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Abstract. We introduce the so-called Clifford–Hermite polynomials in the framework of
Dunkl operators, based on the theory of Clifford analysis. Several properties of these poly-
nomials are obtained, such as a Rodrigues formula, a differential equation and an explicit
relation connecting them with the generalized Laguerre polynomials. A link is established
with the generalized Hermite polynomials related to the Dunkl operators (see [Rösler M.,
Comm. Math. Phys. 192 (1998), 519–542, q-alg/9703006]) as well as with the basis of the
weighted L2 space introduced by Dunkl.
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1 Introduction

Dunkl operators (see [12, 14]) are combinations of differential and difference operators, asso-
ciated to a finite reflection group G. One of the interesting aspects of these operators is that
they allow for the construction of a Dunkl Laplacian, which is a combination of the classical
Laplacian in Rm with some difference terms, such that the resulting operator is only invariant
under G and not under the whole orthogonal group. Moreover, they are directly related to
quantum integrable models of Calogero type (see e.g. [19]) and have as such received a lot of
attention in the physics literature.

In [20] generalizations of the classical Hermite polynomials to the framework of Dunkl ope-
rators were introduced and some of their properties proven, such as a differential equation,
a Mehler formula, etc. However, the precise form of these generalized Hermite polynomials is
not very clear. Only for special choices of the group G it is possible to obtain more detailed
information and to relate them to classical orthogonal polynomials.

It is the aim of the present paper to introduce generalized Hermite polynomials in a different
way. We draw inspiration from Clifford analysis (see a.o. [3, 11]), a function theory for the
Dirac operator, e.g. in Rm. Generalizations of the Hermite polynomials to this framework are
called Clifford–Hermite polynomials and were introduced by Sommen in [23]. Detailed accounts
can also be found in [11] and in [8] for the superspace case (this can be seen as the study of
differential operators invariant under the action of the group O(m) × Sp(2n)). In this paper,
we adapt the definition of the Clifford–Hermite polynomials to the case of Dunkl operators.
The advantage of these polynomials is that their relation with classical orthogonal polynomials
on the real line is established, leading to a much more concrete form for them. We are also
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able to prove that the Clifford–Hermite polynomials in the Dunkl framework coincide with the
Hermite polynomials introduced by Rösler in [20] if a suitable basis of the space of homogeneous
polynomials is chosen. We also point out that they have been introduced previously in a different
fashion by Dunkl as a basis for a weighted L2 space (see [13]) and that they have been studied
more thoroughly in [1].

Another interesting aspect is that the Clifford–Hermite polynomials always take the same
form, be it in the case of the classical Laplace operator with invariance O(m), the case of the
Dunkl Laplacian with invariance G ⊂ O(m) or the super Laplace operator with invariance
O(m) × Sp(2n). The only difference is a numerical parameter on which these polynomials
depend; this parameter can be interpreted as the dimension of the associated theory.

The paper is organized as follows. In Section 2 we first discuss how the Clifford–Hermite
polynomials arise in Clifford analysis. Then we give some background on Dunkl operators
and we give the definition of the generalized Hermite polynomials due to Rösler. In Section 3
we introduce the Clifford–Hermite polynomials related to the Dunkl Laplacian. Some basic
properties, such as a Rodrigues formula and a differential equation are proven. We obtain an
expression of the Clifford–Hermite polynomials in terms of the generalized Laguerre polynomials.
Then we show that the Clifford–Hermite polynomials and the generalized Hermite polynomials
generate the same eigenspace of the associated differential-difference operator and that they
coincide if a suitable basis of the space of homogeneous polynomials is chosen.

2 Preliminaries

2.1 Hermite polynomials in Clifford analysis

The basic operators in harmonic analysis in Rm are the Laplacian ∆ =
m∑

i=1
∂2

xi
, the Euler operator

E =
m∑

i=1
xi∂xi and the norm squared of a vector x ∈ Rm, |x|2 =

m∑
i=1

x2
i . It is easy to check that

the operators

E := 1
2 |x|

2, F := −1
2∆ and H := E +m/2

satisfy the defining relations of the Lie algebra sl2. These relations are given by[
H,E

]
= 2E,

[
H,F

]
= −2F,

[
E,F

]
= H.

It is now possible to introduce a refinement of harmonic analysis in Rm by introducing
Clifford algebra elements. If we denote by Cl0,m the orthogonal Clifford algebra of signature
(−1, . . . ,−1) generated by m generators ei satisfying

eiej + ejei = −2δij ,

we can introduce the Dirac operator in Rm as

∂x =
m∑

i=1

ei∂xi . (1)

We can furthermore identify a vector x in Rm with the Clifford algebra valued element x given by

x =
m∑

i=1

eixi.
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It is easy to check that ∂2
x = −∆ and x2 = −|x|2. Moreover, a short calculation shows that{

x, ∂x

}
= x∂x + ∂xx = −(2E +m).

Using these relations, it can be checked that the operators ∂x, x together with the previous three
operators E, F and H generate a Lie superalgebra isomorphic with osp(1|2). The even part of
this superalgebra being sl2, we have in fact obtained a refinement of harmonic analysis. The
function theory related to the Dirac operator (1) is called Clifford analysis (see a.o. [3, 11, 16]
and references therein).

A central notion of this function theory is that of a monogenic function. A C1-function f ,
defined in an open set Ω ⊂ Rm, with values in the Clifford algebra Cl0,m is called monogenic if
∂xf = 0 in Ω. The concept of monogenicity is a higher dimensional analogue of holomorphicity
in the complex plane and monogenic functions satisfy several properties similar to those of
holomorphic functions, such as Cauchy integral formulae, Taylor and Laurent expansions, . . . (for
a nice overview, see e.g. [11]).

As monogenic functions lie at the heart of Clifford analysis, it is important to have tools
available to construct such functions. Two of the most important techniques are Fueter’s theo-
rem (see a.o. [15, 22]) and Cauchy-Kowaleskaia (CK) or monogenic extension (see e.g. [3, 21]).
Fueter’s theorem allows to construct monogenic functions starting from a holomorphic function
in the complex plane. CK-extension on the other hand allows under certain conditions to con-
struct a monogenic function F in Rm+1, starting from an analytic function f(x) in Rm. This
extension is given by the formula

F (x, xm+1) =
∞∑

k=0

xk
m+1

k!
(em+1∂x)kf(x). (2)

It is an easy exercise to check that indeed (∂x +em+1∂xm+1)F = 0 and that the restriction to Rm

of F (x, xm+1) equals f(x).
Further, we denote by P = R[x1, . . . , xm] the space of polynomials on Rm. We have that

P = ⊕∞
k=0Pk with Pk the space of homogeneous polynomials of degree k. A spherical monogenic

of degree k is an element Mk ∈ Pk ⊗ Cl0,m satisfying ∂xMk = 0. Spherical monogenics play
a role in Clifford analysis, similar to that of spherical harmonics in harmonic analysis.

It is possible to introduce multi-variable orthogonal polynomials in Clifford analysis. A gene-
ralization of e.g. the Hermite polynomials was first introduced by Sommen in [23] using the
technique of CK or monogenic extension. Recall that the classical Hermite polynomials on the
real line are given by the generating function

e2tx−t2 =
∞∑

n=0

Hn(x)
tn

n!

which can be rewritten as

ez
2

=
∞∑

n=0

ex
2
Hn(ix)

tn

n!
, z = x+ it. (3)

In other words, the Hermite polynomials appear in a natural way when calculating the holomor-
phic extension of the function ex

2
in a special way. Similarly, in Clifford analysis generalized

Hermite polynomials appear when calculating the monogenic extension of the Gaussian

e−|x|
2

in Rm to Rm+1. In fact, it is even more general to consider the monogenic extension of

e−|x|
2
Mk (4)
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with Mk a spherical monogenic of a certain degree k. This is still in correspondence with
formula (3), as the one-dimensional Dirac operator only has the constants as polynomial null-
solutions.

Calculating the monogenic extension of (4) using formula (2) then leads to the following
definition (see [23]).

Definition 1. Let Mk be a spherical monogenic of degree k and t a positive integer. Then

CHm
t (Mk) = (D+)tMk,

with

D+ = −∂x + 2x

is a Clifford–Hermite polynomial of degree t associated with Mk.

Using this definition we see that the first few Clifford–Hermite polynomials have the following
explicit form:

CHm
0 (Mk) = Mk,

CHm
1 (Mk) = 2xMk,

CHm
2 (Mk) =

(
4x2 + 2(2k +m)

)
Mk,

CHm
3 (Mk) =

(
8x3 + 4(2k +m+ 2)x

)
Mk,

CHm
4 (Mk) =

(
16x4 + 16(2k +m+ 2)x2 + 4(2k +m+ 2)(2k +m)

)
Mk.

It is important to note that in order to calculate these examples, only the osp(1|2) action
is needed and contains all the information. This will allow us to transfer this definition to
the Dunkl case. For more properties of the Clifford–Hermite polynomials we refer the reader
to [23, 11, 8].

Furthermore, if we calculate the square of D+ we obtain

D2
+ = (−∂x + 2x)2 = −∆ + 4x2 − 2

{
∂x, x

}
= −∆− 4|x|2 + 4E + 2m.

As this operator is scalar, it makes sense to let it act on a spherical harmonic instead of on
a spherical monogenic. We will use a similar operator in Section 3 to define Clifford–Hermite
polynomials in the setting of Dunkl operators.

It is interesting to note that the Clifford–Hermite polynomials have several applications, e.g.
in the theory of wavelets (see [5, 4] and references therein).

Recently, also an extension of harmonic analysis and Clifford analysis to so-called superspaces
has been proposed (see a.o. [9, 8, 7]). Superspaces are spaces which are equipped not only with
a set of commuting variables, but also with a set of 2n anti-commuting variables. It is possible
to extend the sl2-relations to this case. This means deforming ∆, |x|2 and E to operators which
are invariant under O(m) × Sp(2n) (note that the full symmetry is in fact given by the Lie
superalgebra osp(m|2n), but that is not relevant for our discussion). The symplectic group has
a natural action on the Grassmann algebra generated by the anti-commuting variables. In this
framework also, the Clifford–Hermite polynomials appear in a natural way and are used to
describe harmonic oscillators and eigenfunctions of a generalized Fourier transform (see [8, 7]).
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2.2 Dunkl operators and Hermite polynomials

Denote by 〈·, ·〉 the standard Euclidean scalar product in Rm and by |x| = 〈x, x〉1/2 the associated
norm. For α ∈ Rm − {0}, the reflection rα in the hyperplane orthogonal to α is given by

rα(x) = x− 2
〈α, x〉
|α|2

α, x ∈ Rm.

A root system is a finite subset R ⊂ Rm of non-zero vectors such that, for every α ∈ R, the
associated reflection rα preserves R. We will assume that R is reduced, i.e. R ∩Rα = {±α} for
all α ∈ R. Each root system can be written as a disjoint union R = R+ ∪ (−R+), where R+

and −R+ are separated by a hyperplane through the origin. The subgroup G ⊂ O(m) generated
by the reflections {rα|α ∈ R} is called the finite reflection group associated with R. We will
also assume that R is normalized such that 〈α, α〉 = 2 for all α ∈ R. For more information on
finite reflection groups we refer the reader to [18].

A multiplicity function k on the root system R is a G-invariant function k : R → C, i.e.
k(α) = k(hα) for all h ∈ G. We will denote k(α) by kα.

Fixing a positive subsystem R+ of the root system R and a multiplicity function k, we
introduce the Dunkl operators Ti associated to R+ and k by (see [12, 14])

Tif(x) = ∂xif(x) +
∑

α∈R+

kααi
f(x)− f(rα(x))

〈α, x〉
, f ∈ C1(Rm).

An important property of the Dunkl operators is that they commute, i.e. TiTj = TjTi.

The Dunkl Laplacian is given by ∆k =
m∑

i=1
T 2

i , or more explicitly by

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

(
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rα(x))
〈α, x〉2

)
with ∆ the classical Laplacian and ∇ the gradient operator.

If we let ∆k act on |x|2 we find ∆k|x|2 = 2m + 4γ = 2µ, where γ =
∑

α∈R+

kα. We call µ

the Dunkl dimension, because most special functions related to ∆k behave as if one would be
working with the classical Laplace operator in a space with dimension µ. We also denote by Hk

the space of Dunkl-harmonics of degree k, i.e. Hk = Pk ∩ker ∆k. The space of Dunkl-harmonics
of degree k has the same dimension as the classical space of spherical harmonics of degree k and
a basis can e.g. be constructed using Maxwell’s representation (see [24]).

The operators

E := 1
2 |x|

2, F := −1
2∆k and H := E + µ/2

on P again satisfy the defining relations of the Lie algebra sl2 (see e.g. [17]). They are given by[
H,E

]
= 2E,

[
H,F

]
= −2F,

[
E,F

]
= H. (5)

As a consequence of these commutation relations, we have the following lemma, which can be
proven using induction.

Lemma 1. Let s ∈ N and Rk ∈ Pk, then

∆k(|x|2sRk) = 2s(2k + µ+ 2s− 2)|x|2s−2Rk + |x|2s∆kRk.

Proof. See [14], Lemma 5.1.9. �



6 H. De Bie

This lemma allows us to prove the so-called Fischer decomposition for the Dunkl Laplacian
(see e.g. [2, 14]).

Theorem 1. If µ 6∈ −2N, the space Pk decomposes as

Pk =
b k

2
c⊕

i=0

|x|2iHk−2i.

If we introduce the Dunkl version of the Laplace–Beltrami operator by ∆LB = |x|2∆k −
E(µ − 2 + E), we can construct projection operators on the different summands in the Fischer
decomposition. Indeed, as ∆LB commutes with |x|2 and as

∆LB|x|2iHk−2i = −(k − 2i)(µ− 2 + k − 2i)|x|2iHk−2i,

where the eigenvalue (k− 2i)(µ− 2 + k− 2i) is different for all values of i, we immediately have
that the operator

Pk
i =

b k
2c∏

l=0, l 6=i

∆LB + (k − 2l)(µ− 2 + k − 2l)
2(i− l)(2k − 2i− 2l + µ− 2)

(6)

satisfies

Pk
i (|x|2jHk−2j) = δij |x|2iHk−2i.

This provides an easier way to construct projection operators than the method presented in [14]
and [2].

Now let {φν , ν ∈ Zm
+} be a basis of P such that φν ∈ P|ν|. The Hermite polynomials related

to G are defined as follows by Rösler (see [20]).

Definition 2. The generalized Hermite polynomials {Hν , ν ∈ Zm
+} associated with the ba-

sis {φν} on Rm are given by

Hν(x) := 2|ν|e−∆k/4φν(x) = 2|ν|
b|ν|/2c∑
n=0

(−1)n

4nn!
∆n

kφν(x).

Moreover, the generalized Hermite functions on Rm are defined by

hν(x) := e−|x|
2/2Hν(x), ν ∈ Zm

+ .

In [20], for some specific reflection groups G, these Hermite polynomials are expressed in
terms of known special functions (such as the Jack polynomials). However, their general struc-
ture is not very clear from Definition 2.

In the sequel, we will also need the following theorem (see [20]).

Theorem 2.

(1) For n ∈ Z+ set Vn := {e−∆k/4p : p ∈ Pn}. Then P =
⊕

n∈Z+
Vn, and Vn is the eigenspace

of the operator ∆k − 2E on P corresponding to the eigenvalue −2n.

(2) For q ∈ Vn, the function f(x) := e−|x|
2/2q(x) satisfies(

∆k − |x|2
)
f = −(2n+ µ)f.
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The Dunkl transform D (see [13, 10]) associated with G and k ≥ 0 is defined by

D : L1(Rm, wk(x)dx) → C(Rm); Df(ξ) :=
∫

Rm

f(x)K(−iξ, x)wk(x)dx (ξ ∈ Rm),

where K(−iξ, x) is the so-called Dunkl kernel or generalized exponential and with wk(x) =∏
α∈R+

|〈α, x〉|2kα the weight function corresponding to G.

The following proposition is proven in [20] and gives the action of the Dunkl transform on
the generalized Hermite polynomials.

Proposition 1. The generalized Hermite functions {hν , ν ∈ Zm
+} are a basis of eigenfunctions

of the Dunkl transform D on L2(Rm, wk(x)dx), satisfying

D(hν) = 2µ/2c−1
k (−i)|ν|hν

with 2µ/2c−1
k = D(e−|x|

2/2)(0).

Note that it is possible to introduce a Dunkl version of the Dirac operator. Indeed, as the
Dunkl operators Ti are commutative, we can factorize the Dunkl Laplacian in the same way as
the usual Laplace operator. Defining the Dunkl Dirac operator Dk by

Dk =
m∑

i=1

eiTi

with the ei generators of the orthogonal Clifford algebra as in Section 2.1, we obtain that
D2

k = −∆k. For some basic results on the Dunkl Dirac operator, such as a Cauchy formula, we
refer the reader to [6].

For the sequel we need the anti-commutator of Dk and x. We obtain

{Dk, x} =
∑
i,j

{eiTi, ejxj} =
∑
i,j

(eiejTixj + ejeixjTi)

= −
∑

i

(Tixi + xiTi) +
∑
i6=j

eiej(Tixj − xjTi).

The first term
∑

i(Tixi + xiTi) equals 2E + µ (see e.g. [1], formulae (3.5) and (1.2)).
For the second term, we calculate the action of Tixj − xjTi on a function f , yielding

(Tixj − xjTi)f =
∑

α∈R+

kααi
xjf(x)− (rα(x))jf(rα(x))

〈α, x〉
− xj

∑
α∈R+

kααi
f(x)− f(rα(x))

〈α, x〉

=
∑

α∈R+

kααi
〈α, x〉αjf(rα(x))

〈α, x〉
=

∑
α∈R+

kααiαjf(rα(x)),

an expression symmetric in i and j. As eiej is anti-symmetric in i and j, the sum
∑
i6=j

eiej(Tixj−

xjTi) vanishes. We conclude that

{Dk, x} = −(2E + µ). (7)
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3 Clifford–Hermite polynomials related to the Dunkl Laplacian

In this section we construct the Clifford–Hermite polynomials related to the Dunkl Laplacian.
By analogy with Section 2.1, we first introduce the operator

D+ = −Dk + 2x.

Calculating the square of this operator yields

D2
+ = (−Dk + 2x)2 = −∆k + 4x2 − 2 {Dk, x}

= −∆k − 4|x|2 + 2(2E + µ),

where we have used formula (7).
We then define the Clifford–Hermite polynomials as follows.

Definition 3. Let Hk ∈ Hk be a Dunkl-harmonic of degree k and t a positive integer. Then

CHµ
2t(Hk) = (D+)2tHk

is a Clifford–Hermite polynomial of degree 2t associated with Hk.

Using Lemma 1 we immediately see that the precise form of the polynomials CHµ
2t(Hk)

depends only on the degree of the spherical harmonic Hk, so we can write

CHµ
2t(Hk) = φµ

2t,k(|x|
2)Hk.

The first few Clifford–Hermite polynomials have the following explicit form:

CHµ
0 (Hk) = Hk,

CHµ
2 (Hk) =

(
−4|x|2 + 2(2k + µ)

)
Hk,

CHµ
4 (Hk) =

(
16|x|4 − 16(2k + µ+ 2)|x|2 + 4(2k + µ+ 2)(2k + µ)

)
Hk.

Using the definition, we immediately obtain the following recursion relation

CHµ
2t(Hk) = (D+)2CHµ

2t−2(Hk). (8)

There also exists a Rodrigues formula for the Clifford–Hermite polynomials.

Theorem 3 (Rodrigues formula). The Clifford–Hermite polynomials take the form

CHµ
2t(Hk) = exp(|x|2/2)(−∆k − |x|2 + 2E + µ)t exp(−|x|2/2)Hk

= exp(|x|2)(−∆k)t exp(−|x|2)Hk.

Proof. This follows immediately from the following operator equalities:

− exp(|x|2)∆k exp(−|x|2) = (D+)2 = exp(|x|2/2)(−∆k − |x|2 + 2E + µ) exp(−|x|2/2),

which can e.g. be found in [1, pp. 254–255], combined with the definition of the Clifford–Hermite
polynomials. �

Now we prove that the Clifford–Hermite polynomials satisfy a partial differential equation.

Theorem 4 (Differential equation). CHµ
2t(Hk) is a solution of the following differential

equation:

[∆k − 2E]CHµ
2t(Hk) = −2(2t+ k)CHµ

2t(Hk).
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Proof. We can expand the Clifford–Hermite polynomials as follows:

CHµ
2t(Hk) =

t∑
i=0

a2t
2i|x|2iHk.

The recursion relation (8) leads to the following relation between the coefficients a2t
2i:

a2t
2i = −(2i+ 2)(2k + µ+ 2i)a2t−2

2i+2 + 2(2k + 4i+ µ)a2t−2
2i − 4a2t−2

2i−2. (9)

We need to prove that

(2i+ 2)(2k + µ+ 2i)a2t
2i+2 − 2(2i+ k)a2t

2i = −2(2t+ k)a2t
2i

or

−2(2t− 2i)a2t
2i = (2i+ 2)(2k + µ+ 2i)a2t

2i+2. (10)

It is easy to check that the theorem holds for t = 0. Substituting (9) in (10) and using induction
on t then completes the proof. �

Using the proof of the previous lemma (formulae (10) and (9)) it is now possible to obtain
the following closed form for the Clifford–Hermite polynomials.

Theorem 5. The Clifford–Hermite polynomials can be written in terms of the generalized La-
guerre polynomials as

φµ
2t,k(|x|

2) = 22tt!L
µ
2
+k−1

t (|x|2),

with

Lα
t (x) =

t∑
i=0

Γ(t+ α+ 1)
i!(t− i)!Γ(i+ α+ 1)

(−x)i.

Proof. Recall that

φµ
2t,k(|x|

2) =
t∑

i=0

a2t
2i|x|2i.

Using formula (10) we obtain

a2t
2i = − t− i+ 1

i(k + µ/2 + i− 1)
a2t

2i−2 = · · · = (−1)i t!
i!(t− i)!

Γ(k + µ/2)
Γ(k + µ/2 + i)

a2t
0 .

Using formula (9) and again (10) we also have

a2t
0 = 2(2k + µ)

[
a2t−2

0 − a2t−2
2

]
= 4(k + µ/2 + t− 1)a2t−2

0 = · · ·

= 22t Γ(k + µ/2 + t)
Γ(k + µ/2)

a0
0 = 22t Γ(k + µ/2 + t)

Γ(k + µ/2)
.

Combining both results and comparing with the definition of the generalized Laguerre polyno-
mials yields the result of the theorem. �
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Using Theorem 5 and multiplying the Clifford–Hermite polynomials with the Gaussian we
obtain the set of functions

L
µ
2
+k−1

t (|x|2)Hke
−|x|2/2, Hk ∈ Hk.

These functions have previously also been introduced by Dunkl in [13] as a basis of the weighted
L2 space L2(Rm, wk(x)dx). Recently they have been studied more thorougly in [1] to prove that
the sl2 relations (5) exponentiate to a unique unitary representation of the universal covering
group of SL(2,R).

Now we are able to state the connection between the Clifford–Hermite polynomials and the
generalized Hermite polynomials of Rösler. First we define the subspace Wn ⊂ P by

Wn =
⊕

k+2t=n

φµ
2t,k(|x|

2)Hk.

Note that, because of Theorem 1, we have that ⊕∞
n=0Wn = P. Also, each summand φµ

2t,k(|x|
2)Hk

is clearly invariant under the action of G.
We then have the following theorem.

Theorem 6. The spaces Wn and Vn, defined in Theorem 2, coincide.

Proof. Both Wn and Vn are maximal eigenspaces in P for the operator ∆k−2E, corresponding
with the eigenvalue −2n (see Theorems 2 and 4). Hence, we have that Wn = Vn. �

This theorem allows us to make the link between the Clifford–Hermite and the generalized
Hermite polynomials even more explicit. If we choose a basis {ψj} of Pn in such a way that
each basis element is of the form

|x|2iHn−2i, Hn−2i ∈ Hn−2i,

which is always possible due to Theorem 1, then the generalized Hermite polynomial

2ne−∆k/4
(
|x|2iHn−2i

)
will be proportional to the Clifford–Hermite polynomial

φµ
2i,k(|x|

2)Hn−2i.

Theorem 6 allows us also to transfer results from [20] to the Clifford–Hermite polynomials
and vice versa. As an example, using Proposition 1 we obtain that every function of the form

φµ
2t,k(|x|

2)Hke
−|x|2/2, Hk ∈ Hk

is an eigenfunction of the Dunkl transform with corresponding eigenvalue

2µ/2c−1
k (−i)2t+k,

a result which can also be found in [13, 1].

Remark 1. Note that each summand φµ
2t,k(|x|

2)Hk in the decomposition of Wn is an eigenspace
of the Laplace–Beltrami operator ∆LB with eigenvalue −k(µ − 2 + k). Hence it is possible to
construct projection operators on each summand in the decomposition of Wn in a similar way
as in formula (6).

Remark 2. Note that it is also possible to study generalized Gegenbauer polynomials with
respect to the Dunkl Laplacian. This can be done in a similar way as in [8] for the case of
O(m)× Sp(2n).
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