Symmetry breaking in covalent chiral bond H_{2}, according to accurate
 vibrational levels from Kratzer bond theory

G .V an H ooydonk, G hent U niversity, Faallty of Scienos, Krijgslaan 281 S30, B-9000 Belgium
Y.P. V arshni, University of 0 ttawa, D epartment of Physics, 0 ttawa, C anada

Abstract

Symmetry break ing in H_{2}, quantified with Kratzer bond theory, leads to vibrational levels with errors of only $0,00008 \%$. F or quanta, $0,0011 \%$ errors are smaller than with any ab initio Q M method. Chiral behavior of covalent bond H_{2} implies bonding between let- and right-handed atoms H_{R} and H_{L} or between hydrogen H and antihydrogen \underline{H}. This generic H_{2} asymmetry is given away by a H und-type M exican hat curve, invisible in QM.

I. Introduction

Symmetry breaking (SB) at low energy in neutral, stable, small quantum systems is important. H and H_{2}, the simplest but most abundant systems in the Universe [1], being prototypical for atomic and molecular spectroscopy [2], are therefore prototypical for SB at the eV-level. Unfortunately, bound state H QED [3] and H_{2} QM theories [4-6] are complex: QM relies on parameters and hundreds of terms in the wave function to get at observed H_{2} levels [7]. The lack of an analytical potential energy function (PEF) [8] for H_{2} in [4-6] is also unfortunate: this PEF (i) may disclose the long sought for simple low parameter universal function (UF) behind all shape-invariant potential energy curves (PECs) [2,8-11] and (ii) may, eventually, disclose SB in H_{2}. Hence, a simpler H_{2} bond theory is of interest for SB but only if it is more accurate than QM , which is problematic. In fact, QM [6] may be the most precise H_{2} theory, consistent with observed data [12], it overlooks SB. A recent Kratzer H_{2} bond theory [13] gave errors of $3,4 \mathrm{~cm}^{-1}$, comparable with those of $3,2 \mathrm{~cm}^{-1}$ in earlier QM [4]. Whereas their large errors vanish with non-adiabatic corrections [5-6], the 3,4 cm^{-1} errors in [13] vanish with an equally simple, parameter free chiral Kratzer theory, as we show here. Being more precise for H_{2} than any ab initio QM theory available, this theory for the chemical bond deals analytically with symmetry breaking in H_{2}, which is difficult, if not impossible with ab initio QM.

II. Dunham and Kratzer oscillators for (too) symmetrical \mathbf{H}_{2}

The standard 4 particle $\left(\mathrm{a}^{-}, \mathrm{A}^{+} ; \mathrm{b}^{-}, \mathrm{B}^{+}\right)$Hamiltonian \mathbf{H} or classical energy E for H_{2}
$\mathrm{E}=\mathbf{H}=1 / 2 p_{a}{ }^{2} / m_{a}+1 / 2 p_{b}{ }^{2} / m_{b}+1 / 2 p_{A}{ }^{2} / m_{A}+1 / 2 p_{B}{ }^{2} / m_{B}-e^{2} / r_{A A}-e^{2} / r_{b B}-e^{2} / r_{b A} e^{2} / r_{a B}+e^{2} / r_{a b}+e^{2} / r_{A B}(1 a)$
where all symbols have their usual meaning, led to vibrational energies [13]

$$
\begin{equation*}
\mathrm{E}_{\mathrm{vib}}=\Delta \mathbf{H}=\left(\mathrm{E}^{2}-2 \mathrm{E}_{H}\right) \approx \mathrm{f}^{2} \hbar^{2} /\left(\mathrm{mr}_{A B}{ }^{2}\right) \pm \mathrm{A}_{\mathrm{r}} \mathrm{e}^{2} / \mathrm{r}_{\mathrm{AB}}=\mathrm{B} / \mathrm{r}^{2} \pm \mathrm{A}_{\mathrm{r}} \mathrm{e}^{2} / \mathrm{r} \tag{1b}
\end{equation*}
$$

With the B-term positive, the A_{r}-term can only be negative for H_{2} to be stable. Scaling by $\Delta \mathbf{H}_{0}=-$ $1 / 2 A_{r} \mathrm{e}^{2} / \mathrm{r}_{0}$ gives Kratzer oscillator $\mathrm{K}\left(\mathrm{r}_{0} / \mathrm{r}\right)$ in variable $\mathrm{r}_{0} / \mathrm{r}$ [14]

$$
\begin{equation*}
\mathrm{K}\left(\mathrm{r}_{0} / \mathrm{r}\right)+1=\Delta \mathbf{H} /\left(-1 / 2 \mathrm{~A}_{\mathrm{r}} \mathrm{e}^{2} / \mathrm{r}_{0}\right)+1=\left(\mathrm{r}_{0} / \mathrm{r}\right)^{2}-2 \mathrm{r}_{0} / \mathrm{r}+1=\left(1-\mathrm{r}_{0} / \mathrm{r}\right)^{2} \tag{1c}
\end{equation*}
$$

analytically and conceptually different from JWKB and Dunham potentials in variable $r / r_{0}[15]$.
Dunham's $\mathrm{V}_{\mathrm{D}}\left(\mathrm{r} / \mathrm{r}_{0}\right)$ and Kratzer's $\mathrm{V}_{\mathrm{K}}\left(\mathrm{r}_{0} / \mathrm{r}\right)$ potentials are respectively

$$
\begin{align*}
& V_{D}(r)=a_{0}(1-d)^{2}=\left(1-r / r_{0}\right)^{2} \tag{1d}\\
& V_{K}(1 / r)=a_{0}(1-1 / d)^{2}=a_{0}\left(1-r_{0} / r\right)^{2}=\left(a_{0} / r^{2}\right) V_{D}(r) \tag{1e}
\end{align*}
$$

With $\mathrm{U}(\mathrm{r})=\Sigma \mathrm{a}_{\mathrm{n}}\left(\mathrm{r}-\mathrm{r}_{0}\right)^{\mathrm{n}}$, Dunham's oscillator (1d) relates to the JWKB-approximation. Kratzer's (1e) refers naturally to turning points $\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)\left(\mathrm{r}_{0} / \mathrm{r}_{-}-\mathrm{r}_{0} / \mathrm{r}_{+}\right)$in PECs, as disclosed by RKR-methods [16-18]. In [13], deviations from r_{0} in $\mathrm{r}=\mathrm{r}_{0}+\Delta$, $\mathrm{r} / \mathrm{r}_{0}=1+\Delta / \mathrm{r}_{0}=1+\delta$ are quantized with vibrational number v using $\delta=$ qv. Equally distributed in perfectly symmetric H_{2}, these deviations generate [13]

$$
\begin{align*}
& \delta=\mathrm{r} / \mathrm{r}_{0}-1=\Delta / \mathrm{r}_{0}=1 / 2 \Delta / \mathrm{r}_{0}-\left(-1 / 2 \Delta / \mathrm{r}_{0}\right)=1 / 2 \mathrm{qv}-(-1 / 2 \mathrm{qv})=\mathrm{qv} \tag{1f}\\
& \mathrm{q}=\omega_{\mathrm{e}} / \mathrm{a}_{0}=2 \omega_{\mathrm{c}} /\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)=\omega_{\mathrm{c}} /\left(1 / 2 \mathrm{k}_{\mathrm{c}} \mathrm{r}_{0}{ }^{2}\right)=\omega_{\mathrm{c}} /\left(1 / 2 \mathrm{D}_{\text {ion }}\right)=4410,172 / 78844,913=0,05591(1 \mathrm{~g})
\end{align*}
$$

where ω_{e} is the fundamental frequency, a_{0} the first order Dunham coefficient, $\mathrm{D}_{\text {ion }}=\mathrm{e}^{2} / \mathrm{r}_{0}$ the ionic bond energy and force constant $\mathrm{k}_{\mathrm{e}}=\mathrm{e}^{2} / \mathrm{r}_{0}{ }^{3}$ [13]. The advantage over [4-6] is that H_{2} characteristics in (1 g) all derive directly from atom mass m_{H} and its classical radius, defined as [13]

$$
\begin{equation*}
\mathrm{r}_{\mathrm{H}}=\left[3 \mathrm{~m}_{\mathrm{H}} /\left(4 \pi \Gamma_{\mathrm{H}}\right)\right]=0,7365 \cdot 10^{-8} \mathrm{~cm} \tag{1h}
\end{equation*}
$$

for density $\Gamma_{H}=1[13,19]$. Kratzer's potential (1c) in inverse $\mathrm{r}_{0} / \mathrm{r}$ or

$$
\begin{equation*}
\delta_{\mathrm{K}}=\mathrm{r}_{0} / \mathrm{r}_{1}-\mathrm{r}_{0} / \mathrm{r}_{2}=1 /\left(1-1 / 2 \Delta / \mathrm{r}_{0}\right)-1 /\left(1+1 / 2 \Delta / \mathrm{r}_{0}\right)=\mathrm{qv} /\left(1-1 / 4 \mathrm{q}^{2} \mathrm{v}^{2}\right) \tag{1i}
\end{equation*}
$$

led to level results for $\mathrm{H}_{2}, 30$ times more accurate than Dunham's (1f) [13].
Since the term in A_{r} in (1b) must be <0, Coulomb law for an ion pair with reduced mass $\mu_{H H}=1 / 2 \mathrm{~m}_{\mathrm{H}}$ gives $\mathrm{E}_{\mathrm{HH}}=1 / 2 \mu_{\mathrm{HH}} \mathrm{v}^{2}-\mathrm{e}^{2} / \mathrm{r}$. Its first derivative d / dr gives classical radial equilibrium condition

$$
\begin{equation*}
1 / 2 \mathrm{~m}_{\mathrm{H}} \mathrm{v}^{2} \mathrm{r}=\mathrm{e}^{2} \tag{1j}
\end{equation*}
$$

Using m_{H} and r_{H} in (1h), velocity v in (1j) leads to a H_{2} fundamental vibrational frequency [13]

$$
\begin{equation*}
\omega_{\mathrm{H}}=4410,172 \mathrm{~cm}^{-1} \tag{1k}
\end{equation*}
$$

close to the value $4401 \mathrm{~cm}^{-1}$ in $[7,20]$. Since $3,4 \mathrm{~cm}^{-1}$ errors for symmetric H_{2} do not comply with spectroscopic accuracy [13], we now consider a less symmetrical, chiral H_{2} model.

III. Symmetry-breaking from achiral to chiral H_{2}

Following the chemist's symmetry view $\mathrm{H}_{2}=2 \mathrm{H}=\mathrm{HH}$, bisecting H_{2} line segment $\mathrm{L}=\mathrm{r}_{0}$

$$
\begin{equation*}
\mathrm{H}_{2}=\left\{\mathrm{H}_{\mathrm{L}}, \mathrm{C}, \mathrm{H}_{\mathrm{R}}\right\} \sim \mathrm{L}(0,+1 / 2,+1) \text { or } \mathrm{L}^{\prime}(-1 / 2,0,+1 / 2) \tag{2a}
\end{equation*}
$$

implies a bond symmetry S_{0}, quantified by the ratio of equal parts (proportions), i.e. $S_{0}=1 / 2 / 1 / 2=1$, valid for any $r_{A B}>$ or $<r_{0}$. Deviations $\delta<0$ or $\delta>0$ from $1 / 2 r_{0}=r_{H}$ do not alter S_{0}, since

$$
\begin{equation*}
\mathrm{S}_{0}=1 / 2(1 \pm \delta) /[1 / 2(1 \pm \delta)]=1 / 2 / 1 / 2=1 \tag{2b}
\end{equation*}
$$

remains valid, however large $\delta . \mathrm{H}_{\mathrm{L}}$ at the left and H_{R} at the right of the center call for back-front or mirror-symmetry in H_{2}. The frame is left-handed for H_{L} and right-handed for H_{R} (or vice versa) but S_{0} typifies a too symmetrical, achiral unit H_{2}, although using $H_{L} H_{R} ; H_{R} H_{L}$ is superfluous, if $H_{L}=H_{R}$ [10]. As in QM, there is no need for less symmetrical or chiral H_{2}, for which $H_{L} \neq H_{R}$ and $\mathrm{S} \neq 1$. Theoretically, sign-conjugated deviations γ from achiral part $p_{a}=1 / 2$ always give generic unequal parts

$$
\begin{equation*}
\mathrm{p}_{\gamma}=\mathrm{p}_{\mathrm{R}, \mathrm{~L}}=\mathrm{p}_{ \pm}=1 / 2(1 \pm \gamma)=\mathrm{p}_{\mathrm{a}}(1 \pm \gamma)=\mathrm{p}_{\mathrm{L}}+\mathrm{p}_{\mathrm{R}} \tag{2c}
\end{equation*}
$$

The ratio of chiral parts $\mathrm{p}_{\mathrm{L}} / \mathrm{p}_{\mathrm{R}}$ returns an intrinsic, generic H_{2} left-right asymmetry (chirality ${ }^{\text {成 }}$)

[^0]\[

$$
\begin{equation*}
S_{C}=(1-\gamma) /(1+\gamma) \tag{2d}
\end{equation*}
$$

\]

equal to S_{0} only if asymmetry effect $\gamma=0$. Complementarity $p_{R}=1-p_{L}$ or $x_{2}=1-x_{1}$ gives

$$
\begin{equation*}
1=x_{1}+x_{2}=p_{\mathrm{L}}+p_{\mathrm{R}}=x_{1}+\left(1-x_{1}\right)=p_{\mathrm{L}}+\left(1-\mathrm{p}_{\mathrm{L}}\right)=\mathrm{p}_{\mathrm{R}}+\mathrm{p}_{\mathrm{L}}=1 / 2(1+\gamma)+1 / 2(1-\gamma)=1 \tag{2e}
\end{equation*}
$$

 $3 D H_{2}$ view (1h) use all intra- and inter-atomic separations $r_{A a}, r_{B b}, r_{A B}, r_{a b}, r_{A b}$ and $r_{B a}$ in (1a). For X_{2} bonds, reduced axial and radial parts are $|1 / 2|$ and $|1|$. At $r_{0}=2 r_{H}$, hypotenuse $h=r_{A b}=r_{B a}$ for axial H_{2} states $e^{2} / r_{A b}$ and $e^{2} / r_{B a}$ in (1a) in reduced form is equal to

$$
\begin{equation*}
\mathrm{h} /\left(2 \mathrm{r}_{\mathrm{H}}\right)=\mathrm{h}^{\prime}=\left(1 / 2 \mathrm{r}_{\mathrm{H}}\right) \sqrt{ }\left(4 \mathrm{r}_{\mathrm{H}}^{2}+\mathrm{r}_{\mathrm{H}}^{2}\right)=1 / 2 \sqrt{ } 5 \tag{2f}
\end{equation*}
$$

invariantly giving away the square root of 5 by definition. Upon bisection, its 2 equal parts

$$
\begin{equation*}
1 / 2 h^{\prime}=1 / 4 \sqrt{ } 5=0,55901699>1 / 2 \tag{2g}
\end{equation*}
$$

are larger than achiral value $1 / 2$ by exactly 0,059026994 or $1 / 0,059026994(\approx 17)$, commensurate with (1g). Classically, axial states (2f) use Euclidean division [19] (see Section V) and may well lead in a generic way to γ-effects related to $\sqrt{ } 5$, overlooked thus far in all H_{2} theories, including QM.

IV. Formal Kratzer bond theory for symmetry breaking in chiral \mathbf{H}_{2}

In theory, the effect of non-zero γ on the H_{2} structure is easily quantified with oscillators $(1 \mathrm{~g})-(1 \mathrm{~h})$.
(a) Linear Dunham variable $\delta(1 \mathrm{f})$ is γ-invariant: achiral and chiral cases are degenerate

$$
\begin{align*}
& \text { achiral: } q v=+1 / 2 q v+1 / 2 q v=1 / 2 q v-(-1 / 2 q v)=q v \tag{3a}\\
& \text { chiral: } q v=+1 / 2(1+\gamma) q v+1 / 2(1-\gamma) q v=1 / 2 q v+1 / 2 q v=1 / 2 q v-(-1 / 2 q v)=q v \tag{3b}
\end{align*}
$$

(b) With inverse Kratzer variable $\delta_{\mathrm{K}}(1 i)$, this γ-degeneracy is lifted since

$$
\begin{align*}
& \text { achiral: } 1 /(1-1 / 2 q v)-1 /(1+1 / 2 q v)=q v /\left(1-1 / 4 q^{2} v^{2}\right) \tag{3c}\\
& \text { chiral: } 1 /[1-1 / 2(1+\gamma) q v]-1 /[1+1 / 2(1-\gamma) q v]=q v /\left[1-\gamma q v-1 / 4\left(1-\gamma^{2}\right) q^{2} v^{2}\right] \tag{3d}
\end{align*}
$$

The formal effect of non-zero γ (symmetry breaking) in H_{2} in a Kratzer variable is

$$
\begin{equation*}
q v /\left[\left(1-1 / 4 q^{2} v^{2}\right)-\gamma q v+1 / 4 \gamma^{2} q^{2} v^{2}\right]=\left[q v /\left(1-1 / 4 q^{2} v^{2}\right)\right] /\left[1-\gamma q v(1-1 / 4 \gamma q v) /\left(1-1 / 4 q^{2} v^{2}\right)\right] \tag{3e}
\end{equation*}
$$

The ratio of achiral (3b) and (3c) gives harmonic mean $\left(1-1 / 4 q^{2} v^{2}\right)=(1+1 / 2 q v)(1-1 / 2 q v)$, the reason why Kratzer's oscillator outperforms Dunham's by a factor 30 [9,13]. Since harmony improves H_{2} results [13], other harmonies, including those with γ as in (3e), must be inventoried (see Section VI).

V. Euclidean H_{2} symmetry

Axial states in Section III are either parallel or anti-parallel. Parallel boat structure (4a)
(L)

(R) and
(L)

contains 2 rectangular triangles, one left-, the other right-handed (or vice versa). Since these cannot coincide without leaving the paper plane, chirality applies (mirror, perpendicular to the paper).

[^1]Chair structures are achiral, not chiral, unless L- and R-parts are unequal ($\mathrm{S} \neq 1$). Unlike (4a), the 2 triangles in a chair can be made to coincide by in-plane rotation. With different sizes, a perspective will displace them in front and back of the mirror in the paper plane.
In either case, Euclidean division of $A C=r_{A b}=r_{B a}=A B+A C=a+b=a(1+k)$ and number $k=b / a$, gives

$$
\begin{equation*}
\mathrm{AB} / \mathrm{BC}=\mathrm{BC} / \mathrm{AC} ; \mathrm{a} / \mathrm{b}=\mathrm{b} /(\mathrm{a}+\mathrm{b}) \text { or } 1 / \mathrm{k}=\mathrm{k} /(1+\mathrm{k}) \tag{4b}
\end{equation*}
$$

This brings in $\mathrm{k}^{2}-\mathrm{k}-1=0$ and solutions $\mathrm{k}=1 / 2(1 \pm \sqrt{5})$. Golden ratio $\mathrm{k}=\mathrm{b} /$ a obeys phi-numbers ${ }^{\mathrm{L}}$

$$
\begin{equation*}
\varphi=1 / \Phi=1 / 2(1+\sqrt{ } 5) \tag{4c}
\end{equation*}
$$

in line with (2f)-(2h) [19]. Strangely enough, (4c) is not the only solution possible.

Table 1 Phidias-Euclid and Dirac schemes for complementary chiral parts in H_{2} Phidias-Euclid Complementarity Dirac I Dirac $\mathrm{II}^{\text {a }}$

Left part $\mathrm{x}_{\text {L }}$	1	x	1/2(1- γ)	$1 / 2-\gamma$,
Right part x_{R}	k	1-x	$1 / 2(1+\gamma)$	$1 / 2+\gamma$,
Unit	$1+\mathrm{k}$	1	1	1
Ratio's	$1 / \mathrm{k}=\mathrm{k} /(1+\mathrm{k})$	$x /(1-x)=1-x$	$(1-\gamma) /(1+\gamma)=1 / 2(1+\gamma)$	$\left(1 / 2-\gamma^{\prime}\right) /\left(1 / 2+\gamma^{\prime}\right)=1 / 2+\gamma^{\prime}$
Quadratic	$\mathrm{k}^{2}-\mathrm{k}-1=0$	$\mathrm{x}^{2}-3 \mathrm{x}+1=0$	$\gamma^{2}+4 \gamma-1=0$	$\gamma^{2}+2 \gamma^{-1 / 4}=0$
Solutions ${ }^{\text {b }}$	$\mathrm{k}=\varphi=1 / 2(1 \pm \sqrt{5})$	$x=(3 / 2)(1 \pm \sqrt{5} / 3)$	$\gamma=-2(1 \pm 1 / 2 \sqrt{ } 5)$	$\gamma^{\prime}=-(1 \pm 1 / 2 \sqrt{ } 5)$
Values ${ }^{\text {c }}$	+1,618;-0,618	+2,618;+0,382	-4,236; +0,236	-0,118;+2,118
With inverse	$\mathrm{k}=1+1 / \mathrm{k}$	$x=3-1 / x$	$\gamma=1 / \gamma-4$	$\gamma^{\prime}=1 /(4 \gamma)-2$

a) Dirac I solution $1 / 2(1 \pm \gamma)$ transforms in $1 / 2 \pm 1 / 2 \gamma^{\prime}=1 / 2 \pm \gamma^{\prime}$, with handedness $\gamma=2 \gamma^{\prime}$ (see solutions for γ and γ^{\prime}).
b) Interchanging x_{R} and x_{L} gives different quadratics and solutions: $k^{2}+k-1, x^{2}+x-1=0$ and $\gamma^{2}-4 \gamma-1=0$. A permutation of parts leads to 4 rather than 2 solutions of type $\pm a(1 \pm b \sqrt{5})$, not given in the Table.
c) Only 3 decimals given, based on $\sqrt{5}=2,236067978 \ldots \approx 2,236$

Alternatives, all containing $\sqrt{ } 5=2 \varphi-1$, are in Table 1 . The 4 different scale factors for units are $1 / 2,1$, $3 / 2$ and 2 ; the 3 different coefficients for $\sqrt{5}$ are $1,1 / 3$ and $1 / 2$. The last 3 Columns apply for unit 1 ; Phidias-Euclid recipe in Column 2 treats one part as if it were the unit. Choices are difficult by relations between linear $\mathrm{k}, \mathrm{x}, \gamma$ and inverse $1 / \mathrm{k}, 1 / \mathrm{x}, 1 / \gamma$ (see last row). Table 1 does not single out a best solution. Rather than solving the wave equation for Hamiltonian (1a), we test all solutions possible by plugging them in (11)-(1m) and looking at the results obtained.

VI. Ionic chiral Kratzer bond theory for H_{2} with left-right asymmetric H_{L} and H_{R}

Of all possible combinations in Table 1, only parts x_{RI}, based on $\sqrt{5}$ as in (2f) and (4c) and equal to

$$
\begin{equation*}
\mathrm{x}_{\mathrm{RL}}=\mathrm{x}_{ \pm}=\mathrm{p}(1 \pm \gamma)=(2 / 3)(1 \pm 1 / 2 / \varphi)=(2 / 3)(1 \pm 1 / 2 \Phi) \tag{5a}
\end{equation*}
$$

invariantly related to Euclid's golden number

$$
\begin{equation*}
\Phi=1 / \varphi=2 /(1+\sqrt{ } 5)=1 / 2(\sqrt{ } 5-1)=0,618033989 \ldots \tag{5b}
\end{equation*}
$$

reproduce H_{2} levels within greater precision than QM (see below). Plugging (5a) in (3f) gives

$$
\begin{aligned}
& \delta_{\mathrm{K}}=\mathrm{r}_{0}\left(1 / \mathrm{r}_{\mathrm{a}}-1 / \mathrm{r}_{\mathrm{b}}\right)=1 /[1-(1+1 / 2 \Phi) \mathrm{qv} / 3]-1 /[1+(1-1 / 2 \Phi) \mathrm{qv} / 3] \\
& =(2 / 3) \mathrm{qv} /\left[1-\Phi \mathrm{qv} / 3-\mathrm{q}^{2} \mathrm{v}^{2}\left(1-1 / 4 \Phi^{2}\right) / 9\right]=(2 / 3) \mathrm{qv} /\left[1-0,206011 \mathrm{qv}-0,100501 \mathrm{q}^{2} \mathrm{v}^{2}\right](5 \mathrm{c})
\end{aligned}
$$

whereby internal H_{2} asymmetry is assessed with Euclid's recipe involving axial states.

[^2]As in [13], multiplying (5c) with 1,5 to correct for Euclidean factor $2 / 3$ in (5a) and (5c) returns

$$
\begin{equation*}
\delta^{\prime}=1,5 \delta_{\mathrm{K}}=\mathrm{qv} /\left(1-0,206011 \mathrm{qv}-0,100501 \mathrm{q}^{2} \mathrm{v}^{2}\right) \tag{5d}
\end{equation*}
$$

the parameter free chiral Kratzer variable, we use below for fitting H_{2} levels [7]. The chiral version v_{γ} of the conventional vibrational quantum number v is an effective quantum number

$$
\begin{equation*}
\mathrm{v}_{\mathrm{\gamma}}=\delta^{\prime \prime}=\delta^{\prime} / \mathrm{q}=1,5 \delta_{\mathrm{K}} / \mathrm{q}=\mathrm{v} /\left(1-0,206011 \mathrm{qv}-0,100501 \mathrm{q}^{2} \mathrm{v}^{2}\right) \tag{5e}
\end{equation*}
$$

close to $\mathrm{v} /[1-(\mathrm{qv} / 5)(1+1 / 2 \mathrm{qv})]$. Fitting with (5e) gives coefficients smaller by q, see (6b) below.

VII. Results

V II. $1 \mathrm{H}_{2}$ levels and bond energy D_{e}
Fitting the $14 \mathrm{H}_{2}$ levels [7] with (5d) using a quartic through the origin gives

$$
\begin{equation*}
E_{\delta}=-4864,602868 \delta^{4}+18697,327977 \delta^{3}-54425,081623 \delta^{2}+76533,833034 \delta \mathrm{~cm}^{-1} \tag{6a}
\end{equation*}
$$

with goodness of fit $\mathrm{R}^{2}=0,999999999997$. As in [13], the term in δ has the correct value, close to a_{0} in $(1 \mathrm{~g})$. A fit with (5e) leads to the more familiar quartic in v (similar to that in $(\mathrm{v}+1 / 2)$ [13])

$$
\begin{equation*}
\mathrm{E}_{\mathrm{v}}=-0,047618 \mathrm{v}_{\gamma}{ }^{4}+3,272089 \mathrm{v}_{\gamma}{ }^{3}-170,279673 \mathrm{v}_{\gamma}{ }^{2}+4280,902374 \mathrm{v}_{\gamma} \tag{6b}
\end{equation*}
$$

The main advantage of (6a) [13] is that the H_{2} bond energy D_{c} is given by the intercept, appearing when level energies are plotted versus complementary variable

$$
\begin{equation*}
\mathrm{x}=1-\mathrm{b} \delta=1-1,5.0,92762998107 \delta=1-1,391444972 \delta \tag{6c}
\end{equation*}
$$

for this makes the linear Coulomb term in δ in (6a) vanish exactly. The same factor 1,3914 also appears for the H spectrum as $\mathrm{r}_{\mathrm{H}} / \mathrm{r}_{\mathrm{B}}=1,3915 \ldots$, where r_{B} is the Bohr length, and close to $9 \varphi / 4$ [19].
For achiral $\mathrm{H}_{2}, \mathrm{D}_{\mathrm{e}}$ is $36146,44 \mathrm{~cm}^{-1}$ [13]. For chiral $\mathrm{H}_{2}(6 \mathrm{c}), \mathrm{D}_{\mathrm{e}}$ appears in a closed form quartic

$$
\begin{align*}
& E_{x}=-6569,703251 x^{4}+2855,209522 x^{3}-32395,749724 x^{2}+36110,244712 \mathrm{~cm}^{-1} \tag{6d}\\
& =-\left[6569,703252 x^{4}-2855,209522 x^{3}+310,220306 x^{2}\right]-32085,529418 \mathrm{x}^{2}+D_{e} \mathrm{~cm}^{-1} \tag{6e}
\end{align*}
$$

mathematically equivalent to and as precise as (6a). Fig. 1 illustrates the effect on levels of adjusted and complementary variables (6c). The quartic in (6d) exposes the asymmetrical chiral nature of H_{2}, although this contribution is relatively small. Fig. 2 shows the Hund-type H_{2} Mexican hat curve

$$
\begin{equation*}
\left(D_{e}-E_{x}\right)-32085,529418 x^{2}=6569,703252 x^{4}-2855,209522 x^{3}+310,220306 x^{2} \tag{6f}
\end{equation*}
$$

It exposes new critical points, due to left-right asymmetric, chiral H_{2}. Fig. 2 also shows the curve for terms in x^{3} and x^{4} in (6 d). Fig. 3 zooms in on these new critical points for H_{2}, given away by its vibrational spectrum but invisible in QM, and which typify symmetry breaking in H_{2}.

V II. 2 Precision of parameter free chiral Kratzer bond theory: omparison with ab initio Q M
Level errors of $0,015 \mathrm{~cm}^{-1}$ give a precision of $8,6.10^{-7} \%$, see Table 2 . With $0,05 \mathrm{~cm}^{-1}$ errors for Dabrowski data [7], the constraint of spectroscopic accuracy is met. $4^{\text {th }}$ and $6^{\text {th }}$ order fits with qv give errors of $7,15 \mathrm{~cm}^{-1}$ and $0,24 \mathrm{~cm}^{-1}, 475$ and 17 times larger than a $4^{\text {th }}$ order fit with (5 d).
Table 3 for $\Delta \mathrm{G}(\mathrm{v}+1 / 2)$ includes errors of all ab initio QM methods available [4-6,26-28]. Error ratios (\%) vary from 40,3 for 1975 QM [4] to 1,8 for 1995 QM with many correction terms [6]. Recent QM methods [27,28] are less precise (see last row).

VIII. Discussion

(i) The centuries old problem [2,9-11] with ionic and covalent energies $D_{i o n}$ and D_{e} is solved. With $(6 c)-(6 d), D_{e}$ is generated analytically by Coulomb's ionic bond energy $D_{i o n}$, securing the H_{2} bond is stable [13]. In an effortless way, with an ionic Coulomb view and with (6a)-(6c), D_{e} amounts to

$$
\begin{equation*}
D_{e}=36110,244711 \mathrm{~cm}^{-1} \tag{7a}
\end{equation*}
$$

Although slightly lower than $36118,3 \mathrm{~cm}^{-1}$ in [20], the deviation of $8 \mathrm{~cm}^{-1}$ is only $0,022 \%$. A similar difference appears between $\omega_{\mathrm{e}}=4410,1722 \mathrm{~cm}^{-1}$ in (1 g) and $4401,213 \mathrm{~cm}^{-1}$ in [20]. This result is also important for the distinction between $\mathrm{D}_{\text {ion }}$ and D_{e} as a scaling aid the molecular constants and in the search for the universal function (UF) [2,8-11] (see Introduction).
(ii) The unprecedented precision in this work derives from only one parameter free variable (5c) and only 3 terms in x^{2}, x^{3} and x^{4} in (5g). This analysis outperforms QM [4-6, 26-28], although all these QM methods are highly parameterized and use hundreds of terms in the H_{2} wave function.
(iii) Of all QM methods in Table 3, Wolniewicz's method [6] may be the best [12], it is still 2 times less precise than ours. Wolniewicz used relativistic, adiabatic and non-adiabatic corrections with ab initio QM in a BO-approximation [6]. These corrections, as well as QM itself, are all avoided in a simple chiral Kratzer approach, which, nevertheless, remains the more precise (see Table 3).
(iv) Errors for H_{2} quanta in Table 3 are of the same order as the standard H Lamb shift. Hence, our results call for new determination of H_{2} levels with a precision of $0,001 \mathrm{~cm}^{-1}$ or better. These may settle problems with $\mathrm{P}_{1 / 2}$ or $\mathrm{S}_{1 / 2}$ states for the H_{2} ground state and confirm the quality of our results. (v) Although simple first principles chiral Kratzer H_{2} bond theory uses only hydrogen mass m_{H} as input, new critical points emerge, invisible in and never exposed with ab initio QM (see Fig. 2-3).
(vi) Whereas the potential in the JWKB-approximation starts off with linear $\mathrm{k}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$ as in a Dunham expansion, it is evident from all Coulomb terms in (1a) and from RKR-procedures that a potential in inverse r or $1 / r$, say $e^{2} / r_{1}-e^{2} / r_{2}=\left(e^{2} / r_{0}\right)\left(r_{0} / r_{1}-r_{0} / r_{2}\right)$ seems superior.
(vii) A chiral H_{2} bond must be interpreted with CP [13]. Reminding (1c) and the A_{r}-term, constant A_{r} implies that H_{2} geometry is fixed. This excludes coordinate dependent P-effects but points to intra-atomic charge inversion C , for only a term in $\mathrm{A}_{\mathrm{r}}<0$ can make H_{2} stable [10,23]. Then, our results provide with signatures for natural antihydrogen- or $\underline{\mathrm{H}}$-states [10,23,29,30]. The common sense idea [10] that H_{2} consists of $\mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{R}}$ and $\mathrm{H}_{\mathrm{R}} \mathrm{H}_{\mathrm{L}}$ (or of $\mathrm{H} \underline{H}$ and $\underline{H} H$) is given away by Hund-type Mexican hat curves for H_{2} (Fig. 2-3). To make sense [29,30], also the H line spectrum must exhibit left-right asymmetry, point to H_{R} - and H_{L}-states or to H - and $\underline{\mathrm{H}}$-states through the intermediary of a similar H Mexican hat curve for natural atom H , which is exactly what we observed [29,30].
(vii) The rigor of ab initio QM, often contra productive and inconclusive, can be avoided with less rigorous density functional theory (DFT) [10], seemingly in line with density Γ in (1h). Coefficient 1,391.. in (5f) for H_{2} bond densities also appears identically for H atom density [19].
(viii) Using (5a) and (5b), generic asymmetry S_{C} in (2d) for H_{2}, is now related quantitatively to

$$
\begin{equation*}
S_{C} \sim(1-1 / 2 \Phi) /(1+1 / 2 \Phi)=0,690983 / 1,309017=0,527864 \tag{7b}
\end{equation*}
$$

as given away by the H_{2} vibrational spectrum [7], the backbone of the H_{2} PEC.

IX. Conclusion

Conceptually simple ionic Kratzer chiral bond theory is accurate for the prototypical and simplest quantum oscillator in nature: covalent bond H_{2}. A symmetrical, chiral H_{2} binds hydrogen (H-state) to antihydrogen (\underline{H}-state). Wave equation and wave functions are not needed, since the first principles of old quantum theory suffice [13]. This simpler theory proves more accurate than any ab initio QM H_{2} theory available. Unlike QM or QED, low energy symmetry breaking or left-right asymmetry in both H and H_{2}, eventually leads to even more accurate, analytical solutions than hitherto believed.

References

[1] J.S. Rigden, H ydrogen, The E ssential E lement, Cambridge, Harvard University Press, 2003
[2] G. Van Hooydonk, Phys. Rev. Lett. 100 (2008) 159301
[3] M.I. Eides, H. Grotch and V.A. Shelyuto, Phys. Rep. 342 (2001) 63, arxiv:hep-ph/0002158
[4] W. Kolos and L. Wolniewicz, J. Mol. Spectr. 54 (1975) 303
[5] J. Wolniewicz, J. Chem. Phys. 78 (1983) 6173
[6] J. Wolniewicz, J. Chem. Phys. 99 (1993) 1851; ibidem, 103 (1995) 1792
[7] I. Dabrowski, Can. J. Phys. 62 (1984) 1639
[8] Y.P. Varshni, Chem. Phys. 342 (2007) 297 and references therein
[9] G. Van Hooydonk, Eur. J. Inorg. Chem. Oct. (1998) 1617
[10] G. Van Hooydonk, Eur. Phys. J. D 32 (2005) 299
[11] G. Van Hooydonk, Z. Naturforsch. A 37 (1982) 710; ibidem, A 37 (1982) 971
[12] W. Ubachs, R. Buning, K.S.E. Eikema and E. Reinhold, J. Mol. Spectr. 241 (2007) 155
[13] G. Van Hooydonk, arxiv:0806.0224, Z. Naturforsch. 64A (2009), to be published
[14] A. Kratzer, Z. Phys. 3 (1920) 289; Ann. Phys. 67 (1922) 127
[15] J.L. Dunham, Phys. Rev. 41 (1932) 713
[16] R. Rydberg, Z. Phys. 73 (1931) 376; ibidem, 80 (1933) 514
[17] O. Klein, Z. Phys. 76 (1932) 226
[18] A.L.G. Rees, Proc. Phys. Soc. (London) 59 (1947) 998
[19] G. Van Hooydonk, arxiv:0902.1096
[20] K.P. Huber and G. Herzberg, M olecular Spectra, M olecular Structure: C onstants of D iatomic M olecules, vol.
IV, Van Nostrand-Reinhold, New York, 1979
[21] H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc. 114 (1992) 7843
[22] P.A.M. Dirac, The Principles of Q uantum M echanics, $4^{\text {th }}$ Ed., Oxford University Press, Oxford, 1982
[23] G. Van Hooydonk, J. Mol. Struct.-Theochem 22 (1985) 45
[24] W. Heitler and F. London, Z. Phys. 44 (1927) 455
[25] http://en.wikipedia.org/wiki/Golden ratio; E.W. Weinstein, G olden Ratio, http://mathworld.wolfram.com
[26] revised data by L. Wolniewicz, private communication, mentioned in [27]
[27] D. Kedziera et al., J. Chem. Phys. 125 (2006) 014318
[28] K. Pachucki and J. Komasa (2008), arxiv: 0811.4355v2
[29] G. Van Hooydonk, Phys. Rev. A 66 (2002) 044103; Acta Phys. Hung. A NS 19 (2004) 385
[30] G. Van Hooydonk, Spectrochim. Acta A 56 (2000) 2273; arxiv:0803.2445

Table 2. Experimental [7] and theoretical vibrational energy levels of $\mathrm{H}_{2}\left(\mathrm{~cm}^{-1}\right)$

v	$\mathrm{E}_{\mathrm{v}, 0}[7]$	This work	Difference
0	0,00	0,000	0,000
1	4161,14	4161,143	-0,003
2	8086,93	8086,943	-0,013
3	11782,36	11782,321	0,039
4	15250,31	15250,317	-0,007
5	18491,92	18491,917	0,003
6	21505,78	21505,799	-0,019
7	24287,91	24287,950	-0,040
8	26831,16	26831,128	0,032
9	29124,09	29124,081	0,009
10	31150,47	31150,442	0,028
11	32887,13	32887,155	-0,025
12	34302,20	34302,206	-0,006
13	35351,36	35351,358	0,002
14	35973,38	35973,377	0,003

Table 3. Experimental and theoretical quanta for H_{2} and differences ε (Exp-Theo in cm^{-1})

Quanta $\Delta \mathrm{G}(\mathrm{v}+1 / 2)$			\| Differences ${ }^{\text {a }}$ in in this work and in 7 QM studies from 1975 to 2008 as referenced							
v	Exp [7]	This work	\| This wo	1975[4]	1983[5]	1993[6]	1995[6]	>1995[26]	2006[27]	2008[28]
0	4161,14	4161,143	-0,002	-0,94	-0,04	-0,027	-0,027	-0,023	-0,024	-0,0241
1	3925,79	3925,800	-0,010	-0,88	-0,07	-0,052	-0,046	-0,047	-0,049	-0,0484
2	3695,43	3695,379	0,051	-0,74	0,01	0,029	0,041	0,038	0,035	0,0354
3	3467,95	3467,996	-0,046	-0,69	-0,07	-0,037	-0,026	-0,033	-0,036	-0,0357
4	3241,61	3241,600	0,010	-0,50	0,02	0,036	0,046	0,033	0,029	0,0301
5	3013,86	3013,881	-0,021	-0,48	-0,02	-0,001	0,009	-0,009	-0,012	-0,0116
6	2782,13	2782,152	-0,022	-0,38	-0,02	-0,024	-0,006	-0,031	-0,036	-0,0340
7	2543,25	2543,178	0,072	-0,20	0,08	0,043	0,075	0,041	0,037	0,0388
8	2292,93	2292,953	-0,023	-0,12	-0,03	-0,067	-0,020	-0,063	-0,067	-0,0644
9	2026,38	2026,361	0,019	0,15	-0,05	-0,030	0,029	-0,026	-0,028	-0,0258
10	1736,66	1736,712	-0,052	0,27	-0,15	-0,108	-0,047	-0,116	-0,118	-0,1156
11	1415,07	1415,052	0,018	0,69	0,08	-0,043	-0,006	-0,093	-0,092	-0,0906
12	1049,16	1049,152	0,008	1,11	-0,06	0,038	0,021	-0,090	-0,087	0,0444
13	622,02	622,019	0,001	1,70	0,30	0,164	0,064	-0,078	-0,068	-0,2021
Error in cm^{-1}			0,025	0,632	0,071	0,050	0,033	0,036	0,051	0,0572
Error in \%			0,0011	0,0424	0,0059	0,0037	0,0019	0,0033	0,0032	0,0044
Ratio \% with this work			1	40,3	5,6	3,5	1,8	3,1	3,0	4,2

[^3]

Fig. 1 Levels $\mathrm{E}_{\mathrm{v}, 0}$ versus Euclidean $\mathrm{b} \delta$ (left to right) and complementary $\mathrm{x}=1-\mathrm{b} \delta$ (right to left), with D_{e} as natural intercept

Fig. $2 \mathrm{H}_{2}$ Mexican hat curves: eqn (6f) (full line x) and $\mathrm{D}_{\mathrm{e}}\left(1-\mathrm{x}^{2}\right)-\mathrm{E}_{\mathrm{v}, 0}$ (dashed line o), both quartics extrapolated to the left

Fig. 3 Zooming in on the lower part of the H_{2} Mexican hat curve, eqn. (6f)

[^0]: ${ }^{1}$ Difference γ is a continuous chirality measure (CCM) [21].
 ${ }^{2}$ Left and right are formalized with Dirac's γ^{5} [22]. Dimensionless left and right properties P are $\mathrm{P}_{\mathrm{L}}=1 / 2 \mathrm{p}\left(1-\gamma_{\mathrm{L}}\right)$ and $P_{R}=1 / 2 \mathrm{P}\left(1+\gamma_{\mathrm{R}}\right)$, with $\left|\gamma_{\mathrm{L}}\right|=\left|\gamma_{\mathrm{R}}\right|$, implying that centers of chiral systems are not ex actly in the middle.

[^1]: ${ }^{3}$ In Heitler-London theory [24], permutation, achieved with two-center functions $\psi_{A B}$ and $\psi_{B A}$, leads to exchange forces, responsible for bonding, whereby chiral behavior is not considered.

[^2]: ${ }^{4}$ Phi-numbers appear in mathematics (Fibonacci series...), physics, chemistry, biology, architecture, arts [25].

[^3]: a) all decimals as given in published data

