Symmetry breaking in covalent chiral bond H₂, according to accurate vibrational levels from Kratzer bond theory

G. Van Hooydonk, Ghent University, Faculty of Sciences, Krijgslaan 281 S30, B-9000 Belgium Y.P. Varshni, University of Ottawa, Department of Physics, Ottawa, Canada

Abstract. Symmetry breaking in H_2 , quantified with Kratzer bond theory, leads to vibrational levels with errors of only 0,00008 %. For quanta, 0,0011 % errors are smaller than with any ab initio QM method. Chiral behavior of covalent bond H_2 implies bonding between left- and right-handed atoms H_R and H_L or between hydrogen H and antihydrogen H_2 . This generic H_2 asymmetry is given away by a Hund-type Mexican hat curve, invisible in QM.

I. Introduction

Symmetry breaking (SB) at low energy in neutral, stable, small quantum systems is important. H and H₂, the simplest but most abundant systems in the Universe [1], being prototypical for atomic and molecular spectroscopy [2], are therefore prototypical for SB at the eV-level. Unfortunately, bound state H QED [3] and H₂ QM theories [4-6] are complex: QM relies on parameters and hundreds of terms in the wave function to get at observed H₂ levels [7]. The lack of an analytical potential energy function (PEF)[8] for H₂ in [4-6] is also unfortunate: this PEF (i) may disclose the long sought for simple low parameter universal function (UF) behind all shape-invariant potential energy curves (PECs) [2,8-11] and (ii) may, eventually, disclose SB in H₂. Hence, a simpler H₂ bond theory is of interest for SB but only if it is more accurate than QM, which is problematic. In fact, QM [6] may be the most precise H₂ theory, consistent with observed data [12], it overlooks SB. A recent Kratzer H₂ bond theory [13] gave errors of 3,4 cm⁻¹, comparable with those of 3,2 cm⁻¹ in earlier QM [4]. Whereas their large errors vanish with non-adiabatic corrections [5-6], the 3,4 cm⁻¹ errors in [13] vanish with an equally simple, parameter free chiral Kratzer theory, as we show here. Being more precise for H₂ than any ab initio QM theory available, this theory for the chemical bond deals analytically with symmetry breaking in H₂, which is difficult, if not impossible with ab initio QM.

II. Dunham and Kratzer oscillators for (too) symmetrical H₂

The standard 4 particle (a,A+; b,B+) Hamiltonian ${\bf H}$ or classical energy E for H_2 E= ${\bf H}$ = $\frac{1}{2}p_a^2/m_a+\frac{1}{2}p_b^2/m_b+\frac{1}{2}p_A^2/m_A+\frac{1}{2}p_B^2/m_B-e^2/r_{aA}-e^2/r_{bB}-e^2/r_{bB}+e^2/r_{aB}+e^2/r_{ab}+e^2/r_{AB}$ (1a) where all symbols have their usual meaning, led to vibrational energies [13]

$$E_{vib} = \Delta \mathbf{H} = (E - 2E_H) \approx f^2 \hbar^2 / (mr_{AB}^2) \pm A_r e^2 / r_{AB} = B / r^2 \pm A_r e^2 / r$$
(1b)

With the B-term positive, the A_r -term can only be negative for H_2 to be stable. Scaling by $\Delta \mathbf{H_0} = \frac{1}{2} A_r e^2 / r_0$ gives Kratzer oscillator $K(\mathbf{r_0/r})$ in variable $\mathbf{r_0/r}$ [14]

$$K(\mathbf{r}_0/\mathbf{r}) + 1 = \Delta \mathbf{H}/(-\frac{1}{2}A_r e^2/\mathbf{r}_0) + 1 = (\mathbf{r}_0/\mathbf{r})^2 - 2\mathbf{r}_0/\mathbf{r} + 1 = (1 - \mathbf{r}_0/\mathbf{r})^2$$
(1c)

analytically and conceptually different from JWKB and Dunham potentials in variable r/r_0 [15]. Dunham's $V_D(r/r_0)$ and Kratzer's $V_K(r_0/r)$ potentials are respectively

$$V_{D}(r) = a_0(1-d)^2 = (1-r/r_0)^2$$
(1d)

$$V_{K}(1/r) = a_{0}(1-1/d)^{2} = a_{0}(1-r_{0}/r)^{2} = (a_{0}/r^{2})V_{D}(r)$$
(1e)

With $U(r)=\Sigma a_n(r-r_0)^n$, Dunham's oscillator (1d) relates to the JWKB-approximation. Kratzer's (1e) refers naturally to turning points $(e^2/r_0)(r_0/r_-r_0/r_+)$ in PECs, as disclosed by RKR-methods [16-18]. In [13], deviations from r_0 in $r=r_0+\Delta$, $r/r_0=1+\Delta/r_0=1+\delta$ are quantized with vibrational number v using $\delta=qv$. Equally distributed in perfectly symmetric H₂, these deviations generate [13]

$$\delta = r/r_0 - 1 = \Delta/r_0 = \frac{1}{2}\Delta/r_0 - (-\frac{1}{2}\Delta/r_0) = \frac{1}{2}qv - (-\frac{1}{2}qv) = qv$$
(1f)

$$q = \omega_e/a_0 = 2\omega_e/(e^2/r_0) = \omega_e/(\frac{1}{2}k_e r_0^2) = \omega_e/(\frac{1}{2}D_{ion}) = 4410,172/78844,913 = 0,05591(1g)$$

where ω_e is the fundamental frequency, a_0 the first order Dunham coefficient, $D_{ion}=e^2/r_0$ the ionic bond energy and force constant $k_e=e^2/r_0^3$ [13]. The advantage over [4-6] is that H_2 characteristics in (1g) all derive directly from atom mass m_H and its classical radius, defined as [13]

$$r_{\rm H} = [3m_{\rm H}/(4\pi\Gamma_{\rm H})] = 0.7365.10^{-8} \,\text{cm}$$
 (1h)

for density Γ_H =1 [13,19]. Kratzer's potential (1c) in inverse r_0/r or

$$\delta_{K} = r_{0}/r_{1} - r_{0}/r_{2} = 1/(1 - \frac{1}{2}\Delta/r_{0}) - 1/(1 + \frac{1}{2}\Delta/r_{0}) = qv/(1 - \frac{1}{4}q^{2}v^{2})$$
(1i)

led to level results for H₂, 30 times more accurate than Dunham's (1f) [13].

Since the term in A_r in (1b) must be <0, Coulomb law for an ion pair with reduced mass μ_{HH} = $^{1}/_{2}m_{H}$ gives E_{HH} = $^{1}/_{2}\mu_{HH}v^{2}$ - e^{2}/r . Its first derivative d/dr gives classical radial equilibrium condition

$$^{1}/_{2}m_{H}v^{2}r=e^{2}$$
 (1j)

Using m_H and r_H in (1h), velocity v in (1j) leads to a H₂ fundamental vibrational frequency [13]

$$\omega_{\rm H}$$
=4410,172 cm⁻¹ (1k)

close to the value 4401 cm⁻¹ in [7,20]. Since 3,4 cm⁻¹ errors for symmetric H₂ do not comply with spectroscopic accuracy [13], we now consider a less symmetrical, chiral H₂ model.

III. Symmetry-breaking from achiral to chiral H₂

Following the chemist's symmetry view H_2 =2H=HH, bisecting H_2 line segment L= r_0

$$H_2 = \{H_1, C, H_R\} \sim L(0, +\frac{1}{2}, +1) \text{ or } L'(-\frac{1}{2}, 0, +\frac{1}{2})$$
 (2a)

implies a bond symmetry S_0 , quantified by the ratio of equal parts (proportions), i.e. $S_0 = \frac{1}{2} / \frac{1}{2} = 1$, valid for any $r_{AB} > or < r_0$. Deviations $\delta < 0$ or $\delta > 0$ from $\frac{1}{2}r_0 = r_H$ do not alter S_0 , since

$$S_0 = \frac{1}{2}(1 \pm \delta) / \left[\frac{1}{2}(1 \pm \delta)\right] = \frac{1}{2} / \frac{1}{2} = 1$$
 (2b)

remains valid, however large δ . H_L at the left and H_R at the right of the center call for back-front or mirror-symmetry in H_2 . The frame is left-handed for H_L and right-handed for H_R (or vice versa) but S_0 typifies a too symmetrical, achiral unit H_2 , although using H_LH_R ; H_RH_L is superfluous, if $H_L=H_R$ [10]. As in QM, there is no need for less symmetrical or chiral H_2 , for which $H_L\neq H_R$ and $S\neq 1$.

Theoretically, sign-conjugated deviations γ from achiral part $p_a = \frac{1}{2}$ always give generic unequal parts

$$p_{y} = p_{R,L} = p_{\pm} = \frac{1}{2}(1 \pm \gamma) = p_{a}(1 \pm \gamma) = p_{L} + p_{R}$$
(2c)

The ratio of chiral parts p_L/p_R returns an intrinsic, generic H_2 left-right asymmetry (chirality^{1,2,3})

_

¹ Difference y is a *continuous chirality measure* (CCM) [21].

² Left and right are formalized with Dirac's γ^5 [22]. Dimensionless left and right properties P are $P_L = \frac{1}{2}p(1-\gamma_L)$ and $P_R = \frac{1}{2}p(1+\gamma_R)$, with $|\gamma_L| = |\gamma_R|$, implying that centers of chiral systems are not exactly in the middle.

$$S_C = (1-\gamma)/(1+\gamma) \tag{2d}$$

equal to S_0 only if asymmetry effect $\gamma=0$. Complementarity $p_R=1-p_L$ or $x_2=1-x_1$ gives

$$1 = x_1 + x_2 = p_L + p_R = x_1 + (1 - x_1) = p_L + (1 - p_L) = p_R + p_L = \frac{1}{2}(1 + \gamma) + \frac{1}{2}(1 - \gamma) = 1$$
 (2e)

For parts not equal to $\frac{1}{2}$, an axial view is needed. Parallel $\frac{1}{2}$, $\frac{1}{2}$ or anti-parallel $\frac{1}{2}$, $\frac{1}{2}$ states in 3D H₂ view (1h) use all intra- and inter-atomic separations r_{Aa} , r_{Bb} , r_{AB} , r_{Ab} , r_{Ab} and r_{Ba} in (1a). For X_2 bonds, reduced axial and radial parts are $\frac{1}{2}$ and $\frac{1}{2}$. At $r_0=2r_H$, hypotenuse $h=r_{Ab}=r_{Ba}$ for axial H₂ states $\frac{e^2}{r_{Ab}}$ and $\frac{e^2}{r_{Ba}}$ in (1a) in reduced form is equal to

$$h/(2r_H) = h' = (1/2r_H)\sqrt{(4r_H^2 + r_H^2)} = \frac{1}{2}\sqrt{5}$$
 (2f)

invariantly giving away the square root of 5 by definition. Upon bisection, its 2 equal parts

$$^{1}/_{2}h' = ^{1}/_{4}\sqrt{5} = 0,55901699 > ^{1}/_{2}$$
 (2g)

are larger than achiral value $\frac{1}{2}$ by exactly 0,059026994 or 1/0,059026994 (\approx 17), commensurate with (1g). Classically, axial states (2f) use Euclidean division [19] (see Section V) and may well lead in a generic way to γ -effects related to $\sqrt{5}$, overlooked thus far in all H₂ theories, including QM.

IV. Formal Kratzer bond theory for symmetry breaking in chiral H₂

In theory, the effect of non-zero γ on the H_2 structure is easily quantified with oscillators (1g)-(1h).

(a) Linear Dunham variable δ (1f) is γ -invariant: achiral and chiral cases are degenerate

achiral:
$$qv = +\frac{1}{2}qv + \frac{1}{2}qv = \frac{1}{2}qv - (-\frac{1}{2}qv) = qv$$
 (3a)

chiral:
$$qv = +\frac{1}{2}(1+y)qv + \frac{1}{2}(1-y)qv = \frac{1}{2}qv + \frac{1}{2}qv = \frac{1}{2}qv - (-\frac{1}{2}qv) = qv$$
 (3b)

(b) With inverse Kratzer variable δ_K (1i), this γ -degeneracy is lifted since

achiral:
$$1/(1-\frac{1}{2}qv) - 1/(1+\frac{1}{2}qv) = qv/(1-\frac{1}{4}q^2v^2)$$
 (3c)

chiral:
$$1/[1-\frac{1}{2}(1+\gamma)qv] - 1/[1+\frac{1}{2}(1-\gamma)qv] = qv/[1-\gamma qv-\frac{1}{4}(1-\gamma^2)q^2v^2]$$
 (3d)

The formal effect of non-zero γ (symmetry breaking) in H₂ in a Kratzer variable is

$$qv/[(1-\frac{1}{4}q^2v^2)-\gamma qv+\frac{1}{4}\gamma^2q^2v^2] = [qv/(1-\frac{1}{4}q^2v^2)]/[1-\gamma qv(1-\frac{1}{4}\gamma qv)/(1-\frac{1}{4}q^2v^2)]$$
(3e)

The ratio of achiral (3b) and (3c) gives harmonic mean $(1-\frac{1}{4}q^2v^2)=(1+\frac{1}{2}qv)(1-\frac{1}{2}qv)$, the reason why Kratzer's oscillator outperforms Dunham's by a factor 30 [9,13]. Since harmony improves H₂ results [13], other harmonies, including those with γ as in (3e), must be inventoried (see Section VI).

V. Euclidean H₂ symmetry

Axial states in Section III are either parallel or anti-parallel. Parallel boat structure (4a)

(L)
$$r_H$$
 (R) and (L) r_H (R) (4a)

contains 2 rectangular triangles, one left-, the other right-handed (or vice versa). Since these cannot coincide without leaving the paper plane, chirality applies (mirror, perpendicular to the paper).

³ In Heitler-London theory [24], permutation, achieved with two-center functions ψ_{AB} and ψ_{BA} , leads to exchange forces, responsible for bonding, whereby chiral behavior is not considered.

Chair structures are achiral, not chiral, unless L- and R-parts are unequal ($S \neq 1$). Unlike (4a), the 2 triangles in a chair can be made to coincide by in-plane rotation. With different sizes, a perspective will displace them in front and back of the mirror in the paper plane.

In either case, Euclidean division of $AC=r_{Ab}=r_{Ba}=AB+AC=a+b=a(1+k)$ and number k=b/a, gives

$$AB/BC=BC/AC$$
; $a/b=b/(a+b)$ or $1/k=k/(1+k)$ (4b)

This brings in k^2 -k-1=0 and solutions $k=\frac{1}{2}(1\pm\sqrt{5})$. Golden ratio k=b/a obeys phi-numbers⁴

$$\varphi = 1/\Phi = \frac{1}{2}(1+\sqrt{5}) \tag{4c}$$

in line with (2f)-(2h) [19]. Strangely enough, (4c) is not the only solution possible.

Table 1 Phidias	s-Euclid and Dira	c schemes for compler	mentary chiral parts in H ₂	
	Phidias-Euclid	Complementarity	Dirac I	Dirac II ^a
Left part x _L	1	X	¹ /2(1-γ)	¹ /2-γ'
Right part x _R	k	1-x	$^{1}/_{2}(1+\gamma)$	$^{1}/_{2}+\gamma'$
Unit	1+k	1	1	1
Ratio's	1/k=k/(1+k)	x/(1-x)=1-x	$(1-\gamma)/(1+\gamma)=\frac{1}{2}(1+\gamma)$	$(^{1}/_{2}-\gamma')/(^{1}/_{2}+\gamma')=^{1}/_{2}+\gamma$
Quadratic	$k^2-k-1=0$	$x^2-3x+1=0$	$\gamma^2 + 4\gamma - 1 = 0$	$\gamma^{2}+2\gamma^{-1}/4=0$
Solutions ^b	$k = \varphi = \frac{1}{2}(1 \pm \sqrt{5})$	$x=(3/2)(1\pm\sqrt{5}/3)$	$\dot{\gamma} = -2(1 \pm \frac{1}{2}\sqrt{5})$	$\dot{\gamma}' = -(1 \pm \frac{1}{2} \sqrt{5})$
Values ^c	+1,618;-0,618	+2,618;+0,382	-4,236; +0,236	-0,118;+2,118
With inverse	k=1+1/k	x=3-1/x	$\gamma=1/\gamma-4$	$\gamma' = 1/(4\gamma) - 2$

a) Dirac I solution $\frac{1}{2}(1\pm\gamma)$ transforms in $\frac{1}{2}\pm\frac{1}{2}\gamma=\frac{1}{2}\pm\gamma'$, with handedness $\gamma=2\gamma'$ (see solutions for γ and γ').

Alternatives, all containing $\sqrt{5}$ =2 φ -1, are in Table 1. The 4 different scale factors for units are $\frac{1}{2}$, 1, $\frac{3}{2}$ and 2; the 3 different coefficients for $\sqrt{5}$ are 1, $\frac{1}{3}$ and $\frac{1}{2}$. The last 3 Columns apply for unit 1; Phidias-Euclid recipe in Column 2 treats one part as if it were the unit. Choices are difficult by relations between linear k, x, γ and inverse $\frac{1}{k}$, $\frac{1}{x}$, $\frac{1}{\gamma}$ (see last row). Table 1 does not single out a **best** solution. Rather than solving the wave equation for Hamiltonian (1a), we test all solutions possible by plugging them in (1l)-(1m) and looking at the results obtained.

VI. Ionic chiral Kratzer bond theory for H₂ with left-right asymmetric H_L and H_R

Of all possible combinations in Table 1, only parts x_{RL} , based on $\sqrt{5}$ as in (2f) and (4c) and equal to

$$x_{RL} = x_{+} = p(1 \pm \gamma) = (2/3)(1 \pm \frac{1}{2}/\phi) = (2/3)(1 \pm \frac{1}{2}\phi)$$
 (5a)

invariantly related to Euclid's golden number

$$\Phi = 1/\varphi = 2/(1+\sqrt{5}) = \frac{1}{2}(\sqrt{5}-1) = 0,618033989...$$
 (5b)

reproduce H, levels within greater precision than QM (see below). Plugging (5a) in (3f) gives

$$\delta_{\rm K} = r_0 (1/r_2 - 1/r_{\rm b}) = 1/[1 - (1 + \frac{1}{2}\Phi)qv/3] - 1/[1 + (1 - \frac{1}{2}\Phi)qv/3]$$

=
$$(2/3)$$
qv/ $[1-\Phi$ qv/3-q²v²(1- $\frac{1}{4}\Phi$ ²)/9]= $(2/3)$ qv/ $[1-0,206011$ qv -0,100501q²v²] (5c)

whereby internal H₂ asymmetry is assessed with Euclid's recipe involving axial states.

b) Interchanging x_R and x_L gives different quadratics and solutions: k^2+k-1 , $x^2+x-1=0$ and $\gamma^2-4\gamma-1=0$. A permutation of parts leads to 4 rather than 2 solutions of type $\pm a(1\pm b\sqrt{5})$, not given in the Table.

c) Only 3 decimals given, based on $\sqrt{5}$ =2,236067978...≈2,236

⁴ Phi-numbers appear in mathematics (Fibonacci series...), physics, chemistry, biology, architecture, arts [25].

As in [13], multiplying (5c) with 1,5 to correct for Euclidean factor 2/3 in (5a) and (5c) returns

$$\delta' = 1,5\delta_{K} = qv/(1-0,206011qv-0,100501q^{2}v^{2})$$
(5d)

the parameter free chiral Kratzer variable, we use below for fitting H_2 levels [7]. The chiral version v_{γ} of the conventional vibrational quantum number v is an effective quantum number

$$v_y = \delta'' = \delta'/q = 1,5\delta_K/q = v/(1-0,206011qv-0,100501q^2v^2)$$
 (5e)

close to v/[1-(qv/5)(1+1/2qv)]. Fitting with (5e) gives coefficients smaller by q, see (6b) below.

VII. Results

VII.1 H_2 levels and bond energy D_e

Fitting the 14 H₂ levels [7] with (5d) using a quartic through the origin gives

$$E_{\delta} = -4864,6028688^4 + 18697,3279778^3 - 54425,0816238^2 + 76533,8330348 \text{ cm}^{-1}$$
 (6a)

with goodness of fit R^2 =0,999999999997. As in [13], the term in δ has the correct value, close to a_0 in (1g). A fit with (5e) leads to the more familiar quartic in v (similar to that in (v+½) [13])

$$E_{v} = -0.047618v_{v}^{4} + 3.272089v_{v}^{3} - 170.279673v_{v}^{2} + 4280.902374v_{v}$$
(6b)

The main advantage of (6a) [13] is that the H_2 bond energy D_e is given by the intercept, appearing when level energies are plotted versus complementary variable

$$x=1-b\delta=1-1,5.0,92762998107\delta=1-1,391444972\delta$$
 (6c)

for this makes the linear Coulomb term in δ in (6a) vanish exactly. The same factor 1,3914 also appears for the H spectrum as $r_H/r_B=1,3915...$, where r_B is the Bohr length, and close to $9\phi/4$ [19]. For achiral H₂, D_e is 36146,44 cm⁻¹ [13]. For chiral H₂ (6c), D_e appears in a closed form quartic

$$E_x = -6569,703251x^4 + 2855,209522x^3 - 32395,749724x^2 + 36110,244712 \text{ cm}^{-1}$$
 (6d)

=-
$$[6569,703252x^4-2855,209522x^3+310,220306x^2]-32085,529418x^2+D_e cm^{-1}$$
 (6e)

mathematically equivalent to and as precise as (6a). Fig. 1 illustrates the effect on levels of adjusted and complementary variables (6c). The quartic in (6d) exposes the asymmetrical chiral nature of H_2 , although this contribution is relatively small. Fig. 2 shows the Hund-type H_2 Mexican hat curve

$$(D_e-E_x)-32085,529418x^2 = 6569,703252x^4-2855,209522x^3+310,220306x^2$$
 (6f)

It exposes new critical points, due to left-right asymmetric, chiral H_2 . Fig. 2 also shows the curve for terms in x^3 and x^4 in (6d). Fig. 3 zooms in on these new critical points for H_2 , given away by its vibrational spectrum but invisible in QM, and which typify symmetry breaking in H_2 .

VII.2 Precision of parameter free chiral Kratzer bond theory: comparison with ab initio QM

Level errors of 0,015 cm⁻¹ give a precision of 8,6.10⁻⁷ %, see Table 2. With 0,05 cm⁻¹ errors for Dabrowski data [7], the constraint of spectroscopic accuracy is met. 4th and 6th order fits with qv give errors of 7,15 cm⁻¹ and 0,24 cm⁻¹, 475 and 17 times larger than a 4th order fit with (5d). Table 3 for $\Delta G(v+1/2)$ includes errors of all ab initio QM methods available [4-6,26-28]. Error ratios (%) vary from 40,3 for 1975 QM [4] to 1,8 for 1995 QM with many correction terms [6]. Recent QM methods [27,28] are less precise (see last row).

VIII. Discussion

(i) The centuries old problem [2, 9-11] with ionic and covalent energies D_{ion} and D_e is solved. With (6c)-(6d), D_e is generated analytically by Coulomb's ionic bond energy D_{ion} , securing the H_2 bond is stable [13]. In an effortless way, with an ionic Coulomb view and with (6a)-(6c), D_e amounts to

 $D_e = 36110,244711 \text{ cm}^{-1}$ (7a)

Although slightly lower than 36118,3 cm⁻¹ in [20], the deviation of 8 cm⁻¹ is only 0,022 %. A similar difference appears between ω_e =4410,1722 cm⁻¹ in (1g) and 4401,213 cm⁻¹ in [20]. This result is also important for the distinction between D_{ion} and D_e as a scaling aid the molecular constants and in the search for the universal function (UF) [2,8-11] (see Introduction).

- (ii) The unprecedented precision in this work derives from only one parameter free variable (5c) and only 3 terms in x^2 , x^3 and x^4 in (5g). This analysis outperforms QM [4-6, 26-28], although all these QM methods are highly parameterized and use hundreds of terms in the H_2 wave function.
- (iii) Of all QM methods in Table 3, Wolniewicz's method [6] may be the best [12], it is still 2 times less precise than ours. Wolniewicz used relativistic, adiabatic and non-adiabatic corrections with ab initio QM in a BO-approximation [6]. These corrections, as well as QM itself, are all avoided in a simple chiral Kratzer approach, which, nevertheless, remains the more precise (see Table 3).
- (iv) Errors for H_2 quanta in Table 3 are of the same order as the standard H Lamb shift. Hence, our results call for new determination of H_2 levels with a precision of 0,001 cm⁻¹ or better. These may settle problems with $P_{1/2}$ or $S_{1/2}$ states for the H_2 ground state and confirm the quality of our results.
- (v) Although simple first principles chiral Kratzer H₂ bond theory uses only hydrogen mass m_H as input, new critical points emerge, invisible in and never exposed with ab initio QM (see Fig. 2-3).
- (vi) Whereas the potential in the JWKB-approximation starts off with linear $k(r_1-r_2)$ as in a Dunham expansion, it is evident from all Coulomb terms in (1a) and from RKR-procedures that a potential in inverse r or 1/r, say $e^2/r_1-e^2/r_2=(e^2/r_0)(r_0/r_1-r_0/r_2)$ seems superior.
- (vii) A chiral H₂ bond must be interpreted with CP [13]. Reminding (1c) and the A_r-term, constant A_r implies that H₂ geometry is fixed. This excludes coordinate dependent P-effects but points to intra-atomic charge inversion C, for only a term in A_r<0 can make H₂ stable [10,23]. Then, our results provide with signatures for natural antihydrogen- or H-states [10,23,29,30]. The common sense idea [10] that H₂ consists of H_LH_R and H_RH_L (or of HH and HH) is given away by Hund-type Mexican hat curves for H₂ (Fig. 2-3). To make sense [29,30], also the H line spectrum must exhibit left-right asymmetry, point to H_R- and H_L-states or to H- and H-states through the intermediary of a similar H Mexican hat curve for natural atom H, which is exactly what we observed [29,30].
- (vii) The rigor of ab initio QM, often contra productive and inconclusive, can be avoided with less rigorous density functional theory (DFT) [10], seemingly in line with density Γ in (1h). Coefficient 1,391.. in (5f) for H₂ bond densities also appears identically for H atom density [19].
- (viii) Using (5a) and (5b), generic asymmetry S_C in (2d) for H₂, is now related quantitatively to

$$S_{C} \sim (1-\frac{1}{2}\Phi)/(1+\frac{1}{2}\Phi) = 0,690983/1,309017 = 0,527864$$
 (7b)

as given away by the H₂ vibrational spectrum [7], the backbone of the H₂ PEC.

IX. Conclusion

Conceptually simple ionic Kratzer chiral bond theory is accurate for the prototypical and simplest quantum oscillator in nature: covalent bond H₂. *Asymmetrical, chiral* H₂ binds hydrogen (H-state) to antihydrogen (H-state). Wave equation and wave functions are not needed, since the first principles of old quantum theory suffice [13]. This simpler theory proves more accurate than any ab initio QM H₂ theory available. Unlike QM or QED, low energy symmetry breaking or left-right asymmetry in both H and H₂, eventually leads to even more accurate, analytical solutions than hitherto believed.

References

- [1] J.S. Rigden, *Hydrogen, The Essential Element*, Cambridge, Harvard University Press, 2003
- [2] G. Van Hooydonk, Phys. Rev. Lett. 100 (2008) 159301
- [3] M.I. Eides, H. Grotch and V.A. Shelyuto, Phys. Rep. 342 (2001) 63, arxiv:hep-ph/0002158
- [4] W. Kolos and L. Wolniewicz, J. Mol. Spectr. 54 (1975) 303
- [5] J. Wolniewicz, J. Chem. Phys. 78 (1983) 6173
- [6] J. Wolniewicz, J. Chem. Phys. 99 (1993) 1851; ibidem, 103 (1995) 1792
- [7] I. Dabrowski, Can. J. Phys. **62** (1984) 1639
- [8] Y.P. Varshni, Chem. Phys. 342 (2007) 297 and references therein
- [9] G. Van Hooydonk, Eur. J. Inorg. Chem. Oct. (1998) 1617
- [10] G. Van Hooydonk, Eur. Phys. J. D 32 (2005) 299
- [11] G. Van Hooydonk, Z. Naturforsch. A 37 (1982) 710; ibidem, A 37 (1982) 971
- [12] W. Ubachs, R. Buning, K.S.E. Eikema and E. Reinhold, J. Mol. Spectr. 241 (2007) 155
- [13] G. Van Hooydonk, arxiv:0806.0224, Z. Naturforsch. 64A (2009), to be published
- [14] A. Kratzer, Z. Phys. 3 (1920) 289; Ann. Phys. 67 (1922) 127
- [15] J.L. Dunham, Phys. Rev. 41 (1932) 713
- [16] R. Rydberg, Z. Phys. 73 (1931) 376; ibidem, 80 (1933) 514
- [17] O. Klein, Z. Phys. **76** (1932) 226
- [18] A.L.G. Rees, Proc. Phys. Soc. (London) 59 (1947) 998
- [19] G. Van Hooydonk, arxiv:0902.1096
- [20] K.P. Huber and G. Herzberg, *Molecular Spectra, Molecular Structure: Constants of Diatomic Molecules*, vol. IV, Van Nostrand-Reinhold, New York, 1979
- [21] H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc. 114 (1992) 7843
- [22] P.A.M. Dirac, *The Principles of Quantum Mechanics*, 4th Ed., Oxford University Press, Oxford, 1982
- [23] G. Van Hooydonk, J. Mol. Struct.-Theochem 22 (1985) 45
- [24] W. Heitler and F. London, Z. Phys. 44 (1927) 455
- [25] http://en.wikipedia.org/wiki/Golden ratio; E.W. Weinstein, Golden Ratio, http://mathworld.wolfram.com
- [26] revised data by L. Wolniewicz, private communication, mentioned in [27]
- [27] D. Kedziera et al., J. Chem. Phys. 125 (2006) 014318
- [28] K. Pachucki and J. Komasa (2008), arxiv: 0811.4355v2
- [29] G. Van Hooydonk, Phys. Rev. A 66 (2002) 044103; Acta Phys. Hung. A NS 19 (2004) 385
- [30] G. Van Hooydonk, Spectrochim. Acta A 56 (2000) 2273; arxiv:0803.2445

Table 2. Experimental [7] and theoretical vibrational energy levels of H₂ (cm⁻¹)

v	$E_{v,0}[7]$	This work	Difference
0	0,00	0,000	0,000
1	4161,14	4161,143	-0,003
2	8086,93	8086,943	-0,013
3	11782,36	11782,321	0,039
4	15250,31	15250,317	-0,007
5	18491,92	18491,917	0,003
6	21505,78	21505,799	-0,019
7	24287,91	24287,950	-0,040
8	26831,16	26831,128	0,032
9	29124,09	29124,081	0,009
10	31150,47	31150,442	0,028
11	32887,13	32887,155	-0,025
12	34302,20	34302,206	-0,006
13	35351,36	35351,358	0,002
14	35973,38	35973,377	0,003

average difference 0,0151 cm⁻¹ (8,6.10⁻⁷ %)

Table 3. Experimental and theoretical quanta for H_2 and differences ϵ (Exp-Theo in cm⁻¹)

	Quanta ΔG(v+½)		Differences ^{a)} in this work and in 7 QM studies from 1975 to 2008 as referenced							
v	Exp [7]	This work	This wor	k 1975[4]	1983[5]	1993[6]	1995[6]	>1995[26]	2006[27]	2008[28]
0	4161,14	4161,143	-0,002	-0,94	-0,04	-0,027	-0,027	-0,023	-0,024	-0,0241
1	3925,79	3925,800	-0,010	-0,88	-0,07	-0,052	-0,046	-0,047	-0,049	-0,0484
2	3695,43	3695,379	0,051	-0,74	0,01	0,029	0,041	0,038	0,035	0,0354
3	3467,95	3467,996	-0,046	-0,69	-0,07	-0,037	-0,026	-0,033	-0,036	-0,0357
4	3241,61	3241,600	0,010	-0,50	0,02	0,036	0,046	0,033	0,029	0,0301
5	3013,86	3013,881	-0,021	-0,48	-0,02	-0,001	0,009	-0,009	-0,012	-0,0116
6	2782,13	2782,152	-0,022	-0,38	-0,02	-0,024	-0,006	-0,031	-0,036	-0,0340
7	2543,25	2543,178	0,072	-0,20	0,08	0,043	0,075	0,041	0,037	0,0388
8	2292,93	2292,953	-0,023	-0,12	-0,03	-0,067	-0,020	-0,063	-0,067	-0,0644
9	2026,38	2026,361	0,019	0,15	-0,05	-0,030	0,029	-0,026	-0,028	-0,0258
10	1736,66	1736,712	-0,052	0,27	-0,15	-0,108	-0,047	-0,116	-0,118	-0,1156
11	1415,07	1415,052	0,018	0,69	0,08	-0,043	-0,006	-0,093	-0,092	-0,0906
12	1049,16	1049,152	0,008	1,11	-0,06	0,038	0,021	-0,090	-0,087	0,0444
13	622,02	622,019	0,001	1,70	0,30	0,164	0,064	-0,078	-0,068	-0,2021
Error in cm ⁻¹		0,025	0,632	0,071	0,050	0,033	0,036	0,051	0,0572	
Error in %			0,0011	0,0424	0,0059	0,0037	0,0019	0,0033	0,0032	0,0044
Ratio % with this work		1	40,3	5,6	3,5	1,8	3,1	3, 0	4,2	

a) all decimals as given in published data

Fig. 1 Levels $E_{v,0}$ versus Euclidean b δ (left to right) and complementary x=1-b δ (right to left), with D_e as natural intercept

Fig. 2 H_2 Mexican hat curves: eqn (6f) (full line x) and $D_e(1-x^2)$ - $E_{v,0}$ (dashed line o), both quartics extrapolated to the left

Fig. 3 Zooming in on the lower part of the H₂ Mexican hat curve, eqn. (6f)