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Abstract

We investigate the superposition of four different quantum states based on theq-oscillator. These quantum states are expressed by
means of Rogers-Szegö polynomials. We show that such a superposition has the properties of the quantum harmonic oscillator
whenq→ 1, and those of a compass state with the appearance of chessboard-type interference patterns whenq→ 0.
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PACS: 03.65.Yz, 03.65.Ud, 42.50.Ar, 02.30.Gp, 05.30.-d
2010 MSC: 81P40, 81Q80, 33D45, 81S30

1. Introduction

The Planck scale plays a central role in quantum mechanics
and quantum field theory. Following Heisenberg’s principle, it
was for a long time assumed that phase space structures for a
quantum system associated with sub-Planck scales (≪ ~) do
not matter. In a seminal paper [1], Zurek showed that this as-
sumption is false. He demonstrated that in the phase space of
non-local quantum superpositions (or Schrödinger cat states)
patchy structures on the sub-Planck scale appear. Moreover, he
emphasized the physical importance of these sub-Planck scale
phenomena for quantum decoherence.

It was known earlier that the generation of ‘cat states’ is pos-
sible by the superposition of two minimum-uncertainty Gaus-
sians [2]. In the phase space description of such a superposition,
interesting structures appear as a result of the interference be-
tween ‘dead’ and ‘alive’ states. This interference led to the idea
of the superposition of four minimum-uncertainty Gaussians as
‘compass states’, where more appealing fine structures appear
as a result of the interference between North, South, East and
West states [3, 4, 5, 6]. These compass states appear under var-
ious names such as orthogonal-even coherent states or pair-cat
coherent states. The compass state, as presented by Zurek [1],
is constructed as a superposition of four coherent states. Much
of Zurek’s attention goes to the study of chessboard-type in-
terference patterns on the sub-Planck scale in the phase space
description of this state. We also refer to other interesting
works [7, 8, 9, 10, 11, 12, 13], where different aspects of sub-
Planck structures were studied by a similar approach. Note that
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in all these investigations, the sub-Planck interference phenom-
ena appear only via the appropriate superposition ofcoherent
states.

All these studies, however, lack information about possi-
ble scenarios for the transition from usual quantum mechani-
cal structures to those with sub-Planck lengths. In [1], Zurek
notes that the evolution of almost any system will lead into a
cat (compass) state, i.e. after sufficient time its behaviour will
have coherence properties in phase space. Then naturally the
following question arises: is it possible to consider a scenario
when the transition from usual quantum mechanical scales toa
system with sub-Planck structures will happen? It is clear that
in such a scenario, the proposed model should generalize both
the ‘initial’ quantum harmonic oscillator and the ‘final’ com-
pass (or cat) states. It means that the model should reduce to
both the quantum harmonic oscillator and to a compass state
at special limits of some parameter. Considering that both the
quantum harmonic oscillator and the compass state wavefunc-
tions have analytical expressions, the proposed superposition
should also be some analytic function. Taking into account all
these requirements, we shall propose in this letter a model based
on theq-deformed quantum oscillator. Quite surprisingly, the
superposition of fourstationary states of the q-oscillator ex-
hibits, for certain values of the deformation parameterq, the
sub-Planck interference patterns. This is, to our knowledge, the
first time that such patterns appear in the phase space descrip-
tion without the explicit use of coherent states.

Our letter is structured as follows: in section 2, we provide
basic information about the stationary states of theq-deformed
oscillator, whose position wavefunctions are expressed bythe
Rogers-Szeg̈o polynomials and propose the superposition that
has the properties of the quantum harmonic oscillator when
q → 1, and those of a compass state with the appearance of
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chessboard-type interference patterns whenq → 0. Further
properties are discussed in section 3.

2. The q-oscillator and a superposition based on its station-
ary states

The stationary states of theq-deformed quantum harmonic
oscillator in thex-representation are given in terms of Rogers-
Szeg̈o polynomials [15, 16]:

ψ
qHO
n (x) = cn Hn(−e−2iλhx|q) e−λx2

, (1)

whereλ is given in terms of the massm and frequencyω: λ =
mω
2~ ; cn is a normalization constant:

cn =

(

2λ
π

)1/4

qn/2 (q; q)−1/2
n ; (2)

h is a deformation parameter related to a finite-difference
method1 with respect tox, and

q = e−λh2
, 0 < q < 1 (0< h < +∞). (3)

Furthermore, in (1)Hn is the Rogers-Szegö polynomial of
the following form [17]:

Hn (−x̃; q) =
n

∑

k=0

(q−n; q)k

(q; q)k
qnk−k2/2x̃k, (4)

where(a; q)n is theq-shifted factorial defined by [18, 19]

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1− aqk), (n ≥ 1). (5)

It is known that in the limith → 0, this wave function be-
comes the stationary state of the ordinary quantum mechanical
harmonic oscillator in thex-representation [15]:

(−i)nψ
qHO
n (x)

h→0→ (6)

ψHO
n (x) =

1
√

2nn!
√
π/2λ

Hn

(√
2λ x

)

· e−λx2
,

whereHn is the usual Hermite polynomial [19]:

Hn (x̃) = n!
[n/2]
∑

k=0

(−1)k (2x̃)n−2k

k! (n − k)!
,

and [n/2] denotes the largest integer smaller than or equal to
n/2.

The stationary states of theq-deformed quantum harmonic
oscillator can also be determined in thep-representation. This
yields an alternative model of theq-deformed oscillator. The

1Note that we use the standard notationh for the step length of the finite-
difference method. This shouldnot be confused with the Planck constant. Re-
ferring to Planck scales, we always use the reduced Planck constant~ in this
letter.

normalized wave functions can be expressed through Stieltjes-
Wigert polynomials [15, 16], or can be rewritten by means of
the Rogers-Szegö polynomials:

ψ̃
qHO
n (x) = cn Hn(−qn−1e−2λhx|q−1) e−λx2

. (7)

Again, the limit h → 0 yields the stationary states of the
ordinary quantum harmonic oscillator.

In [15] it was observed, from the Wigner function of theq-
deformed oscillator, that the behaviour of the wave function
ψ

qHO
n (x) when h → +∞ (or q → 0) is like a coherent state

(a Gaussian peak displaced towards (−∞,0) – i.e. towards the
West – in the (p, x)-plane). This observation leads us to the
following superposition proposal:

Ψz,n (x) =
Nq

2

[

einπψN
n (x) + e2inπψS

n (x)

+einπ/2ψE
n (x) + e3inπ/2ψW

n (x)
]

, (8)

with West, East, South and North components

ψW
n (x) = cne−λx2Hn(−e−2iλhx|q) = ψqHO

n (x),

ψE
n (x) = cne−λx2Hn(−e2iλhx|q) = ψqHO

n (x)|h→−h,

ψS
n (x) = cne−λx2Hn(−qn−1e−2λhx|q−1) = ψ̃qHO

n (x),

ψN
n (x) = cne−λx2Hn(−qn−1e2λhx|q−1) = ψ̃qHO

n (x)|h→−h. (9)

The phase factors in (8) are chosen (according to (6)) in such
a way that for the limitq → 1 (h → 0), all four components
in (8) become a normalized stationary state of the ordinary
quantum oscillator.

The normalization constant is found from the following over-
lap of states (8):

∞
∫

−∞

Ψ∗
z,m

(x) · Ψz,n(x)dx = δmn, (10)

and it has the following form:

Nq =

{

1+ qn

(q;q)n

n
∑

k=0

(q−n;q)k

(q;q)k

[

(−1)n(qk; q)n

+ei nπ
2 (qik; q)n + e−i nπ

2 (q−ik; q)n

]

qnk
}−1/2

. (11)

It is perhaps worth mentioning that for the four components
of the wavefunction (8) one has a Hamiltonian operator, thatcan
be expressed in terms ofq-generalized creation and annihilation
operators [15, 16]. These are finite-difference operators and
have the following form:

b±N = ±
i

√

1− q
e±λx2

(q±1e2λhxe∓h∂x − q
1
2 e∓

h
2∂x )e∓λx2

,

b±S = ∓
i

√

1− q
e∓λx2

(q±1e−2λhxe±h∂x − q
1
2 e±

h
2∂x )e±λx2

,

b±E = ∓
i

√

1− q
e∓λx2

(e±2iλhx − q
1
2 e

ih
2 ∂x )e±λx2

,

b±W = ±
i

√

1− q
e∓λx2

(e∓2iλhx − q
1
2 e−

ih
2 ∂x )e±λx2

.
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They satisfy theq-Heisenberg commutation relation
[

b−, b+
]

q =

b−b+ − qb+b− = 1 and in the limitq → 1, all these opera-
tors reduce to the well-known quantum harmonic oscillator cre-
ation and annihilation operators. The components in (8) satisfy
b+b−ψn(x) = [n]qψn(x), where [n]q is the basic number [18, 19]:

[n]q =
1− qn

1− q
,

which gives the usual numbern under the following limit:

lim
q→1

1− qn

1− q
= n.

Note that theq-oscillator, as described here, is an ordinary
quantum mechanical system (i.e. with the canonical commu-
tation relations). Theq-deformation originates only from the
form of the Hamiltonian operator [15, 16].

The main result of the paper is thatΨz,n becomes the sta-
tionary state of an ordinary quantum oscillator whenh → 0 (a
fact already obtained from the earlier limit analysis), andthat
it becomes a compass state with sub-Planck structures when
h→ +∞. In order to investigate this last statement, let us com-
pute and study the Wigner distribution function for (8) [20]:

Wz,n(p, x) =
1

2π~
(12)

×
∞

∫

−∞

Ψ∗
z,n

(x − x′

2
) Ψz,n(x +

x′

2
)e−

ipx′
~ dx′.

This function can be computed explicitly and consists of 16
components computed by the combination ofN, S , E andW
wavefunctions (8):

Wz,n(p, x) = WNN
n (p, x) + einπWNS

n (p, x)

+e−inπ/2WNE
n (p, x) + einπ/2WNW

n (p, x)

+e−inπWS N
n (p, x) +WS S

n (p, x) + e−3inπ/2WS E
n (p, x)

+e−inπ/2WS W
n (p, x) + einπ/2WEN

n (p, x)

+e3inπ/2WES
n (p, x) +WEE

n (p, x) + einπWEW
n (p, x)

+e−inπ/2WWN
n (p, x) + einπ/2WWS

n (p, x)

+e−inπWWE
n (p, x) +WWW

n (p, x). (13)

For the computation of these components, we refer to [15,
§ 4], and just present the final expressions here:

WNN
n (p, x) =

N2
q

4π~
(−1)nq−(

n
2)e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

× 3ϕ2

(

q−n, qne−ia, qneia∗

q,0
; q, q

)

= WS S
n (−p,−x),

WNS
n (p, x) =

N2
q

4π~
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

· eina

× 3ϕ2

(

q−n, qe−ia, eia∗

q,0
; q, q

)

= WS N
n (−p,−x),

WNE
n (p, x) =

N2
q

4π~
qn

(q; q)n
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

×
n

∑

k=0

(q−n; q)k

(q; q)k
(qikea; q)n(qneia∗ )k = WEN

n
∗
(p, x),

WNW
n (p, x) =

N2
q

4π~
qn

(q; q)n
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

×
n

∑

k=0

(q−n; q)k

(q; q)k
(q−ike−a; q)n(qneia∗ )k = WWN

n
∗
(p, x),

WS E
n (p, x) =

N2
q

4π~
qn

(q; q)n
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

×
n

∑

k=0

(q−n; q)k

(q; q)k
(q−ikea; q)n(qne−ia∗ )k = WES

n
∗
(p, x),

WS W
n (p, x) =

N2
q

4π~
qn

(q; q)n
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

×
n

∑

k=0

(q−n; q)k

(q; q)k
(qike−a; q)n(qne−ia∗ )k = WWS

n
∗
(p, x),

WEE
n (p, x) =

N2
q

4π~
(−)nq−(

n
2)e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

× 3ϕ2

(

q−n, qnea, qnea∗

q,0
; q, q

)

= WWW
n (−p,−x),

WEW
n (p, x) =

N2
q

4π~
e
− 2

~ω

(

mω2x2

2 +
p2

2m

)

· e−na

× 3ϕ2

(

q−n, qea, ea∗

q,0
; q, q

)

= WWE
n (−p,−x),

where,a = h
~

p + 2iλhx and3ϕ2(·) is the basic hypergeometric
series of the following form [18]:

3ϕ2

(

q−n, a1, a2

b1, b2
; q, z

)

=

n
∑

k=0

(q−n, a1, a2; q)k

(b1, b2, q; q)k
zk,

with (α, β, γ; q)k ≡ (α; q)k(β; q)k(γ; q)k.

3. Discussions

In figure 1 we show a density plot of the Wigner function of
the single photon state (n = 1) of (8). For simplicity, we use
m = ω = ~ = 1. One can see that for values ofh close to 0 (this
corresponds to the limit caseq → 1) the system under consid-
eration coincides with the non-relativistic quantum harmonic
oscillator. The first signs of sub-Planck structures can be seen
in the second plot of figure 1, which corresponds to the value
h = 1.3 (q = 0.43). By form and behaviour, it can be consid-
ered as a scaled-up ‘square’ from the chessboard-type pattern
that appears in the compass state superposition. The next plot,
which corresponds to the valueh = 2.1 (q = 0.11) contains
information about the possible evolution of the system to the
compass state, i.e. it can be considered as a primitive compass
state. As can be seen from the next two plots, by increasing the
value ofh we can observe the formation of four Gaussian-like
states directed to the north, south, east and west. As one can
see from last plot, for values ofh >> 0 (q → 0) they become
Gaussians and their peaks are located at a distance equal tonh

3
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Figure 1: A density plot of the Wigner function of the single photon state (n = 1) of (8), for values ofh = 0.0001, 1.3, 2.1, 2.5, 3.3, 5.0 andm = ω = ~ = 1. The
value ofq is found through the relationq = exp(−h2/2).
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(m = ω = ~ = 1) from the origin [15, (5.3)]. Note that in fig-
ure 1, since we work in the scale~ = 1, the patchy interference
structures that appear are obviously on a sub-Planck scale.

It can be verified that in the Wigner function (13), the
four termsWNN

n (p, x), WS S
n (p, x), WEE

n (p, x) and WWW
n (p, x)

are responsible for the four Gaussian peaks directed to North,
South, East and West respectively. The four sums of the
form e−inπ/2WNE

n (p, x)+ einπ/2WEN
n (p, x) (and similarly forNW,

S E and S W) are responsible for the interference patterns in
the four directionsNE, NW, S E and S W. Finally, the sum
einπWNS

n (p, x)+e−inπWS N
n (p, x)+einπWEW

n (p, x)+e−inπWWE
n (p, x)

creates the chessboard-type pattern in the middle. Analyzing
this sum in more detail, one would observe that it is a real func-

tion of p and x consisting of the Gaussiane
− 2

~ω

(

mω2x2

2 +
p2

2m

)

mul-
tiplied by complicated factors consisting of trigonometric and
hyperbolic functions. Both momentum and position appear to-
gether with the ratioh/~ as arguments of these trigonometric
and hyperbolic functions. As long ash ≪ ~, there are no signs
of any sub-Planck structures. These structures appear for sub-
Planck values of position and momentum whenh ≥ ~.

As already mentioned, the superposition of the four coher-
ent states is some generalization of so-called Schrödinger cat
states. Therefore, in our case it is also possible to generate cat
states from any pair ofN andS or E andW states. Also, the
Schr̈odinger equation corresponding to any component in (8) is
a finite-difference equation withh the step of the finite differ-
ence. Then one can take it equal to the Compton wavelength
λ̄ = ~/mc, which will allow one to explore the relation of the
interference terms with relativistic corrections [15, 21].
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