 

are also considered, the average illumination avgi,cosγ  of the 2006 and 2007 images can be 

defined as: 
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The difference in illumination diffi,cosγ
 

between the pre-and post-fire image is calculated as: 

)cos(coscos 2007,2006,, iidiffi abs γγγ −= .       (8) 

We define average illumination avgi,cosγ  and difference in illumination diffi ,cosγ  as we want 

to account for both overall illumination conditions ( avgi ,cosγ ) and the difference in 

illumination between the two images ( diffi ,cosγ ). Pixels were first aggregated in ten equal 

interval classes of average illumination avgi ,cosγ  and difference in illumination diffi,cosγ . In 

the second step index optimality of topographically uncorrected and corrected data was 

compared among the different classes. 

3 Results 

3.1 Influence on individual band reflectance 



Detrending the illumination-reflectance relationship ideally would lead to a coefficient of 

determination (R
2
) of zero. This means that the zero hypothesis that the slope of the 

regression line is equal to zero could no longer be rejected. Table 1 summarizes slope, 

intercept and R
2
 of the various regression models with illumination as independent variable 

and uncorrected or corrected reflectance as dependent variable. The R
2
 values of the 

uncorrected bands show a moderate-low correlation between illumination and reflectance. 

This correlation was clearly higher for the uncorrected post-fire bands (R
2
 = 0.14 for TM4 

2007 and R
2
 = 0.29 for TM7 2007) in comparison with the uncorrected pre-fire bands (R

2
 = 

0.02 for TM4 2006 and TM7 2006). After applying both topographic correction methods 

(equations 5 and 6) the R
2
 statistic approximated zero in all cases (R

2
<0.001). The slope of the 

regression models also decreased for the four studied bands for both topographic correction 

methods. Again this decrease is more explicit for the post-fire bands. The slope of the 

regression models approximated zero after correction. The intercept parameter is higher after 

applying a topographic correction technique. This feature is slightly more apparent for the 

modified c-correction than for the original c-correction technique, especially for the 2007 

image. 

3.2 Influence on dNBR optimality 

3.2.1 Overall performance 

Figures 4A-C depict the topographically uncorrected, c-corrected and modified c-correction 

dNBR optimality maps of the burned areas. The modified c-correction dNBR optimality 

(median = 0.71) outperformed c-corrected and uncorrected optimality (medians of 

respectively 0.60 and 0.58), whereas c-corrected optimality provided slightly better results 

than uncorrected optimality. This is also reflected when the respective histograms are 

inspected (see figures 4D-F). According to the non-parametric Wilcoxon test (Hollander and 

Wolfe, 1999) differences in median optimality and dNBR optimality distribution functions are 

statistically significant (p<0.001). Most of the pixels have uncorrected dNBR optimality 

values higher than 0.3 and the histogram peaks for values between 0.3 and 0.4. Also for the c-

corrected data most of the pixels have optimality scores higher than 0.3, although these pixels 

are evenly distributed between values of 0.3 and 1.0. In contrast, in the modified c-correction 

optimality histogram the number of pixels steadily increased with increasing optimality. 

3.2.2 Influence of topographical parameters 

Among different aspect classes (see figure 5A), south-east and south facing slopes yielded the 

highest optimality score (0.70), when comparing median dNBR optimality of uncorrected 

data. South-west and east oriented slopes had slightly lower median optimality values of 

respectively 0.65 and 0.64. Median optimality scores decreased even more for north-east and 

west facing slopes (respectively 0.54 and 0.56). The worst index performance was obtained 

for north and north-west sloping areas with median optimality measures of respectively 0.40 

and 0.42. The original c-correction technique improved the optimality of west, north-west, 

north and north-east oriented pixels, while deteriorating the optimality of east, south-east, 

south and south-west oriented pixels. In contrast the modified c-correction technique 

ameliorated the optimality of all aspect orientations yielding optimality scores between 0.68 

and 0.74 for all aspect orientations. For the modified c-correction, more southerly exposed 

pixels kept a slightly higher optimality in comparison with more northerly exposed slopes, 

however, differences became smaller than these observed for the uncorrected data. 

Among the different topographical slope classes (see figure 5B) the optimality statistic of 

uncorrected data remained more or less constant between 0.56 and 0.60 between 0 and 40°. 



The optimality of the uncorrected data suddenly dropped for the steepest slopes (>40°), e.g. 

the optimality of the >45° slope class equaled 0.36. The original c-correction technique 

resulted in approximately the same optimality values as the uncorrected data for slopes 

between 0 and 25°. For steeper slopes (>25°), the original c-correction clearly improved the 

optimality. The steeper the slopes, the more explicit this phenomenon was. In comparison 

with the uncorrected and c-corrected data, the modified c-correction technique ameliorated 

the optimality of all the slope classes, except for the slope classes >40°. For these two classes, 

representing 2.20% of the total number of pixels, the original c-correction technique 

performed better. For all the other classes, optimality raised to values between 0.70 and 0.73 

after applying the modified c-correction technique. 

3.2.3 Influence of illumination geometry 

When looking at the average illumination avgi,cosγ  (see figure 6A) a consistent increasing 

trend in median dNBR optimality of uncorrected data was observed as the average 

illumination avgi ,cosγ  class varied from 0.0 to 1.0. There were only few pixels experiencing 

very low average illumination (0.01% of the total number of pixels in the 0.0-0.1 class, 0.10% 

in the 0.1-0.2 class and 0.35% in the 0.2-0.3 class). These classes yielded very low median 

optimality scores (e.g. median dNBR optimality for the 0.0-0.1 class equals 0.30). In contrast, 

most of the pixels were quite well illuminated (14.41% of the total number of pixels in the 

0.6-0.7 class, 33.39% in the 0.7-0.8 class, 34.32% in the 0.8-0.9 class and 8.13% in the 0.9-

1.0 class) and these pixels’ optimality increased substantially peaking in a median dNBR 

optimality score of 0.73 for the best illuminated class. Optimality of the average illumination 

avgi,cosγ  classes between 0.0 and 0.8 rose for both c-corrected and modified c-correction data 

(up to 0.32 for avgi ,cosγ  between 0.2 and 0.4). However, for the well illuminated avgi ,cosγ  

classes between 0.8 and 1.0 optimality diminished for c-corrected data, while the modified c-

correction method produced a slightly better optimality in comparison with the uncorrected 

data (see figure 6A). The majority of the pixels (approximately 96% of the total number of 

pixels) experienced a relatively high average illumination avgi,cosγ  between 0.5 and 1.0. For 

these pixels the modified c-correction technique yielded higher optimality values than the 

original c-correction method. In contrast with this, the original c-correction technique 

outperformed the modified c-correction technique for a minority of pixels, representing 

approximately 4% of the data, which experienced a relatively low average illumination 

avgi,cosγ  between 0.0 and 0.5. 

For the difference in illumination diffi,cosγ  (see figure 6B) median dNBR optimality of 

uncorrected data also showed a consistent decreasing trend as the difference in illumination 

diffi,cosγ  varied from 0.0 to 1.0. The majority of the pixels experienced only slightly differing 

illumination conditions (30.53% of the total number of pixels in the 0-0.1 class, 33.39% in the 

0.1-0.2 class, 19.25% in the 0.2-0.3 class and 9.03% pixels in the 0.3-0.4 class). These pixels 

produced high median optimality scores, e.g. the class with the lowest difference in 

illumination yielded the highest median optimality value (0.69). As difference in illumination 

increased, the number of pixels per class and the median optimality value decreased leading to 

a low median optimality measure of 0.31 for the 0.03% of the total number of pixels in the 

0.9-1.0 class. A similar trend as observed in figure 6A can be deduced from figure 6B. There, 

both correction methods improve the optimality of the difference in illumination diffi ,cosγ  

classes between 0.2 and 1.0 compared to uncorrected data (up to an increase of 0.36 for 



diffi,cosγ  between 0.7 and 0.8). For those pixels that experienced little illumination 

differences ( diffi,cosγ  classes between 0.0 and 0.2) c-corrected data produced a decrease in 

optimality, while the modified c-correction technique resulted in pixels with higher optimality 

values compared to the uncorrected data. Again, for approximately 96% of the data 

represented in the diffi ,cosγ  classes between 0.0 and 0.5, the modified c-correction technique 

excelled the original c-correction technique. In contrast, for a minority of pixels with a 

relatively high difference in illumination diffi ,cosγ  (approximately 4% of the data, 

representing the diffi ,cosγ  classes between 0.5 and 1.0) the original c-correction gave better 

results than the modified c-correction. 

4 Discussion 

4.1 Influence on individual band reflectance 

Reflectance is known to increase with increasing cosine of the incidence angle for similar 

terrain features (Soenen et al., 2008; Wu et al., 2008). Ekstrand (1996) showed that the TM4 

and TM5 bands were most affected by topographic effects expressed in a non-linear, and thus 

non-Lambertian, response to increasing illumination. For TM2, 3 and 7 this non-linearity was 

not that evident, although these bands exhibited a statistically significant relationship with 

topography. TM1 was the only band in the study of Ekstrand (2006) where topography had no 

clear effect. The c-correction technique and other topographic correction techniques have 

proven to effectively remove the trend of increasing reflectance with increasing illumination 

(Meyer et al., 1993; Vincini and Frazzi, 2003; Huang et al., 2008; Soenen et al., 2008; Wu et 

al., 2008). This characteristic feature of topographic correction technique remained unaffected 

in our modified version of the c-correction method.  

The correlation between uncorrected reflectance and illumination was higher for the post-fire 

bands than for the pre-fire bands. This can be explained by the fact that after the fire a more 

homogeneous land cover, i.e. burned land, is introduced in the analysis. The pre-fire bands 

consist of a heterogeneous mixture of land cover types. This might be the reason why the 

expected relationship between uncorrected reflectance and illumination is rather weak by the 

pre-fire bands. A more heterogeneous land cover generally results in lower R
2
 for the 

uncorrected reflectance-illumination regression (Bishop and Colby, 2002). The same holds 

true when the post-fire slope parameter of the regression equation is considered. The slope 

parameter is higher for the uncorrected post-fire bands than for the uncorrected pre-fire bands, 

revealing a stronger relation between reflectance and illumination for the uncorrected post-fire 

bands. As topographic correction techniques are known to work better when applied on 

homogeneous land covers (Bishop and Colby, 2002) the decrease in the R
2
 statistic and slope 

parameter is more obvious for the post-fire bands. Another important feature observed is that 

both topographic correction techniques increase the intercept parameter. This is trivial since 

the direct proportional relation between reflectance and illumination as observed by the 

uncorrected bands is ruled out towards an approximately horizontal regression line after 

applying a topographic correction. As a consequence the intersection with the y-axis 

(reflectance) is at a higher reflectance value. However, a difference between the two 

correction techniques is observed in the intercept parameter. The modified c-correction 

technique results in a slightly higher intercept value than the original c-correction technique. 

This might be expected as the modified method corrects to a maximum illumination condition 

instead of normalizing to an intermediate illumination condition as the original method does. 



This difference again is more obvious for the post-fire bands than for the pre-fire bands, 

probably as a consequence of the more homogeneous post-fire land cover. 

4.2 Influence on dNBR optimality 

Previous studies have analyzed the dNBR’s optimality for assessing fire severity without 

performing topographic corrections, i.e. uncorrected dNBR data (Roy et al., 2006; Escuin et 

al., 2008; Murphy et al., 2008). In this study, the median uncorrected dNBR optimality 

equaled 0.58. This approximates to average optimality values reported by Escuin et al. (2008) 

(0.49) and Murphy et al. (2008) (range: 0.26-0.80 for six burns in Alaska, USA). Results, 

however, contrast with the very low mean dNBR optimality scores (0.1) reported by Roy et 

al. (2006) based on Landsat ETM+ imagery for African savannah burns. These authors also 

report low dNBR optimality values for MODIS sensed fires in other ecosystems (Russia, 

Australia and South America). These results suggest that the dNBR index is suboptimal for 

assessing fire severity. The poor optimality results obtained by Roy et al. (2006) can possibly 

be explained by the fact that the authors also included unburned pixels in their analysis. 

Unaffected pixels are generally associated with low optimality scores since a pixel’s shift in 

the bi-spectral space is then only caused by noise (Escuin et al., 2008). 

It is generally assumed that in ratio-based images the role of topography is ruled out (e.g. 

Song and Woodcock, 2003). This is true to some degree, however, when analysis is 

conducted in rugged terrain with low sun angle imagery, illumination effects cannot longer be 

neglected. Key (2005) qualitatively indicated the importance of illumination conditions for 

discriminating burned areas in dNBR maps as low reflectance effectively degraded burned 

and unburned qualities. Verbyla et al. (2008) evaluated the illumination effect on index 

values. They found pre-and post-fire NBR values differing among south and north facing 

slopes. The influence of slope exposition, however, was ambiguous as the direction of the 

differences was opposite for two burns. These authors also found a clear NIR, MIR and dNBR 

values increase with increasing insolation. In opposite, the post-fire NBR consistently 

decreased with increasing insolation. This research quantitatively pointed out the importance 

of illumination effects in a dNBR-based fire severity assessment and indicated that this may 

influence the reliability of the dNBR approach. 

The pixel-based optimality measure has given a unique opportunity to assess the influence of 

illumination on the reliability of a topographically uncorrected dNBR-based fire severity 

assessment. With respect to the solar azimuth angles of the two images in our study ( aφ  = 

123.3° for the 2006 image and aφ  = 150.18° for the 2007 image), we expect south and south-

east facing slopes to have the highest optimality. This was observed (see figure 5A) with a 

resulting median optimality of 0.70. Consequently, we expect north and north-west exposed 

slopes to have the smallest optimality, i.e. respectively 0.40 and 0.42. North-east, east, south-

west and west facing areas scored intermediate. With regards to slope steepness the optimality 

reached a more or less constant value when analyzing dNBR optimality among different 

topographic slope classes. For the steepest slope classes, however, a clear optimality decrease 

was observed (see figure 5B). This seems logical as the steeper a pixel’s slope is, the higher 

the probability that the pixel is badly illuminated, especially when the pixel is not exposed to 

the incoming light. However, following this rationale we would expect a decreasing trend in 

optimality when slopes become steeper. This trend is apparently not visible in the results. This 

might be explained by the fact that for slopes lower than 40° the lower optimality of the badly 

illuminated pixels is averaged out by the higher optimality of those pixels that are well 

illuminated. An analogous conclusion as from the aspect analysis can be drawn when median 

optimality is evaluated among average illumination classes (see figure 6A). Well illuminated 



pixels had a more reliable dNBR value than more shaded pixels. Thus, the introduced noise in 

the pre/post-fire pixel displacement (i.e. the distance OB  in figure 3) becomes more 

important when illumination deteriorates. Additionally, since illumination geometry can differ 

significantly in the images, the reliability of the change detection can be influenced by these 

different illumination conditions. In our case study both solar azimuth ( aφ  = 123.3° for the 

2006 image and aφ  = 150.18° for the 2007 image) and solar elevation (62.89° for the 2006 

image and 46.43° for the 2007 image) differed reasonably. This resulted in very low 

optimality scores for pixels with highly differing illumination (see figure 6B). It should be 

noted, however, that only few pixels experienced large differences in illumination. In 

opposite, for the majority of the pixels differences in illumination were minor and these pixels 

were associated with high median optimality scores. 

As remote sensing conditions are assumed to be optimal at maximum illumination, we 

proposed a modified version of the c-correction technique that correct towards a maximum 

illumination condition. Both topographic correction techniques, the original and the modified 

c-correction, possess the prime characteristic of topographic correction methods, i.e. 

detrending the illumination-reflectance relationship (see 3.1). The dNBR optimality of 

topographically corrected data outperformed the uncorrected optimality (median=0.58), 

although the median optimality of the modified c-correction (0.71) was clearly higher than the 

median optimality of the original c-correction (0.60). The reason why the difference between 

the uncorrected and c-corrected data is so little can be deduced from the figures 6A-B. In 

figure 6A it is observed that for the average illumination avgi,cosγ  classes between 0.0 and 

0.8, which represent approximately 58% of the data, the original c-correction technique 

realized better optimality scores than the uncorrected data. However, for the approximately 

42% of pixels belonging to the average illumination avgi,cosγ  classes between 0.8 and 1.0, the 

original c-correction technique underperformed in comparison with uncorrected data. The 

reason why the original c-correction technique achieved unsatisfying results in the high 

average illumination avgi,cosγ  classes probably is that those pixels experienced a reflectance 

decline in comparison with the uncorrected data as the correction factor 

kikz cc ++ γθ coscos  in equation 5 became smaller than one. Apparently, this resulted in a 

lower optimality score for those pixels. Figure 6B depicts an analogous but even more striking 

characteristic: the original c-correction techniques produced higher optimality scores than 

uncorrected data for the 36% of the total number of pixels belonging to the difference in 

illumination diffi,cosγ  classes varying from 0.2 till 1.0 whereas the optimality of the 

uncorrected data outperformed the c-corrected optimality for the remaining 64% of the pixels. 

In the overall performance (see figure 4) the benefits of the original c-correction technique 

outweighed its drawbacks resulting in a slightly higher median optimality than for 

uncorrected data. 

In contrast with the undesirable feature of the original c-correction, the modified c-correction 

improved the optimality of all the pixels in respect to the uncorrected data. The median 

optimality of the modified c-correction (0.71) is markedly higher than median optimality of 

the data after original c-correction (0.60). However, an important discrepancy can be inferred 

from figures 6A-B. Figure 6A shows that for the high average illumination classes avgi ,cosγ  

between 0.5 and 1.0, which represent 96% of the data, the modified c-correction technique 

outperformed the original c-correction technique. For the low average illumination avgi ,cosγ  

classes between 0.0 and 0.5, however, the original c-correction techniques realized better 



optimality scores. Nevertheless, these classes represent only 4% of the data. Figure 6B depicts 

an analogous feature. Here, for the low difference in illumination diffi,cosγ  classes between 

0.0 and 0.5, representing 96% of the data, the modified c-correction produced better 

optimality scores than the original c-correction. Again a minority of 4% of the pixels, 

belonging to the difference in illumination diffi,cosγ  classes between 0.5 and 1.0, experienced 

a better optimality score with the original c-correction than with the modified c-correction. 

Overall the advantages of the modified c-corrections dominate its disadvantages. As a 

consequence the modified c-correction technique realized a clearly higher median optimality 

than the original c-correction. 

However, the deviant behavior of a minority of pixels poses questions on the utility of the 

modified c-correction for image couples with other illumination differences than our example 

image couple. In this context, an important recommendation when doing bi-temporal change 

detection is that the image couple should approximate as closely as possible the anniversary 

date acquisition scheme (Coppin et al., 2004). This diminishes illumination differences and 

phenological dissimilarities. But, because of the importance of acquiring the first available 

cloud-free post-fire image to assess fire severity, bi-temporal acquisition schemes potentially 

diverge from the ideal anniversary data scheme. After acquiring the first available cloud-free 

post-fire image, the pre-fire image is often chosen based on data quality and acquisition date. 

The anniversary date condition is often only partly fulfilled, as in our case study. Therefore, 

the effect of differing illumination is likely to be more explicit in fire severity applications 

than in other change detection studies (Key, 2005). Our images diverge more than two months 

from the anniversary date acquisition scheme (pre-fire image of 23/07/2006 and post-fire 

image of 28/09/2007) resulting in reasonably high differences in solar azimuth ( aφ  = 123.3° 

for the 2006 image and aφ  = 150.18° for the 2007 image) and solar elevation (62.89° for the 

2006 image and 46.43° for the 2007 image). Figure 6B allows reasoning about the 

performance of the topographic correction techniques when illumination geometry would be 

different than in our case study. The illumination geometry of two images will be more 

similar than in our case study when (i) the study area is situated at lower latitude, (ii) 

topography is less rugged and (iii) the anniversary date scheme is more closely approximated. 

In this case the number of pixels in the high average illumination avgi,cosγ  and low difference 

in illumination diffi,cosγ  becomes more important. These classes are characterized by a high 

optimality score after applying the modified c-correction, in contrast with the clearly lower 

optimality scores when the original c-correction is applied. In addition, the number of pixels 

in the low average illumination avgi,cosγ  and high difference in illumination diffi ,cosγ  classes 

reduces. These classes are typified by the better performance of the original c-correction in 

comparison with the modified c-correction. Thus, when the illumination geometry of the two 

images is more similar the benefits of the modified c-correction become even more 

substantial. In opposite, the illumination geometry of two images will be more dissimilar than 

in our study when (i) the area of interest is located at higher latitude, (ii) topography is more 

rugged and (iii) there is a more extreme divergence from the anniversary date acquisition 

scheme. This has a consequence that the number of pixels for which the original c-correction 

technique performs better becomes larger (for both the low average illumination avgi ,cosγ  and 

high difference in illumination diffi ,cosγ  classes). In our example study the original c-

correction method performed better for only 4% of the data. When illumination conditions 

differ more substantially this portion enlarges. This will, to a certain degree, diminish the 

advantages of the modified c-correction technique. However, considering the 16-day repeat 



cycle of Landsat TM a cloud-free image couple can be found within a time window of 

approximately three months for most arid, semi-arid and temperate regions of the world (Ju 

and Roy, 2008). If this condition is fulfilled, even when illumination differences are slightly 

more extreme than in our case, we can suppose that the advantages of the modified c-

correction technique will still outweigh its disadvantages. This prerequisite is often not 

feasible for tropical and high-latitude regions (Marshall et al., 1994; Sano et al., 2007; Ju et 

al., 2008). Latitude is an important factor because of two reasons. Firstly, the latitude of the 

study area determines its macro-climate and as a consequence the frequency of cloud-free 

remote sensing conditions. Secondly, the latitude of the area of interest also determines the 

magnitude of the potential maximal difference in illumination. This magnitude increases with 

increasing latitude. For tropical regions, differences in illumination throughout the year are 

relatively small. Therefore, in favor of finding a cloud-free image couple, the time window 

can possibly be extended, assuming that the phenology issue does not distort the analysis. For 

high-latitude zones both cloudiness and illumination conditions hamper the set up of a bi-

temporal change detection scheme (Marshall et al., 1994; Ju and Roy, 2008; Verbyla et al., 

2008), although the disadvantage of bad weather is in some degree compensated for by 

acquiring more images because of the bigger sidelap of adjacent frames (Kontoes and 

Stakenburg, 1990). For these case studies at high latitudes and/or in highly rugged terrain 

and/or with a substantial deviation from the anniversary date scheme, we suggest authors to 

make a rapid comparison between the original and modified c-correction technique to assess 

which approach most adequately removes illumination effects. This task can be easily 

accomplished without the need of any additional data by applying the optimality concept as 

described in this paper. 

In summary, correcting for illumination effects is especially important in change detection 

studies conducted in rugged terrain with highly differing illumination conditions imagery. 

Fire severity applications are affected more than other remote sensing studies since it is 

important to acquire the first available cloud-free post-fire image and as a consequence a 

potential divergence from the ideal anniversary date acquisition scheme may exist. The 

modified c-correction technique resulted in a more reliable spectral indices based change 

detection study in rugged terrain with two images that deviated up to two months from the 

ideal anniversary date scheme. 

5 Conclusions 

Based on the spectral index theory, the effect of illumination on the dNBR optimality for 

assessing fire severity using pre- (2006) and post-fire (2007) Landsat TM imagery was 

evaluated for the 2007 Peloponnese wildfires. South and south-east exposed slopes obtained 

higher optimality values than north and north-west facing slopes. The better a pixel was 

illuminated in 2006 and 2007, the higher the dNBR optimality was. Apart from the average 

illumination condition, also the difference in illumination geometry between the images 

contributed to variations in index optimality: a better optimality was achieved with smaller 

differences in illumination. 

To improve the performance of the index, the c-correction method and a modified version of 

this technique were applied to derive terrain corrected reflectance. Opposed to the original c-

correction method that normalizes to an intermediate illumination condition, the modified c-

correction technique corrects towards maximum illumination conditions. The original c-

correction method improved the optimality of badly illuminated pixels while deteriorating the 

optimality of well illuminated pixels. The modified c-correction technique neutralized this 

feature while retaining the prime characteristic of topographic correction techniques, i.e. 



detrending the illumination-reflectance relationship. The resulting median dNBR optimality 

scores of topographically uncorrected, c-corrected and modified c-correction data were 

respectively 0.58, 0.60 and 0.71. It should be noted that for a minority of pixels that 

experienced low average illumination and/or high difference in illumination conditions the 

original c-correction technique outperformed the modified c-correction technique. For case 

studies in which these circumstances are prevalent, we suggest authors to undertake a rapid 

evaluation of the original and modified c-correction technique to assess which technique most 

adequately minimizes illumination effects. This comparison can easily by achieved using the 

optimality concept. For this case study conducted in a rough topographical area at the 

Peloponnese (Greece) with a bi-temporal acquisition scheme substantially deviating from the 

ideal anniversary date scheme the modified c-correction method resulted in a more reliable 

fire severity assessment. 
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Figure 1. Location of the study area (Landsat TM image 23/07/2007 RGB-743, UTM 34S ED50). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Ombrothermic diagram of the Kalamata (Peloponnese, Greece) meteorological station (37ο4'1" N 

22
ο
1'1" E) 1956-1997 (Hellenic National Meteorological Service, www.hnms.gr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Example pre/post-fire trajectory of a pixel in the TM4-TM7 feature space. A pixel displaces from 

unburned (U) to burned (B). O resembles the position of an optimally sensed burned pixel. The dNBR is 

sensitive to the displacement UO  and insensitive to the displacement OB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. Topographically uncorrected (a and d), c-corrected (b and e) and modified c-correction (c and f) dNBR 

optimality maps and histograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. Median topographically uncorrected, c-corrected and modified c-correction dNBR optimality score by 

aspect (a) and slope (b) class (the percentage between brackets represents the class’s percentage of the total 

number of burned pixels). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6. Median topographically uncorrected, c-corrected and modified c-correction dNBR optimality score by 

average illumination avgi ,cosγ  (a) and difference in illumination diffi,cosγ  (b) class (the percentage between 

brackets represents the class’s percentage of the total number of burned pixels). 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Regression model results for the model form ba i += γρ cos . 

 


