
DISCRETISATION OF FBSDES DRIVEN BY CÀDLÀG MARTINGALES

ASMA KHEDHER AND MICHÈLE VANMAELE

Abstract. We study the discretisation of forward backward stochastic differential equa-
tions (FBSDEs) driven by càdlàg martingales. We prove that under certain conditions
imposed on the parameters of the FBSDE the time-discrete scheme we consider converges
to the time-continuous equation in the L2-sense. Moreover, we show that the L2-norm of
the error is of the order of the time step.

1. Introduction

In the present paper we aim at studying the time-discretisation of forward backward
stochastic differential equations (FBSDEs) driven by càdlàg martingales. That is FBSDEs
of the form
(1.1)

S(t) = S(0) +

t∫
0

S(s)a(s) ds+

t∫
0

S(s−) dM(s) ,

V (t) = h(S(T )) +

T∫
t

ϕ(s, S(s), V (s),Υ(s)) d〈M〉s −
T∫
t

Υ(s) dM(s)− L(T ) + L(t) ,

where M is a càdlàg martingale, 〈M〉 is the predictable compensator of the quadratic
variation of M , and L is a martingale orthogonal to M . h, ϕ, and a have to fulfill certain
conditions that we specify later in the paper. A solution to the backward equation in (1.1)
is a triplet (V,Υ, L). We refer to Carbone et al. [6] for the study of the existence and
uniqueness of this solution.

Such equations were first derived by Chitashvili [7] as a stochastic version of the Bellman
equation in an optimal control problem. They naturally appear for example in quadratic
hedging problems in finance and insurance (see e.g. Jeanblanc et al. [11] and Di Nunno et
al. [8]). They can also characterize solutions of optimal portfolio problems based on utility
functions (see e.g. Mania et al. [17], Mania and Tevzada [19], and Mania and Schweizer
[18]).

Bouchard and Touzi [5] studied the problem of discretisation of classical BSDEs driven
by a Brownian motion using an Euler type scheme. Bouchard and Elie [4] extended this
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approach to classical BSDEs with jumps and studied the induced L2-error. They showed
that the L2-norm of the error is of the order of the time step.

In the present paper, we first specify the martingale M in (1.1) to be driven by a
Brownian motion and by jumps with finite activity. In this case the discretisation of the
forward equation S is well studied in the literature and we refer to Platen [22] for a good

overview. For the backward equation, we obtain an Euler backward scheme (V̂ , Υ̂, L̂) which
is presented as a solution to a time-discrete BSDE. Then we study the induced L2-error.

In this context we mention a paper by Lejay et al. [14] in which the authors presented a
numerical scheme for solving classical BSDEs with jumps. They consider a time-continuous
BSDE driven by a Brownian motion and by jumps. Then they construct a time-discrete
BSDE driven by a complete system of three orthogonal discrete time-space martingales,
the first being a random walk converging to a Brownian motion; the second being another
random walk, independent of the first one, converging to a Poisson process. The third
martingale is added to ensure the existence of the solution to the time-discrete BSDE.
Thus, this martingale converges to zero for a small time step. Note that the time-discrete
backward scheme in Section 2.2 in Bouchard and Elie [4] does not contain an orthogonal
martingale since it is not presented as a solution to a time-discrete BSDE.
Our approach differs from both papers in that L̂ is a martingale representing both a
time-discretisation of the orthogonal continuous-time martingale L and an additional term
necessary for the existence of the solution to our time-discrete BSDE (see (3.3)).

Our method allows us to approximate the process L in (1.1) by a discrete-time process

L̂. This is important in applications in finance. For example in the case of the study of
quadratic hedging strategies, the process L represents the remaining risk in the hedging
strategy and hence it is important to study the approximation and the simulation of this
process L. Finally, we mention that the study of the approximation in the paper by
Lejay et al. [14] was considered in the weak sense. In the present paper, we study the L2-
convergence. Other recent papers that dealt with a weak approximation scheme for BSDEs
and are worthwhile mentioning in this context are papers by Dumitrescu and Labart [9, 10]
and Madan et al. [16].

For the study of the convergence, we first investigate a relation of the backward equation
in (1.1) to classical BSDEs by applying an Itô representation to the martingale L. Then
we exploit the results by Bouchard and Elie [4]. This allows us to prove that under certain
conditions imposed on the parameters of the forward equation, the Euler scheme we con-
sider converges to the continuous BSDE (1.1) in the L2-sense. Moreover, we show that the
L2-norm of the error is of the order of the time step. We note that the discretisation scheme
we present involves conditional expectations and that the convergence rate is computed
assuming a perfect sampling of these conditional expectations.

For numerical applications of the discretisation scheme, we refer to Sun et al. [23],
where the authors study the numerical computation of locally risk-minimizing strategies
for vanilla, Asian and spread options and use a regression-based method as in Longstaff
and Schwarz [15] to simulate the conditional expectations appearing in the discretisation
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scheme. We refer to Kohler [12] for an overview of regression-based approaches to compute
numerically conditional expectations arising from American options.

To complete our study, we consider in a second step martingales M driven by a Brow-
nian motion and by jumps with infinite activity. We approximate the small jumps by a
Brownian motion scaled with the standard deviation of the small jumps. Then we study
the discretisation of the approximation and by exploiting the results in Di Nunno et al. [8],
we prove that the L2-norm of the error is of the order of the time step plus the vari-
ance of the small jumps. Same type of results hold when ignoring the small jumps in the
approximation before performing a discretisation.

The paper is organised as follows. In Section 2 we present the continuous-time FBSDE
and in Section 3 its time-discretisation.The convergence of the discrete-time scheme to the
continuous-time BSDE is studied in Section 4. We also compute the convergence rate. In
Section 5 we complete the analysis by including jumps with infinite activity in the study
of the discretisation. Section 6 concludes.

2. Continuous-time model

Let (Ω,F ,P) be a complete probability space. Fix T > 0. Let S be a locally square
integrable semimartingale under P adapted to a filtration F = (Ft)0≤t≤T satisfying the
usual conditions of right continuity and completeness (see Chapter I in Protter [22]). We
denote by [X, Y ] the quadratic covariation of two given semimartingales X and Y and by
〈X, Y 〉 the compensator of the quadratic covariation also called predictable compensator.
LetW = W (t) andB = B(t), t ∈ [0, T ], be two independent standard Wiener processes and
Ñ = Ñ(dt, dz), (t, z) ∈ [0, T ]×R be a centered Poisson random measure, i.e. Ñ(dt, dz) =
N(dt, dz)− `(dz) dt, where `(dz) is the Lévy measure and N(dt, dz) is the Poisson random
measure such that E[N(dt, dz)] = `(dz)dt. Define B(R) as the σ-algebra generated by the
Borel sets Ū ⊂ R. We assume that the Lévy measure has a finite mass in the tail, i.e.
`(|z| ≤ 1) <∞ and that the jump measure has a finite second moment, i.e.

∫
R z

2 `(dz) <∞.
We specify the P-augmented filtrations F = (Ft)0≤t≤T , G = (Gt)0≤t≤T , respectively by

Ft = σ

W (s),

s∫
0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R)

 ∨N ,

Gt = σ

W (s), B(s),

s∫
0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R)

 ∨N ,

whereN represents the set of P-null events in F . We introduce the notation H = (Ht)0≤t≤T
such that Ht will be given by the σ algebra Ft or Gt depending on our analysis later.
Let [M ] := [M,M ] and 〈M〉 := 〈M,M〉 be respectively the quadratic variation and the
predictable compensator associated with a given square integrable martingale M . We
define the following spaces;
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• L2
T : the space of all HT -measurable random variables X : Ω→ R such that

‖X‖2 = E[X2] <∞.
• H2

[0,T ]: the space of all H-predictable processes φ : Ω× [0, T ]→ R, such that

‖φ‖2H2
[0,T ]

= E

 T∫
0

|φ(t)|2 dt

 <∞.
• S2

[0,T ]: the space of all H-adapted, càdlàg processes γ : Ω× [0, T ]→ R such that

‖γ‖2S2
[0,T ]

= E
[

sup
0≤t≤T

|γ2(t)|
]
<∞.

• Ĥ2
[0,T ]: the space of all H-predictable mappings θ : Ω× [0, T ]× R→ R, such that

‖θ‖2
Ĥ2

[0,T ]

= E

 T∫
0

∫
R

|θ(t, z)|2 `(dz) dt

 <∞.
• H̃2

[0,T ]: the space of all H-adapted processes φ : Ω× [0, T ]→ R, such that

‖φ‖2
H̃2

[0,T ]

= E

 T∫
0

|φ(t)|2 d〈M〉t

 <∞.
• L̂2(R,B(R), `): the space of all B(R)-measurable mappings ψ : R→ R such that

‖ψ‖2
L̂2(R,B(R),`) =

∫
R

|ψ(z)|2 `(dz) <∞ .

• L2
[0,T ]: the space of L2-bounded martingales M such that

E

 T∫
0

d[M ]t

 <∞ .

Consider three functions f , ϕ, and h to which we impose the following assumptions:

Assumptions 2.1.
(A) f : [0, T ]× R3 × L̂2(R,B(R), `)→ R is such that

• f(·, 0, 0, 0, 0) ∈ H2
[0,T ],

• f satisfies a uniform Lipschitz condition in (·, u, v, w,Γ), i.e. there exists a constant

C such that for all (ui, vi, wi,Γi) ∈ R3 × L̂2(R,B(R), `), i = 1, 2 we have

|f(t, u1, v1, w1,Γ1)− f(t, u2, v2, w2,Γ2)|

≤ C
(
|u1 − u2|+ |v1 − v2|+ |w1 − w2|+ ‖Γ1 − Γ2‖

)
, for all t ∈ [0, T ] .
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(B) ϕ : [0, T ]× R3 → R is such that

• ϕ(·, 0, 0, 0) ∈ H̃2
[0,T ],

• ϕ satisfies a Lipschitz condition in (t, u, v, w), i.e. there exists a constant C such
that for all (ti, ui, vi, wi) ∈ [0, T ]× R3, i = 1, 2 we have

|ϕ(t1, u1, v1, w1)− ϕ(t2, u2, v2, w2)|

≤ C
(
|t1 − t2|+ |u1 − u2|+ |v1 − v2|+ |w1 − w2|

)
.

(C) h : R→ R is Lipschitz and h(0) = 0.

In Sections 2 - 4, we consider H = F. We define a process M as follows

(2.1) M(t) :=

t∫
0

b(s) dW (s) +

t∫
0

∫
R

γ(s, z)Ñ(ds, dz) ,

where b(t), γ(t, z) ∈ R, for t ≥ 0, z ∈ R. Moreover, we assume that

(2.2) γ(t, z) = g(z)γ̃(t).

In order to ensure that the process M has a finite second moment, we impose for some
ε > 0,

(2.3) G2(ε) :=

∫
|z|≤ε

g2(z) `(dz) <∞ .

We consider the following classical stochastic differential equation

(2.4) S(t) = S(0) +

t∫
0

S(s)a(s) ds+

t∫
0

S(s−) dM(s) ,

where a(t) ∈ R and S(0) is a positive constant. For S to be positive, we assume γ(t, z) > −1
for (t , z ) ∈ [0, T ]× R.

We then consider the associated backward stochastic differential equation

(2.5) V (t) = h(S(T )) +

T∫
t

ϕ(s, S(s), V (s),Υ(s)) d〈M〉s −
T∫
t

Υ(s) dM(s)− L(T ) + L(t) ,

where ϕ and h satisfy respectively Assumptions 2.1 (B) and (C). A solution to the BSDE
with jumps (BSDEJ) of type (2.5) is a triplet (V,Υ, L) ∈ H̃2

[0,T ] × H̃2
[0,T ] × L2

[0,T ] such

that Υ is predictable and [M,L] is a local P-martingale. The existence and uniqueness
of the solution to (2.5) are well studied in Carbone et al. [6] for general square integrable
martingales M not necessarily of the form we impose. We mention that their study does
not include the dependence on S in the functions h and ϕ . However its generalisation to
the FBSDE (2.4)-(2.5) is straightforward.
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Since L(T ) is an FT -measurable square integrable random variable, then applying the
representation theorem (see Kunita and Watanabe [13]) and the fact that E[L(T )] =
E[L(0)] = 0, we get the following representation for the process L

L(t) =

t∫
0

P (s) dW (s) +

t∫
0

∫
R

Q(s, z) Ñ(ds, dz) ,(2.6)

where P ∈ H2
[0,T ] and Q ∈ Ĥ2

[0,T ] (see Section 3 in Di Nunno et al. [8] for more details).

In the sequel we aim at rewriting the BSDEJ (2.5) as a classical BSDEJ. Thus we
consider first the following classical BSDEJ
(2.7)

−dU(t) = f(t, S(t), U(t), Y (t), Z(t, ·)) dt− Y (t) dW (t)−
∫
R

Z(t−, z) Ñ(dt, dz) ,

U(T ) = h(S(T )) ,

where f and h fulfill Assumptions 2.1 (A) and (C). A solution to (2.7) is a triplet (U, Y, Z) ∈
S2
[0,T ] × H2

[0,T ] × Ĥ2
[0,T ]. From Tang and Li [24], we know that this solution exists and is

unique.
In the following proposition we rewrite (2.5) as a BSDEJ of type (2.7). We do not

present the proof since it follows similar lines as the proof of Lemma 4.1 in Di Nunno et
al. [8].

Proposition 2.2. Define

(2.8) κ(t) := b2(t) +

∫
R

γ2(t, z) `(dz) , t ∈ [0, T ] .

Assume that

C1 ≤
√
κ(t) ≤ C2 , for all t ∈ [0, T ] ,(2.9)

where C1 and C2 are positive constants. Let (V, Y, Z) be given by (2.5). Recall the processes
P and Q in the decomposition of L (2.6). Then (V, Y, Z) satisfies a BSDEJ of type (2.7),
where

Y (t) = Υ(t)b(t) + P (t) ,

Z(t, z) = Υ(t)γ(t, z) +Q(t, z) ,

f(t, u, v, w,Γ(·)) = ϕ (t, u, v, φ (t, w,Γ (·)))κ(t) ,(2.10)

with φ : [0, T ]× R× L̂2(R,B(R), `)→ R being such that

φ(t, w,Γ(·)) =
1

κ(t)

b(t)w +

∫
R

Γ(z)γ(t, z) `(dz)

 .(2.11)
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Let C1
b denote the space of continuously differentiable functions with bounded derivatives

and πn be the regular time grid

πn := {0 = t0, . . . , ti, . . . , tn = T} , ti =
iT

n
, n ∈ N .

We introduce the following estimate which we need for our convergence study later.

Theorem 2.3. Let V and Υ be as in (2.5). Assume (2.9) holds, a, b, and γ̃ defined in
(2.2) are Lipschitz, and the functions h in (2.5) and f in (2.10) are C1

b . Then

max
i<n

E

[
sup

t∈[ti,ti+1]

|V (t)− V (ti)|2
]

+ E

n−1∑
i=0

ti+1∫
ti

|Υ(s)−Υ(ti)|2 ds

 ≤ C

n
,

where C is a positive constant.

Proof. Introduce the short hand notation

Zγ(t) =

∫
R

Z(t, z)γ(t, z) `(dz) .

The estimate for V follows immediately from Theorem 2.1 in Bouchard and Elie [4] and
Proposition 2.2 in the present paper. For the estimate for Υ, we deduce from (2.11) that

|Υ(s)−Υ(ti)| =
∣∣∣∣ 1

κ(s)
(b(s)Y (s) + Zγ(s))− 1

κ(ti)
(b(ti)Y (ti) + Zγ(ti))

∣∣∣∣
≤
∣∣∣∣ b(s)κ(s)

Y (s)− b(ti)

κ(ti)
Y (ti)

∣∣∣∣+

∣∣∣∣ 1

κ(s)
Zγ(s)− 1

κ(ti)
Zγ(ti)

∣∣∣∣ .(2.12)

We estimate the first term in the last equation to arrive at∣∣∣∣ b(s)κ(s)
Y (s)− b(ti)

κ(ti)
Y (ti)

∣∣∣∣
≤
∣∣∣∣ b(s)κ(s)

Y (s)− b(ti)

κ(ti)
Y (s)

∣∣∣∣+

∣∣∣∣ b(ti)κ(ti)
Y (s)− b(ti)

κ(ti)
Y (ti)

∣∣∣∣
≤
∣∣∣∣ b(ti)κ(ti)

∣∣∣∣ |Y (s)− Y (ti)|+ |Y (s)|
∣∣∣∣b(s)κ(ti)− b(ti)κ(s)

κ(s)κ(ti)

∣∣∣∣
≤ C |Y (s)− Y (ti)|+ C ′ |Y (s)| |b(s)− b(ti)|+ C̃ |Y (s)| |κ(s)− κ(ti)| ,

where in the latter we used the fact that κ(t) is bounded below and above uniformly in t
by a constant and that b(t) is bounded above uniformly in t by a constant. Using the fact
that b and γ̃ are Lipschitz and bounded above uniformly in t, which implies that κ is also
Lipschitz, we further get∣∣∣∣ b(s)κ(s)

Y (s)− b(ti)

κ(ti)
Y (ti)

∣∣∣∣2
≤ C |Y (s)− Y (ti)|2 + C ′ |Y (s)|2 |b(s)− b(ti)|2 + C̃ |Y (s)|2 |κ(s)− κ(ti)|2
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≤ C |Y (s)− Y (ti)|2 +
K

n2
|Y (s)|2 .

Integrating, summing up, and taking the expectation, we obtain

E

n−1∑
i=0

ti+1∫
ti

∣∣∣∣ b(s)κ(s)
Y (s)− b(ti)

κ(ti)
Y (ti)

∣∣∣∣2 ds


≤ CE

n−1∑
i=0

ti+1∫
ti

|Y (s)− Y (ti)|2 ds

+
K

n2
E

 T∫
0

|Y (s)|2 ds

(2.13)

≤ C

n
.

In the last step we invoked Proposition 4.5 and Remark 2.7 in Bouchard and Elie [4], and
we relied on the boundedness by a positive constant of the expectation in the second term
in (2.13) (for a proof we refer to Lemma 3.3 in Di Nunno et al. [8]). For the second term in
the last inequality of (2.12), we find using the boundedness below and above of κ uniformly
in t ∣∣∣∣ 1

κ(s)
Zγ(s)− 1

κ(ti)
Zγ(ti)

∣∣∣∣2
≤ C

(
|κ(s)− κ(ti)|2 |Zγ(s)|2 + |Zγ(s)− Zγ(ti)|2

)
≤ CG2(∞)

(
|γ̃(s)|2 |κ(s)− κ(ti)|2 + |γ̃(s)− γ̃(ti)|2

) ∫
R

|Z(s, z)|2 `(dz)

+ CG2(∞)|γ̃(ti)|2
∫
R

|Z(s, z)− Z(ti, z)|2 | `(dz) ,

where G2(∞) =
∫
R g

2(z) `(dz) is finite and the function g is as in (2.2). By the Lipschitz
property of γ̃ and of κ and the boundedness of γ̃, we get∣∣∣∣ 1

κ(s)
Zγ(s)− 1

κ(ti)
Zγ(ti)

∣∣∣∣2
≤ K

n2

∫
R

|Z(s, z)|2 `(dz) + C

∫
R

|Z(s, z)− Z(ti, z)|2 | `(dz) .

The statement of the theorem follows using Lemma 3.3 in Di Nunno et al. [8] and Corollary
4.1 and Remark 2.7 in Bouchard and Elie [4]. �

3. Discrete-time model

We consider the set up (2.4), (2.5) but now in discrete time. Throughout this paper we
shall use the notation

∆H(ti+1) = H(ti+1)−H(ti) , i = 0, . . . , n− 1 ,



DISCRETISATION OF FBSDES DRIVEN BY CÀDLÀG MARTINGALES 9

for any process H.
Time-discretisation of the forward equation. The discrete-time version of the process S

is denoted by Ŝ and defined as

Ŝ(ti+1) := Ŝ(ti) + Ŝ(ti)a(ti) ∆ti + Ŝ(ti) ∆M̂(ti) i = 0, . . . , n− 1 , Ŝ(0) = S(0) ,(3.1)

where

(3.2) ∆M̂(ti+1) :=

ti+1∫
ti

b(ti) dW (t) +

ti+1∫
ti

∫
R

g(z)γ̃(ti) Ñ(dt, dz) ,

for a, b, and γ̃ as in (2.1)-(2.4)
Time-discretisation of the backward equation. A discrete-time version of the process V

in (2.5) is given by
(3.3){

V̂ (ti) = V̂ (ti+1) + ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti)) ∆〈M̂〉ti+1
− Υ̂(ti) ∆M̂(ti+1)−∆L̂(ti+1) ,

V̂ (T ) = h(Ŝ(T )) ,

where ϕ and h verify respectively Assumptions 2.1 (B) and (C). The solution to the latter

BSDEJ is a triplet of discrete processes (V̂ (ti), Υ̂(ti), L̂(ti)) ∈ H̃2
[0,T ] × H̃2

[0,T ] × L2
[0,T ], i =

0, ..., n− 1, such that (Υ̂(ti)){0≤i≤n} is predictable, [M̂, L̂] is a local P-martingale, and the
mentioned spaces are meant in a discrete setting. Existence and uniqueness of the solution
to (3.3) follows from Carbone et al. [6]. Notice that the process L̂ in (3.3) is necessary for
the existence of the solution since the predictable representation property does not hold
in the discrete case (see e.g. Chapter 4 in Protter [21]). Moreover we cannot write this
BSDEJ as a time-discrete BSDEJ driven only by a Brownian motion and jumps as we did
in the continuous case in Proposition (2.2).

To derive an algorithm from the Euler scheme (3.3), we first take the expectation condi-

tionally on Fti on both sides in (3.3) to arrive at the expression for V̂ (ti) (second equation

in (3.4)). Then we multiply both sides in (3.3) by ∆M̂(ti+1), take conditional expectation

with respect to Fti , and solve for Υ̂(ti) using (3.3) and the fact that [M̂, L̂] is a local
P-martingale, to find the system for i = n− 1, . . . , 0
(3.4)

Υ̂(ti) =
n

Tκ(ti)
E

V̂ (ti+1)

b(ti) ∆W (ti+1) +

∫
R

γ(ti, z)Ñ ((ti, ti+1], dz)

 | Fti
 ,

V̂ (ti) = E[V̂ (ti+1)|Fti ] + ∆ti+1ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti) ,

where κ is as in (2.8). As for L̂, being zero at zero, we have from (3.3)

L̂(T ) = V̂ (T )−
n−1∑
i=0

Υ̂(ti) ∆M̂(ti+1) +
n−1∑
i=0

ϕ
(
ti, Ŝ(ti), V̂ (ti), Υ̂(ti)

)
κ(ti) ∆ti+1 − V̂ (0).

(3.5)
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We note that in a paper by Sun et al. [23], the scheme (3.4) is applied to numerically
compute locally risk-minimizing strategies in incomplete markets in finance and insurance.
The authors model the price process by a jump-diffusion and focus mainly on European,
Asian, and spread options. To simulate the conditional expectations appearing in the
discretisation scheme, they use a regression-based approach as in Longstaff and Schwarz
[15] or in Kohler [12] and show that the use of the BSDE technique is robust.

4. L2-convergence of the discretisation scheme

Convergence of the forward equation. In the following theorem we state the discretisation
error of the approximation of (2.4) by (3.1). We refer to Platen [20] for a proof.

Theorem 4.1. Recall the dynamics of S and Ŝ as in (2.4) and (3.1) respectively. Assume
that the adapted processes a, b, and γ̃ are Lipschitz continuous in t. Then we have

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣S(t)− Ŝ(ti)
∣∣∣2] ≤ C

n
,

for a positive constant C independent of the number of steps.

Convergence of the backward equation. To study the convergence of the time-discrete
scheme, we consider a continuous-time version of the process M̂ (3.2) as follows

M1(t) = M1(ti) +

t∫
ti

b(ti)dW (s) +

t∫
ti

∫
R

γ(ti, z)Ñ(ds, dz) , M(0) = 0 .

Now consider the Fti+1
-measurable random variable

ξ(ti+1) := V̂ (ti+1) +

ti+1∫
ti

ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti) ds .

We know from the Galtchouck-Kunita-Watanabe (GKW) decomposition (see, e.g., Kunita
and Watanabe [13] and Ansel and Stricker [1]) that there exists a predictable process
Υ1 ∈ H̃2

[ti,ti+1]
such that

ξ(ti+1) = E [ξ(ti+1) |Fti ] +

ti+1∫
ti

Υ1(s) dM1(s) + ∆L1(ti+1) ,

where L1 is a square integrable P-martingale such that [M1, L1] is a local P-martingale.
From the latter equation and the second equality in (3.4), we deduce

V̂ (ti+1) = V̂ (ti)−
ti+1∫
ti

ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti) ds+

ti+1∫
ti

Υ1(s) dM1(s) + ∆L1(ti+1) .

(4.1)
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We define a continuous version of V̂ as follows

V̂ (t) := V̂ (ti+1) +

ti+1∫
t

ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti) ds−
ti+1∫
t

Υ1(s) dM1(s)

− L1(ti+1) + L1(t) .(4.2)

The latter is an “intermediate” time-continuous BSDEJ which is needed for the convergence
study later on. Since we are in a time-continuous setting, we can apply the classical
martingale representation to L1 to find

L1(ti+1) = L1(t) +

ti+1∫
t

P1(s) dW (s) +

ti+1∫
t

∫
R

Q1(s, z) Ñ(ds, dz) ,

where P1 ∈ H2
[ti,ti+1]

and Q1 ∈ Ĥ2
[ti,ti+1]

. Substitution of the latter in (4.2) for the continuous

version of V̂ leads to

V̂ (t) := V̂ (ti+1) +

ti+1∫
t

ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti) ds−
ti+1∫
t

Y1(ti, s) dW (s)

−
ti+1∫
t

∫
R

Z1(ti, s, z) Ñ(ds, dz) ,(4.3)

where

(4.4)
Y1(ti, s) = Υ1(s)b(ti) + P1(s) ,

Z1(ti, s, z) = Υ1(s)γ(ti, z) +Q1(s, z) .

Using the fact that [M1, L1] is a local P-martingale, we deduce

Υ1(s) =
1

κ(ti)

b(ti)Y1(ti, s) +

∫
R

Z1(ti, s, z)γ(ti, z) `(dz)

 , ti ≤ s ≤ ti+1 , i = 0, ..., n− 1 .

(4.5)

Multiplying by ∆M1(ti+1) in both sides in (4.1) and taking conditional expectation with
respect to Fti , we obtain

E
[
V̂ (ti+1)∆M1(ti+1) |Fti

]
= κ(ti)E

 ti+1∫
ti

Υ1(s) ds |Fti

 ,

where κ is as in (2.8). Comparing the latter to the first equality in (3.4), we get

Υ̂(ti) =
n

T
E

 ti+1∫
ti

Υ1(s) ds |Fti

 .
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In the following two propositions, we compute estimates which we use later in the proofs
of the convergence results.

Proposition 4.2. Let Υ and Υ1 be respectively as in (2.5) and (4.1). Assume (2.9) holds
and a, b, and γ̃ are Lipschitz. Introduce the notation

δY (t) = Y (t)− Y1(ti, t) , δZ(t, z) = Z(t, z)− Z1(ti, t, z) ,(4.6)

where Y, Z are as in (2.7) and Y1, Z1 are as in (4.4). Then

ti+1∫
ti

E
[
|Υ(s)−Υ1(s)|2

]
ds ≤ K

n2
+ C

ti+1∫
ti

E
[
|δY (s)|2

]
ds+ C

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds ,

where K and C are positive constants.

Proof. Introduce the short hand notation

Zγ
1 (ti, t) =

∫
R

Z1(ti, t, z)γ(ti, z) `(dz) .

From (2.11) and (4.5), we have

|Υ(s)−Υ1(s)|

=

∣∣∣∣ 1

κ(s)
(b(s)Y (s) + Zγ(s))− 1

κ(ti)
(b(ti)Y1(ti, s) + Zγ

1 (ti, s))

∣∣∣∣ .
Then proceeding as in the proof of Theorem 2.3, we get∣∣∣∣ b(s)κ(s)

Y (s)− b(ti)

κ(ti)
Y1(ti, s)

∣∣∣∣2 ≤ C |Y (s)− Y1(ti, s)|2 +
K

n2
|Y (s)|2 ,∣∣∣∣ 1

κ(s)
Zγ(s)− 1

κ(ti)
Zγ

1 (ti, s)

∣∣∣∣2 ≤ C

∫
R

|Z(s, z)− Z(ti, s, z)|2 | `(dz) +
K

n2

∫
R

|Z(s, z)|2 `(dz) ,

which implies

ti+1∫
ti

E
[
|Υ(s)−Υ1(s)|2

]
ds ≤ C

ti+1∫
ti

E
[
|δY (s)|2

]
ds+ C̃

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds

+
K

n2

 T∫
0

E
[
|Y (s)|2

]
ds+

T∫
0

∫
R

E
[
|Z(s, z)|2

]
`(dz) ds

 .

The statement follows from the boundedness by a positive constant of the integrals in the
third and fourth term in the right hand side of the latter inequality (for a proof we refer
to Lemma 3.3 in Di Nunno et al. [8]). �
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Proposition 4.3. Let Υ and Υ̂ be respectively as in (2.5) and (3.3). Assume (2.9) holds
and a, b, and γ̃ are Lipschitz. Then we have

ti+1∫
ti

E
[
|Υ̂(ti)−Υ(s)|2

]
ds ≤ K

n2
+ C

ti+1∫
ti

E
[
|δY (s)|2

]
ds+ C

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds

+ C

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds ,

where K and C are positive constants and δY and δZ are as in (4.6).

Proof. We introduce Υ? as follows

Υ?(ti) :=
n

T
E

 ti+1∫
ti

Υ(s) ds |Fti

 ,

where Υ is as in (2.5). Then we have

E
[
|Υ̂(ti)−Υ(s)|2

]
≤ 3

(
E
[
|Υ̂(ti)−Υ?(ti)|2

]
+ E

[
|Υ?(ti)−Υ(ti)|2

]
+ E

[
|Υ(ti)−Υ(s)|2

])
.

As for the first and second terms in the latter equation, we get using Jensen’s and Cauchy-
Schwartz inequalities

E
[
|Υ̂(ti)−Υ?(ti)|2

]
≤ n

T

ti+1∫
ti

E
[
|Υ1(s)−Υ(s)|2

]
ds

E
[
|Υ?(ti)−Υ(ti)|2

]
≤ n

T

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds .

Thus
ti+1∫
ti

E
[
|Υ̂(ti)−Υ(s)|2

]
ds

≤ nC

T

ti+1∫
ti

ti+1∫
ti

E
[
|Υ1(s)−Υ(s)|2

]
ds dr +

nC

T

ti+1∫
ti

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds dr

+ C

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds
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= C

 ti+1∫
ti

E
[
|Υ1(s)−Υ(s)|2

]
ds+

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds

 .

Applying Proposition 4.2, the statement follows. �

In the following theorem we compute the rate of convergence of the solution of (4.3) to
the solution of (2.5) in a space we specify.

Theorem 4.4. Assume the conditions of Theorem 2.3 hold and ϕ(0, 0, 0, 0) = 0. Let the

triplets (V, Y, Z) and (V̂ , Y1, Z1) be respectively the solutions of (2.7) and (4.3). It holds

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣V (t)− V̂ (t)
∣∣∣2]+

n−1∑
i=0

E

 ti+1∫
ti

|Y (s)− Y1(ti, s)|2 ds


+

n−1∑
i=0

E

 ti+1∫
ti

∫
R

|Z(s, z)− Z(ti, s, z)|2 `(dz) ds

 ≤ C

n
,(4.7)

where C is a positive constant.

Proof. Set δV (t) = V (t) − V̂ (t) , δκ(t) = κ(t) − κ(ti) , δϕ(s) = ϕ(s, S(s), V (s),Υ(s)) −
ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti)) . Recall the notations δY and δZ in (4.6). In the sequel, C denotes
a positive constant independent of i and n and may take different values from line to line.
Applying Itô’s Lemma, we get

A(t) := E[|δV (t)|2]− E[|δV (ti+1)|2] + E

 ti+1∫
t

|δY (s)|2 ds

+ E

 ti+1∫
t

∫
R

|δZ(s, z)|2 `(dz) ds


(4.8)

= E

 ti+1∫
t

2δV (s)
(
ϕ(s, S(s), V (s),Υ(s))κ(s)− ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti)

)
ds


≤ E

 ti+1∫
t

2δV (s)δϕ(s)κ(ti) ds

+ E

 ti+1∫
t

2δV (s)ϕ (s, S(s), V (s),Υ(s)) δκ(s) ds

 .

Using 2ab ≤ αa2 + b2/α , for some α > 0, Assumptions 2.1 (B), the fact that κ is bounded
above uniformly in t, and the fact that b and γ̃ are Lipschitz, we get

A(t) ≤ αE

 ti+1∫
t

|δV (s)|2 ds

+
CT

n
E

 ti+1∫
t

2|δV (s)ϕ (s, S(s), V (s),Υ(s)) | ds


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+
C

α
E

 ti+1∫
t

(
|ti − s|2 + |S(s)− Ŝ(ti)|2 + |V (s)− V̂ (ti)|2 + |Υ(s)− Υ̂(ti)|2

)
ds


≤ 2αE

 ti+1∫
t

|δV (s)|2 ds

+
C

αn2
E

 ti+1∫
t

|ϕ(s, S(s), V (s),Υ(s))|2 ds


+
C

α
E

 ti+1∫
t

((
T

n

)2

+ |S(s)− Ŝ(ti)|2 + |V (s)− V̂ (ti)|2 + |Υ(s)− Υ̂(ti)|2
)

ds



≤ 2αE

 ti+1∫
t

|δV (s)|2 ds

+
C

αn2
E

 T∫
0

(
|T |2 + |S(s)|2 + |V (s)|2 + |Υ(s)|2

)
ds


(4.9)

+
C

α
E

 ti+1∫
t

((
T

n

)2

+ |S(s)− Ŝ(ti)|2 + |V (s)− V̂ (ti)|2 + |Υ(s)− Υ̂(ti)|2
)

ds

 .

Theorem 2.3 yields

E
[
|V (s)− V̂ (ti)|2

]
≤ 2

(
E
[
|V (s)− V (ti)|2

]
+ E

[
|V (ti)− V̂ (ti)|2

])
≤ C

(
1

n
+ E[|δV (ti)|2]

)
.(4.10)

Hence, using the boundedness by a constant of the expectation in the second term in (4.9),
Theorem 4.1, and (4.10) we get
(4.11)

A(t) ≤ CαE

 ti+1∫
t

|δV (s)|2 ds

+
C

n2
+
C

α

ti+1∫
t

(
1

n
+ E

[
|δV (ti)|2

]
+ E

[
|Υ(s)− Υ̂(ti)|2

])
ds .

Recall the expression of A in (4.8). We deduce from (4.11)

E[|δV (t)|2] ≤ E[|δV (t)|2] + E

 ti+1∫
t

|δY (s)|2 ds

+ E

 ti+1∫
t

∫
R

|δZ(s, z)|2 `(dz) ds

(4.12)

≤ Cα

ti+1∫
t

E
[
|δV (s)|2

]
ds+Bi ,
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where

Bi =
C

n2
+ E

[
|δV (ti+1)|2

]
+
C

α

 1

n2
+

1

n
E
[
|δV (ti)|2

]
+

ti+1∫
t

E
[
|Υ(s)− Υ̂(ti)|2

]
ds

 .

Thus applying Gronwall’s lemma to (4.12), we get

E
[
|δV (t)|2

]
≤ Bi exp

{
Cα

n

}
, ti ≤ t < ti+1 , i = 0, ..., n− 1 ,

which plugged in (4.12), implies

E[|δV (t)|2] +

ti+1∫
t

E
[
|δY (s)|2

]
ds+

ti+1∫
t

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds ≤ Bi

(
1 + α

C

n

)
.

(4.13)

Taking t = ti and applying Proposition 4.3, we get

E[|δV (ti)|2] + E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
(

1 + α
C

n

)C

n2
+ E

[
|δV (ti+1)|2

]
+

C

nα
E
[
|δV (ti)|2

]
+
C

α

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds

+
C

α

ti+1∫
ti

E
[
|δY (s)|2

]
ds+

C

α

ti+1∫
ti

∫
R

E
[
|δZ(s, z)|2

]
`(dz) ds

 .

For α sufficiently larger than C, we deduce

1

2
E[|δV (ti)|2] +

1

2
E

 ti+1∫
ti

|δY (s)|2 ds

+
1

2
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
(

1 +
C

n

)C

n2
+ E

[
|δV (ti+1)|2

]
+ C

ti+1∫
ti

E
[
|Υ(s)−Υ(ti)|2

]
ds

 .

Iterating the last inequality we get

1

2
E[|δV (ti)|2] +

1

2
E

 ti+1∫
ti

|δY (s)|2 ds

+
1

2
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


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≤ C

(
1 +

C

n

)n 1

n
+ E

[
|δV (T )|2

]
+

n−1∑
j=i

tj+1∫
tj

E
[
|Υ(s)−Υ(ti)|2

]
ds

 .(4.14)

Using the estimates in Theorems 2.3 and 4.1 together with the Lipschitz property of h
leads to

E
[
|δV (ti)|2

]
+ E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds

 ≤ C

n
.(4.15)

Taking t = ti in (4.13), summing up, and using Proposition 4.3, we arrive at

n−1∑
i=0

E[|δV (ti)|2] + E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤

n−1∑
i=0

[(
1 + α

C

n

)(
C

n2
+ E

[
δ|V (ti+1)|2

]
+

C

αn
E
[
|δV (ti)|2

]
+
C

α
E

 ti+1∫
ti

|δY (s)|2 ds

+
C

α
E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


+

C

α
E

 ti+1∫
ti

|Υ(s)−Υ(ti)|2 ds

 ,

which implies

[
1− C

α

(
1 +

αC

n

)] n−1∑
i=0

E

 ti+1∫
ti

|δY (s)|2 ds

+ E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤
(

1 + α
C

n

)
C

n
+ C

(
1 + α

C

n

)
E
[
δV (T )|2

]
+

[(
1 + α

C

n

)
C

αn
− 1

]
E
[
δV (t0)|2

]
+

[(
1 + α

C

n

)(
1 +

C

αn

)
− 1

] n−1∑
i=1

E
[
δV (ti)|2

]
+ C

(
1 + α

C

n

)
C

α

n−1∑
i=0

E

 ti+1∫
ti

|Υ(s)−Υ(ti)|2 ds

 .



18 KHEDHER AND VANMAELE

Using (4.15) and again the Lipschitz property of h, the latter implies that for α sufficiently
larger than C, we obtain

n−1∑
i=0

E

 ti+1∫
ti

|δY (s)|2 ds

+
n−1∑
i=0

E

 ti+1∫
ti

∫
R

|δZ(s, z)|2 `(dz) ds


≤ C

 1

n
+

1

n

n−1∑
i=1

E
[
δV (ti)|2

]
+

n−1∑
i=0

E

 ti+1∫
ti

|Υ(s)−Υ(ti)|2 ds

(4.16)

and the statement for the last two terms in (4.7) follows using (4.15) and Theorem 2.3.
Finally, observe that

E
[

sup
ti≤t≤ti+1

|V (t)− V̂ (t)|2
]

≤ K
(
E
[
|V (ti+1)− V̂ (ti+1)|2

]
+ E

 ti+1∫
ti

∣∣∣ϕ(s, S(s), V (s),Υ(s))κ(s)− ϕ(ti, Ŝ(ti), V̂ (ti), Υ̂(ti))κ(ti)
∣∣∣2 ds


+ E

 sup
ti≤t≤ti+1

∣∣∣∣∣∣
ti+1∫
t

δY (s) dW (s)

∣∣∣∣∣∣
2
+ E

 sup
ti≤t≤ti+1

∣∣∣∣∣∣
ti+1∫
t

∫
R

|δZ(s, z)|2 Ñ(ds, dz)

∣∣∣∣∣∣
2

 .

Then using Burkholder’s inequality, the Lipschitz property of ϕ, and iterating as we did
to get (4.14), we deduce the result applying (4.16). �

In the following theorem we compute a rate for the L2-convergence of Υ̂ to Υ.

Theorem 4.5. Assume the conditions of Theorem 2.3 hold and ϕ(0, 0, 0, 0) = 0. Let Υ

and Υ̂ be respectively as in (2.5) and (3.3). Then

n−1∑
i=0

ti+1∫
ti

E
[
|Υ(s)− Υ̂(ti)|2

]
ds ≤ C

n
.

Proof. Summing up both sides of the inequality in Proposition 4.3, the statement follows
by invoking Theorem 2.3 and Theorem 4.4. �

We state a rate of convergence for the process L̂ to L in the following theorem.

Theorem 4.6. Assume the conditions of Theorem 2.3 hold and ϕ(0, 0, 0, 0) = 0. Let the

processes L and L̂ be defined as in (2.5) and (3.3). Then we have for all 0 ≤ i ≤ n− 1,

E
[∣∣∣L(ti+1)− L̂(ti+1)

∣∣∣2] ≤ C

n
,
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where C is a positive constant.

Proof. Applying the recursion in (3.3), we get

L̂(ti+1) = V̂ (ti+1)− V̂ (0) +
i∑

k=0

ϕ(tk, Ŝ(tk), V̂ (tk), Υ̂(tk))κ(tk) ∆tk+1

−
i∑

k=0

Υ̂(tk)b(tk)∆W (tk+1)−
i∑

k=0

∫
R

Υ̂(tk)γ(tk, z) Ñ
(
(tk, tk+1], dz

)
,

while differentiation and integration over [0, t] in (2.5) gives

L(t) = V (t)− V (0)−
t∫

0

ϕ(s, S(s), V (s),Υ(s))κ(s) ds−
t∫

0

Υ(s)b(s) dW (s)

−
t∫

0

∫
R

Υ(s)γ(s, z) Ñ(ds, dz) .

Hence, we find

E[|L(ti+1)− L̂(ti+1)|2]

≤ CE
[∣∣∣V (ti+1)− V̂ (ti+1)

∣∣∣2]+ CE
[∣∣∣V (0)− V̂ (0)

∣∣∣2]

+ CE


∣∣∣∣∣∣
ti+1∫
0

ϕ(s, S(s), V (s),Υ(s))κ(s) ds−
i∑

k=0

ϕ(tk, Ŝ(tk), V̂ (tk), Υ̂(tk))κ(tk) ∆tk+1

∣∣∣∣∣∣
2


(4.17)

+ CE


∣∣∣∣∣∣
ti+1∫
0

Υ(s)b(s) dW (s)−
i∑

k=0

Υ̂(tk)b(tk) ∆W (tk+1)

∣∣∣∣∣∣
2


(4.18)

+ CE


∣∣∣∣∣∣
ti+1∫
0

∫
R

Υ(s)γ(s, z) Ñ(ds, dz)−
i∑

k=0

∫
R

Υ̂(tk)γ(tk, z) Ñ
(
(tk, tk+1], dz

)∣∣∣∣∣∣
2
 .

(4.19)

Define

Υ̂(s) =
n−1∑
k=0

Υ̂(tk)1[tk,tk+1](s) , b̂(s) =
n−1∑
k=0

b(tk)1[tk,tk+1](s) .
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After applying the Itô isometry, we estimate the expectation in (4.18)

E


∣∣∣∣∣∣
ti+1∫
0

Υ(s)b(s) dW (s)−
i∑

k=0

Υ̂(tk)b(tk) ∆W (tk+1)

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣
ti+1∫
0

(
Υ(s)b(s)− Υ̂(s)b̂(s)

)
dW (s)

∣∣∣∣∣∣
2
 = E

 ti+1∫
0

(
Υ(s)b(s)− Υ̂(s)b̂(s)

)2
ds


≤ 2E

 ti+1∫
0

Υ2(s)
(
b(s)− b̂(s)

)2
ds

+ 2E

 ti+1∫
0

(
Υ(s)− Υ̂(s)

)2
b̂2(s) ds


= 2E

 i−1∑
k=0

tk+1∫
tk

Υ2(s) (b(s)− b(tk))2 ds

+ 2E

 i−1∑
k=0

tk+1∫
tk

(
Υ(s)− Υ̂(tk)

)2
b2(tk) ds

 .
The Lipschitzianity and boundedness of b leads to

E


∣∣∣∣∣∣
ti+1∫
0

Υ(s)b(s) dW (s)−
i∑

k=0

Υ̂(tk)b(tk) ∆W (tk+1)

∣∣∣∣∣∣
2


≤ C

(
T

n

)2

E
[∫ T

0

|Υ(s)|2 ds

]
+ C

i−1∑
k=0

E
[∫ tk+1

tk

|Υ(s)− Υ̂(tk)|2 ds

]
≤ C

n
,

where in the last step we applied Theorem 4.5 and the boundedness of the expectation in
the first term. Using similar arguments, we can prove that the expectations in (4.17) and
(4.19) are bounded above by C/n. Finally, the result follows invoking Theorem 4.4. �

5. A note on the infinite activity of the jumps

In the previous section we imposed that the jumps have finite mass in the tail. In this
section we aim at completing this analysis by considering jumps with infinite activity.
Therefore before discretising, we introduce an approximating FBSDJ where we replace the
small jumps by an independent Brownian motion appropriately scaled. Then we introduce
a discretisation of the approximating FBSEDJ and we study the convergence of the time-
discrete equation to the original one in an L2-sense.

The idea of approximating the small jumps by a properly scaled independent Brownian
motion is motivated by a paper of Asmussen and Rosinski [2]. Another choice would be to
truncate the small jumps or rescale the Brownian motion W such that the original process
and the approximating one would have the same variance. All these suggested approxima-
tions contain a Brownian motion and a compound Poisson process which are both easy to
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simulate. In the present paper we only consider the first mentioned approximation. How-
ever we claim that similar results hold for the other types of approximations. We refer to
Benth et al. [3] for the influence of the different approximations on the forward SDE (2.4)
and to Di Nunno et al. [8] for the study of the influence of the different approximations to
the BSDE (2.5).

5.1. Approximating continuous-time model. We consider M as in (2.1), but now
where we allow for infinite activity of the jumps. That is we allow the Poisson random
measure N to have an infinite mass in the tail, i.e. ` (|z| ≤ 1) = ∞. We approximate
the small jumps in the martingale M by a Brownian motion B which we scale with the
standard deviation of the small jumps. We obtain

Mε(t) =

t∫
0

b(s) dW (s) +

t∫
0

G(ε)γ̃(s) dB(s) +

t∫
0

∫
|z|>ε

γ(s, z) Ñ(ds, dz) .

From now on we enlarge the filtration F with the information of the Brownian motion
B and thus we consider H = G . We define the process Sε as follows

Sε(t) = Sε(0) +

t∫
0

Sε(s)a(s) ds+

t∫
0

Sε(s−)dMε(s) ,

where Sε(0) = S(0) . Notice that by scaling the Brownian motion with the standard
deviation of the small jumps, both processes S and Sε have the same variance for ε tending
to 0. The associated BSDEJ is given by
(5.1)

Vε(t) = h(Sε(T )) +

T∫
t

ϕ(s, Sε(s), Vε(s),Υε(s)) d〈Mε〉s −
T∫
t

Υε(s) dMε(s)− Lε(T ) + Lε(t) ,

where (Vε,Υε, Lε) ∈ H̃2
[0,T ] × H̃2

[0,T ] × L2
[0,T ] such that Υε is G-predictable and [Mε, Lε] is

a local P-martingale. From Carbone et al. [6], we know that the solution to (5.1) exists
and is unique. Notice that Lε(T ) is an GT -measurable square integrable random variable.
Then applying the representation theorem (see Kunita and Watanabe [13]) to the process
Lε leads to

Lε(t) =

t∫
0

Pε(s) dW (s) +

t∫
0

Rε(s) dB(s) +

t∫
0

∫
R

Qε(s, z) Ñ(ds, dz) ,(5.2)

where Pε, Rε ∈ H2
[0,T ] and Qε ∈ Ĥ2

[0,T ] (see Section 3 in Di Nunno et al. [8] for more details).
Let fε be a function that fulfills the following assumption

Assumption 5.1.
fε : [0, T ]× R3 × L̂2(R0,B(R0), `) × R→ R is such that for all ε ∈ [0, 1] ,

• fε(·, 0, 0, 0, 0, 0) ∈ H2
[0,T ],
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• fε satisfies a uniform Lipschitz condition in (·, u, v, w,Γ, ζ) .

We define the classical BSDEJ

(5.3)


−dUε(t) = fε(t, Sε(t), Uε(t), Yε(t), Zε(t, ·), ζε(t)) dt− Yε(t) dW (t)

−
∫
R

Zε(t, z) Ñ(dt, dz)− ζε(t) dB(t) ,

Uε(T ) = h(Sε(T )) .

Under Assumption 5.1 imposed on fε , we know from Tang and Li [24] that the solution

to (5.3) given by (Uε, Yε, Zε, ζε) ∈ S2
[0,T ] × H2

[0,T ] × Ĥ2
[0,T ] × H2

[0,T ] exists and is unique. In

the following proposition we study the relation of (5.1) to classical BSDEJ’s. We do not
present the proof since it follows similar arguments as the proof of Lemma 4.1 in Di Nunno
et al. [8].

Proposition 5.2. Assume that (2.9) holds. Let (Ṽε,Υε, Lε) be solution of the BSDE (5.1)
with Lε given by (5.2). Then (Ṽε,Υε, Lε) satisfies a BSDEJ of type (5.3), where

Yε(t) = Υε(t)b(t) + Pε(t) , ζε(t) = Υε(t)G(ε)γ̃(t) +Rε(t) ,

Zε(t, z) = Υε(t)γ(t, z)1{|z|>ε}(z) +Qε(t, z) ,

fε(t, u, v, w,Γ(·), ζ) = ϕ (t, u, v, φε (t, w,Γ(·), ζ))κ(t) ,(5.4)

with φε : [0, T ]× R× L̂2(R,B(R), `)× R→ R is such that

φε (t, w,Γ(·), ζ) =
1

κ(t)

b(t)w +G(ε)γ̃(t)ζ +

∫
R

Γ(z)γ(t, z)1{|z|>ε}(z) `(dz)

 .

The following theorem is an adaptation of Theorem 2.1 in Bouchard and Elie [4] to
the BSDEJ (5.3). The proof follows similar lines as in their paper where we first use a
Malliavin derivative with respect to the Brownian motion W to find an estimate for the
integrand of the Brownian motion W and then a Malliavin derivative with respect to the
Brownian motion B to find an estimate for the integrand of the Brownian motion B .

Theorem 5.3. Assume (2.9) holds, a, b, and γ̃ defined in (2.2) are Lipschitz, and the
functions h and fε in (5.3) are C1

b . Let (Uε, Yε, Zε, ζε) be the solution of (5.3). It holds

max
i<n

E

[
sup

t∈[ti,ti+1]

|Uε(t)− Uε(ti)|2
]

+ E

n−1∑
i=0

ti+1∫
ti

|Yε(s)− Yε(ti)|2 ds


+ E

n−1∑
i=0

ti+1∫
ti

|ζε(s)− ζε(ti)|2 ds

+ E

n−1∑
i=0

ti+1∫
ti

∫
R

|Zε(s, z)− Zε(ti, z)|2 `(dz) ds

 ≤ C

n
,

where C is a positive constant.
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Using the latter theorem, Proposition 5.2, and following similar steps as in Theorem 2.3,
we deduce the next result.

Theorem 5.4. Assume (2.9) holds, a, b, and γ̃ defined in (2.2) are Lipschitz, and the
functions h in (5.1) and fε in (5.4) are C1

b . Then for Vε and Υε in (5.1) it holds that

max
i<n

E

[
sup

t∈[ti,ti+1]

|Vε(t)− Vε(ti)|2
]

+ E

n−1∑
i=0

ti+1∫
ti

|Υε(s)−Υε(ti)|2 ds

 ≤ C

n
,

where C is a positive constant.

5.2. Approximating discrete-time model. The discrete-time version of the process Sε
is denoted by Ŝε and defined by

Ŝε(ti+1) := Ŝε(ti) + Ŝε(ti)a(ti) ∆ti + Ŝε(ti)∆ M̂ε(ti) i = 0, . . . , n− 1 , Ŝε(0) = S(0) ,

(5.5)

where

∆M̂ε(ti+1) :=

ti+1∫
ti

b(ti) dW (t) +

ti+1∫
ti

G(ε)γ̃(ti) dB(t) +

ti+1∫
ti

∫
|z|>ε

g(z)γ̃(ti) Ñ(dt, dz) ,

for a, b, and γ̃ as in (2.1)-(2.4).
A discrete-time version of the process Vε in (5.1) is given by

(5.6)


V̂ε(ti) = V̂ε(ti+1) + ϕ(ti, Ŝε(ti), V̂ε(ti), Υ̂ε(ti)) ∆〈M̂ε〉ti+1

− Υ̂ε(ti) ∆M̂ε(ti+1)

−∆L̂ε(ti+1) ,

V̂ε(T ) = h(Ŝε(T )) ,

where (Υ̂ε(ti)){0≤i≤n} is predictable and [M̂ε, L̂ε] is a local P-martingale. We proceed as in
Section 3 to obtain a backward scheme for (5.6) as follows

Υ̂ε(ti) =
n

Tκ(ti)
E
[
V̂ε(ti+1) ∆M̂ε(ti+1) | Gti

]
,

V̂ε(ti) = E[V̂ε(ti+1)|Gti ] + ∆ti+1ϕ
(
ti, Ŝε(ti), V̂ε(ti), Υ̂ε(ti)

)
κ(ti) ,

L̂ε(T ) = V̂ε(T )−
n−1∑
i=0

Υ̂ε(ti) ∆M̂ε(ti+1) +
n−1∑
i=0

ϕ
(
ti, Ŝε(ti), V̂ε(ti), Υ̂ε(ti)

)
κ(ti) ∆ti+1

−V̂ε(0) .

where κ is as in (2.8).
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5.3. Convergence of the approximating discrete-time model. We first study the
convergence of the approximating forward equation as we proceeded in Section 4. Then
we study the convergence of the backward scheme.
Convergence of the approximating forward equation. In the following theorem we state the
error of the discrete approximating process (5.5) to (2.4).

Theorem 5.5. Recall the dynamics of S and Ŝε as in (2.4) and (5.5) respectively. Assume
that the adapted processes a, b, and γ̃ are Lipschitz continuous in t. Then we have

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣S(t)− Ŝε(ti)
∣∣∣2] ≤ C

n
+ C̃G2(ε) ,

for positive constants C and C̃ independent of the number of steps.

Proof. We have

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣Ŝε(ti)− S(t)
∣∣∣2]

≤ max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣Ŝε(ti)− Sε(t)∣∣∣2]+ max
i<n

E

[
sup

t∈[ti,ti+1]

|Sε(ti)− S(t)|2
]
.

Thus the statement follows using an adaptation of Theorem 4.1 to the approximating
processes Sε and Ŝε and Proposition 3.3 in Benth et al. [3]. �

Convergence of the approximating backward scheme. Following similar steps as in Section
4, we define a continuous-time version of V̂ε as follows

V̂ε(t) := V̂ε(ti+1) +

ti+1∫
t

ϕ(ti, Ŝε(ti), V̂ε(ti), Υ̂ε(ti))κ(ti) ds−
ti+1∫
t

Υ1,ε(s) dM1,ε(s)

− L1,ε(ti+1) + L1,ε(t) ,

where Υ1,ε ∈ H̃2
[ti,ti+1]

is predictable, [M1,ε, L1,ε] is a local P-martingale, and

M1,ε(t) = M1,ε(ti) +

t∫
ti

b(ti) dW (s) +

t∫
ti

G(ε)γ̃(ti) dB(s) +

t∫
ti

∫
|z|>ε

γ(ti, z) Ñ(ds, dz) ,

with M1,ε(0) = 0 . Notice that both the existence of Υ1,ε and of L1,ε follow from the GKW
decomposition. The martingale representation of L1,ε yields

L1,ε(ti+1) = L1,ε(t) +

ti+1∫
t

P1,ε(s) dW (s) +

ti+1∫
t

R1,ε(s) dB(s) +

ti+1∫
t

∫
R

Q1,ε(s, z) Ñ(ds, dz) ,
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where P1,ε, R1,ε ∈ H2
[ti,ti+1]

and Q1,ε ∈ Ĥ2
[ti,ti+1]

. Using the latter equation we can rewrite V̂ε
as follows

V̂ε(t) := V̂ε(ti+1) +

ti+1∫
t

ϕ(ti, Ŝε(ti), V̂ε(ti), Υ̂ε(ti))κ(ti) ds−
ti+1∫
t

Y1,ε(ti, s) dW (s)

−
ti+1∫
t

∫
R

Z1,ε(ti, s, z) Ñ(ds, dz)−
ti+1∫
t

ζ1,ε(ti, s) dB(s) ,(5.7)

where

Y1,ε(ti, s) = Υ1,ε(s)b(ti) + P1,ε(s) , ζ1,ε(ti, s) = Υ1,ε(s)γ̃(ti)G(ε) +R1,ε(s) ,

Z1,ε(ti, s, z) = Υ1,ε(s)γ(ti, z)1{|z|>ε} +Q1,ε(s, z) .(5.8)

Using the fact that [M1,ε, L1,ε] is a local P-martingale, we deduce for ti ≤ s ≤ ti+1 ,
i = 0, ..., n− 1 ,

Υ1,ε(s) =
1

κ(ti)

b(ti)Y1,ε(ti, s) +G(ε)γ̃(ti)ζ1,ε(ti, s) +

∫
|z|>ε

Z1,ε(ti, s, z)γ(ti, z) `(dz)

 .

(5.9)

Thus following similar steps as in Section 4, we find

Υ̂ε(ti) =
n

T
E

 ti+1∫
ti

Υ1,ε(s) ds | Gti

 .(5.10)

Using the continuous-time version (5.7)-(5.8) of the process V̂ε and also the processes Υ1,ε

and Υ̂ε as defined respectively in (5.9) and (5.10), we can follow similar steps as in Section
4 to prove the convergence of the approximating discrete-time scheme to the approximating
continuous-time model. In the following theorem we state the obtained convergence rates.
These results are the analogons of those in Theorem 4.4, Theorem 4.5, and Theorem 4.6.
The proofs are hence skipped.

Theorem 5.6. Assume the conditions of Theorem 5.4 hold and ϕ(0, 0, 0, 0) = 0. Let the

triplets (Vε,Υε, Lε) and (V̂ε, Υ̂ε, L̂ε) be respectively the solutions of (5.1) and (5.6). It holds

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣Vε(t)− V̂ε(t)∣∣∣2]+
n−1∑
i=0

ti+1∫
ti

E
[
|Υε(s)− Υ̂ε(ti)|2

]
ds

+ max
i<n

E
[∣∣∣Lε(ti+1)− L̂ε(ti+1)

∣∣∣2] ≤ C

n
,

where C is a positive constant.
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Finally we present the convergence of the approximating discrete-time model to the
continuous-time model.

Theorem 5.7. Assume the conditions of Theorem 5.4 hold and ϕ(0, 0, 0, 0) = 0. Let the

triplets (V,Υ, L) and (V̂ε, Υ̂ε, L̂ε) be respectively the solutions of (2.5) and (5.6). It holds

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣V (t)− V̂ε(t)
∣∣∣2]+

n−1∑
i=0

ti+1∫
ti

E
[
|Υ(s)− Υ̂ε(ti)|2

]
ds

+ max
i<n

E
[∣∣∣L(ti+1)− L̂ε(ti+1)

∣∣∣2] ≤ C

n
+ C̃G2(ε),(5.11)

where G(ε) is as in (2.3) and C and C̃ are positive constants.

Proof. Recall the functions f and fε respectively in (2.10) and (5.4). Observe that

|f(t, u1, v1, w1,Γ1)− fε(t, u2, v2, w2,Γ2, ζ)|

≤ C
(
|u1 − u2|+ |v1 − v2|+ |w1 − w2|+ ‖Γ1 − Γ2‖+ |ζ|+ G̃(ε)‖Γ1‖

)
.

Thus using Theorem 5.6 in the present paper, Theorem 4.2 in Di Nunno et al. [8], the
Lipschitz property of h, and Proposition 3.3 in Benth et al. [3], we deduce

max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣V̂ε(t)− V (t)
∣∣∣2]

≤ 2 max
i<n

E

[
sup

t∈[ti,ti+1]

∣∣∣V̂ε(t)− Vε(t)∣∣∣2]+ 2 max
i<n

E

[
sup

t∈[ti,ti+1]

|Vε(t)− V (t)|2
]

≤ Ĉ

n
+ C̃G2(ε) .

The estimates for the second term and for the third term in the left hand side of equation
(5.11) follow using Theorem 4.4 and Theorem 4.5 in Di Nunno et al. [8],Theorem 5.6 in
the present paper, the Lipschitz property of h, and Proposition 3.3 in Benth et al. [3]. �

6. Conclusion

We studied in this paper time-discretisation of (2.4)-(2.5), where we specified M to be
driven by a Brownian motion and jumps. We considered jumps with finite activity in a first
step. Then we included jumps with infinite activity. Using the GKW decomposition, we
derived the “intermediate” time-continuous FBSDEJ (4.2). Exploiting this latter equation,
the results in Bouchard and Elie [4] and in Di Nunno et al. [8], we proved the convergence
of the time-discrete scheme to the time-continuous equation. Moreover, assuming a perfect
sampling of the conditional expectation, we showed that the L2-error is of the order of the
time step.

As far as further investigations are concerned, applications of our study to the problem
of hedging in finance are considered in the paper by Sun et al. [23]. In this latter paper,
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quadratic hedging strategies in incomplete markets and their related FBSDE of the form
(1.1) are considered. Then discretisation and simulation of these strategies are studied and
numerical examples are presented.
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maele was carried out with support of CAS - Centre of Advanced Study, at the Norwegian
Academy of Science and Letter, research program SEFE. Michèle Vanmaele acknowledges
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