
PHYSICAL REVIEW A 83, 033832 (2011)

Switching and intrinsic position bistability of soliton beams in chiral nematic liquid crystals
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We study theoretically and experimentally the propagation of light beams in chiral nematic liquid crystals.
Despite the rather complex refractive index distribution of these crystals, their reorientational nonlinearity
can compensate for diffraction, leading to robust solitonlike beams propagating along helical trajectories. We
demonstrate that, due to a symmetry-breaking instability of the liquid crystal structure, these beams undergo abrupt
switching and bistability, features that are of potential interest for applications to all-optical signal processing.
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I. INTRODUCTION

Spatial optical solitons in nematic liquid crystals (LCs)
have attracted much interest because they constitute an ideal
testbed for the study of nonlinear optical phenomena and they
have a strong application potential in smart optical intercon-
nections. In most experimental studies it is the reorientational
nonlinearity of LC that is exploited to obtain the self-focusing
effect necessary for their generation [1]. The orientation
of the average direction of the molecules (the director) is
changed by the optical electric field of the light beam. A wide
number of configurations have been considered in order to
demonstrate spatial solitons (or nematicons [2]) in nematic
LCs, initially in homeotropically aligned LC [3] and later in
planar-aligned LC cells with bias voltage [4] or without bias
voltage [5]. Since liquid crystal is a versatile material that can
be controlled in different ways, with applied voltage, magnetic
fields, or self-action of the light, different publications are
devoted to the control or switching of these soliton beams [6].
Recently soliton generation was shown in chiral nematic liquid
crystals [7]. These crystals exhibit a gradual twisting of the
director with a pitch that can be controlled by changing the
concentration of the chiral dopant. The pitch must be chosen in
such a way that the twisting of the director is compatible with
the direction of the alignment at the top and bottom substrates.
If the alignment direction at the top and bottom is the same,
the total twist angle can only be a multiple of π .

Optical bistability is an intriguing phenomenon that can
appear, for example, when optical nonlinearity is present in the
system. In liquid crystals, optical bistability was demonstrated
in different configurations ranging from a standard LC cell [8]
to a frustrated-total-reflection filter [9] to a nonlinear optical
interferometer [10]. Bistable behavior of soliton generation
was discussed for the first time in [11] and in liquid crystals
it was reported theoretically for configurations with a bias
voltage [12]. In most publications, the optical bistability lies
in a distinct behavior of the nonlinear system versus input
power. In this work, we observe a sharp switching in soliton
propagation in the sense that the optical beam propagates
completely in either the upper half or the lower half of the
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cell. In other words, we can define two distinct states (i.e.,
propagation in the upper half or lower half of the cell), and
the switching between the two states occurs for very small
displacements of the beam position in the cell. In addition, we
demonstrate that the transition from one state to the other when
the cell is displaced occurs at different positions, depending
on the sense of the displacement. This means that hysteresis
is occurring. In the strict sense of the word, we can consider
this as bistability, because at a certain position near the middle
of the cell both states can exist with exactly the same system
parameters. It is important to note that bistability occurs in
our system in the absence of any optical feedback, contrary to
standard optical bistable devices that are based on cavities or
other multiple-optical-path systems. The necessary feedback
is provided by the light-induced strain of the molecular chains
submitted to fixed boundary conditions. It is thus the nonlinear
medium itself that provides the feedback that is necessary for
the bistable behavior of the beam position. In other words, we
deal here with a phenomenon of intrinsic position bistability.

We have considered the 2π -twist configuration sketched
in Fig. 1. The director n̄ is fixed at the top and bottom
substrates to be along the propagation direction z and is
uniformly twisted over the thickness of the cell according to
the formula n̄(x,y,z) = cos θ 1̄z + sin θ 1̄y , where θ = 2πx/d

is the director angle. Note that the origin of the x axis is located
at the center of the cell. A laser beam focused into this cell
with polarization along the y direction experiences a refractive
index profile that varies along the x direction according to
n(θ )2 = n2

⊥n2
‖/[n2

⊥ cos2 θ + n2
‖ sin2 θ ], where �n = n‖ − n⊥

is the birefringence of the liquid crystal, n‖ (n⊥) being the
refractive index for electric field parallel (perpendicular) to
the director. Accordingly, the refractive index profile exhibits
two maxima located in x = ±d/4, which shows that the
LC cell forms two superimposed guiding layers similar to
graded-index planar waveguides. However, instead of having
a simple sinusoidal trajectory in either the upper or the lower
guiding layer, the inhomogeneous birefringence of the chiral
LC layer makes the situation a little more complex. The LC
layer is indeed an anisotropic medium with a dielectric tensor
εij = ε⊥δij + �εninj (with �ε = n2

‖ − n2
⊥), responsible for

an x-dependent beam walkoff parallel to the yz plane. The
walkoff angle α for an extraordinary polarized light beam, as
considered in our experiment, is determined by tan α = εyz/εzz
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FIG. 1. (Color online) Configuration under study. The LC director
is oriented along z at the top and bottom substrates and rotates over
2π over the cell thickness. In the graphs are the refractive index (n),
the walkoff angle (α), and the nonlinearity of light injected along z

with electric field along y.

(see Fig. 1). Due to the index gradient, a beam initially
launched just above x = 0 propagates upward and undergoes
a positive walkoff that makes it drift to the right until it
reaches the position x = d/4, where the walkoff changes sign.
The beam then continues its elevation until it starts to bend
down while keeping a leftward drift. At x = d/4 the walkoff
changes sign again and, when coming back close to x = 0,
the beam finds its initial transverse position in both x and
y. Neglecting diffraction and any imperfection, this evolution
would be repeated endlessly, leading to a helical trajectory. For
beams launched at a position slightly below x = 0, the initial
walkoff is negative and the beam initially propagates to the left
instead of the right. This is a simple but crucial feature which
allows us to experimentally determine if the beam propagates
in the upper or the lower guiding layer of the LC cell.

In addition to this inhomogeneous and anisotropic linear
index distribution, the beam undergoes the reorientational
nonlinearity of the LC. The strength of the nonlinearity can be
measured by the torque T̄ induced by the optical electric field
Ē on the LC molecules. One finds T̄ = ε0�ε〈(n̄ · Ē)(n̄ × Ē)〉,
which shows that the nonlinearity is a maximum when the
director angle verifies θ = (2k + 1)π/4 and is zero when
θ = kπ/2 (k = 0, ± 1, . . .) (see Fig. 1). The nonlinearity seen
by a helical beam in the cell is thus strongly variable along
its trajectory. However, even at the positions of maximum
index x = ±d/4, where the nonlinearity is zero, the effective
nonlinearity averaged over the whole beam cross section is
strictly positive. This makes it possible to generate nematicons
near x = ±d/4, as recently demonstrated by Laudyn et al. [7].
We can then anticipate that diffraction can be compensated by
self-focusing also in the case of a helical beam launched at
x �= ±d/4.

In this work, we are interested in beams that are injected
close to the cell center where θ = 0. Let us first consider that
the beam is launched exactly at x = 0. In this case the upper
and lower halves of the beam undergo opposite index gradient
and walkoff, which tends to split the beam into two parts.
The torque induced by the y-polarized electric field makes
the LC molecules rotate in opposite senses on each side of
the cell center. Due to molecular interaction, these opposite
rotations induce a strong local strain in the LC molecular
helical structure. The molecules located in the plane x = 0
keep their orientation θ = 0 because the opposite torques due
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FIG. 2. Propagation of an optical beam inside the LC cell (top)
without and (bottom) with nonlinearity, in the xz plane. A circular
Gaussian beam with 2.5-µm waist is injected at position x = 0.1 µm.
The beam power for the bottom graph is 45 mW.

to the interaction with the upper and lower molecules are of
the same strength. However, this situation is clearly potentially
unstable because the light-induced torque T is proportional to
the director angle θ itself (see Fig. 1).

II. THEORETICAL ANALYSIS

A. Numerical simulations

Numerical simulations based on a realistic nonlinear beam
propagation (2 + 1)-dimensional [(2 + 1)D] model similar to
that of Ref. [6] are shown in Fig. 2, which displays the beam
evolution in the xz plane and in Fig. 3 for the yz plane. The
figures actually show an integration of the light intensity along
the coordinate perpendicular to the figure. Considering the
propagation in the xz plane, it can be seen that at low power the
light is evenly split into the upper and lower guiding layers of

y 
(µ

m
)

0 50 100 150 200 250 300 350 400

−20

−10

0

10

20

y 
(µ

m
)

z (µm)
0 50 100 150 200 250 300 350 400

−20

−10

0

10

20

FIG. 3. Propagation of an optical beam inside the LC cell (top)
without and (bottom) with nonlinearity, with the same parameters as
in the previous figure, in the yz plane.
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the cell. Conversely, when the optical power is large enough,
the slightest asymmetric perturbation of the system results
in a transfer of almost all the optical power in one of these
guiding layers. The beam is undulating not only in the xz plane
but also in the yz plane, as demonstrated by Fig. 3. Similar
simulations for when the beam is injected at position x =
−0.1 µm confirms that the sign of the initial walkoff angle
depends on the sign of the offset and hence the propagation
of the soliton in either the upper or the lower guiding layer.
Considering the beam propagation in all dimensions, and
taking into account strong undulations in both the yz and xz

planes, it is found that the solitons follow a spiraling trajectory.
This is in contrast with solitons in nonchiral liquid crystals in
which the soliton only undulates in one plane [13,14]. Despite
the spiraling trajectory, the beam keeps its self-confinement
and thus constitutes what could be called a spiraling nematicon.

B. One-dimensional model

This symmetry breaking can be captured theoretically on
the basis of the one-dimensional differential equation derived
from the minimization of the Oseen-Frank free energy of the
LC structure [1]:

d2θ

dξ 2
+ αI (ξ ) sin 2θ (ξ ) = 0. (1)

This equation describes the director orientation θ in the
function of the light intensity distribution I (ξ ) = |Ē(ξ )|2,
where Ē is the electric field of light, α = ε0�εd2/(2K22),
and K22 is the elastic constant for twist deformation. The
transverse coordinate ξ = 2x/d is scaled so that it ranges
between −1 and 1. At zero light intensity the orientation of the
director varies linearly as θ (ξ ) = πξ . Hence, we can describe
the director orientation as θ (ξ ) = πξ + ϑ(ξ ), in which ϑ

expresses the deviation from the linear twisting. Equation (1)
can easily be handled if the intensity can be approximated
by the Dirac δ distribution, i.e., I (ξ ) = Pδ(ξ − ξb), where P

is the beam power and ξb is the beam position. In the
experiment, this means that the beamwidth has to be much
smaller than the cell thickness and the LC helical pitch.
In this way the angle ϑ is a piecewise linear continuous
function: ϑ(ξ ) = Q(1 + ξ )/(1 + ξb) for ξ < ξb and ϑ(ξ ) =
Q(1 − ξ )/(1 − ξb) for ξ > ξb. The unknown coefficient Q is
found by integrating the differential equation on an interval
including ξb, which leads to the following nonlinear equation:

Q − 1
2

(
1 − ξ 2

b

)
αP sin [2 (πξb + Q)] = 0. (2)

We can point out that physically acceptable solutions of
this equation are limited to values of light-induced angular
deviation Q smaller than π . Let us first consider the symmetric
configuration corresponding to a beam launched in ξb = 0.
In this case, Eq. (2) reduces to Q − αP sin(2Q)/2 = 0.
The trivial solution Q = 0 represents the perfectly balanced
situation in which the light beam hits molecules that have a
zero director angle for which the torque is zero, resulting in the
absence of any deviation from the zero-intensity linear twist
configuration. However, two other solutions exist provided
that αP > 1. These solutions can easily be calculated in the
limit of small values of Q by using the Taylor expansion
of the sine function truncated to third order. One finds Q =
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FIG. 4. (Color online) Normalized refractive index for symmetric
illumination at a normalized power corresponding to αP = 2. The
dotted curve shows the symmetric solution (Q = 0) while the two
solid curves show the mirror-image asymmetric solutions.

±[3(1 − 1/αP )/2]1/2. Clearly, these solutions correspond to
a symmetry breaking of the helical LC structure since they
lead to a reduction of either the lower or the upper guiding
layer thickness. This result is illustrated in Fig. 4 through
the plot of the refractive index profile. It shows that, with
a symmetric illumination of sufficient power (αP > 1), the
LC structure can adopt two asymmetric configurations that
are mirror images of each other. These configurations clearly
result from a symmetry-breaking instability of the symmetric
solution corresponding to Q = 0. Indeed, if the orientation of
the central molecules that are hit by the laser beam is slightly
perturbed from θ = 0, a torque appears on these molecules
that tends to increase the initial perturbation. If the power
is large enough, this positive feedback induces a switching
toward one of the two asymmetric solutions. If the power is
too low (αP < 1), the field is not strong enough to increase
the initial perturbation and the system goes back to its initial
symmetric state.

When the beam is launched at ξb �= 0, a simple graphical
analysis of Eq. (2) shows that the trivial solution Q = 0
belongs to a branch of solutions that links the two branches
of asymmetric solutions on each side of the origin, resulting
in a bistable cycle in terms of beam position ξb, as shown
in Fig. 5. It is straightforward to see that bistability (i.e., the
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FIG. 5. (Color online) Light-induced angular deviation Q as a
function of ξb for αP = 0.5, 2, and 5.
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coexistence of the three solutions) occurs if the slope of the
curve Q(xb) at the origin is negative. Considering Eq. (2)
to first order in Q and xb shows that this slope is given by
παP/(1 − αP ), which indicates that bistability appears as
soon as the power exceeds the symmetry-breaking threshold
(i.e., for αP > 1). This symmetry-breaking behavior of the
LC helix structure is represented in Fig. 5 by means of the
evolution of the light-induced angular deviation Q versus ξb

for several values of the beam power αP .

III. EXPERIMENTAL RESULTS

In order to experimentally demonstrate the symmetry
breaking and the bistability, we have fabricated LC cells with
50-µm spacing between the glass plates similar to those of
Ref. [4]. The glass plates are treated with a polymer alignment
layer which is rubbed to ensure that the LC orientation on both
glass plates is fixed along the z direction. We have used the
commercial LC E7 (Merck) doped with 0.4% of chiral dopant
(cholesteryl pelargonate). Tests with wedge cells (according
to the technique described in Ref. [15]) have revealed that
this mixture results in a helical pitch of about 50 µm, which
means that the LC structure in our cell exhibits a total twist of
2π , as considered in the theory above. A glass plate is glued
perpendicularly to the two confining glass plates in order to
ensure a clear entrance for the laser beam [16]. The cell is
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FIG. 6. Experimental observation of the propagation of an optical
soliton (40 mW optical power). The beam is launched near the middle
of the cell. (a)–(d) Density plot of the nematicon intensity for four
beam positions separated by 0.5 µm. (e) Evolution of the beam center
position as a function of the propagation coordinate z.

fixed on a piezoelectric nanopositioning translation stage in
order to control the vertical transverse beam position. Figure 6
shows the propagation of a 40-mW, 2.5-µm-wide Gaussian
beam launched near the cell center (i.e., close to the point
where the director lies along the z axis). The figures show the
scattered light recorded by a CCD camera for four different
beam positions separated by a distance of 0.5 µm. It is clearly
visible that the beam is self-guided and that it follows an
undulating trajectory as predicted by numerical simulations.
We can also see that the resulting helical nematicon initially
drifts upward Figs. 6(a) and 6(b), while it initially drifts
downward Figs. 6(c) and 6(d). In order to make this clearly
visible, we plotted in Fig. 6(e) the positions of the center
of mass of the four beam intensity profiles as a function of
the z coordinate. As explained, the sign of the initial walkoff
angle determines in which of the lower or upper guiding layers
the nematicon propagates. In this way we can state that the
beam of Figs. 6(a) and 6(b) propagates through the upper
guiding layer while the beam of Figs. 6(c) and 6(d) propagates
through the lower guiding layer. Note that the only difference
between Figs. 6(b) and 6(c) is an input beam displacement of
500 nm, that is, a displacement of roughly one fifth of the
(half) beam width and 1% of the cell thickness. We are thus
in the presence of a sharp switching effect in the sense that
a minute perturbation leads to two completely distinct beam
evolutions. Such a behavior may find interesting applications
in the domain of all-optical signal processing.

In order to demonstrate that this peculiar switching be-
havior is due to the symmetry-breaking instability of the LC
helical structure, we investigated the bistable cycle associated
with this instability. The bistability has been experimentally
investigated by observing the initial beam walkoff angle for
different input beam positions separated by 500 nm and at
a fixed power of 40 mW. The initial walkoff angles were
calculated from the z evolution of the center of mass of the
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FIG. 7. (Color online) Angle of the beam entering the cell in the
function of the displacement of the cell along the z axis. The angle
exhibits a discontinuity for which the optical beam propagates either
in the upper or the lower half of the cell. The discontinuity appears
at different z position depending on the direction in which the cell is
displaced.
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FIG. 8. (Color online) Numerical simulation of the midpoint xm

of the helical structure for different optical power: (a) 20, (b) 36, and
(c) 45 mW. The data points marked with circles (crosses) are for a
beam which is displaced upward (downward).

beam intensity profile see Fig. 6(e). As can be seen in Fig. 7,
a clear down-switching from positive to negative walkoff
angle was observed when the beam position was displaced
upward, starting well beneath the cell center. At a distance of
10 µm after the down-switching point, the beam displacement
direction was inverted. An up-switching can be seen at a beam
position significantly smaller than that of the down-switching,
resulting in a well open bistable cycle. The typical distance
between up- and down-switching is 2.5 µm at a beam power
of 40 mW.

The full (2 + 1)D numerical simulation model used in
Figs. 2 and 3 allows us to validate our interpretation of the
experimental results as well as our 1D analytical approach
to the problem. The twist angle θ is calculated with the
two-dimensional model for a Gaussian beam of 2.5 µm waist
launched at an offset of ±10 µm with respect to the middle
of the LC layer. This twist angle distribution is calculated,

after which the beam is shifted over a distance of 0.5 µm
and the twist angle is relaxed from the previous solution. This
procedure is repeated until the beam reaches the ∓10 µm
position. The calculation is performed for both increasing
and decreasing positions along x. The position xm along
the x axis for which the twist angle is equal to zero is
the parameter used to quantify the behavior of the LC. At
this position the refractive index of the LC is a minimum.
Figure 8 shows the evolution of xm in the function of the
beam position for different optical power. Similar to the results
in Fig. 5, no bistable cycle can be observed for low optical
power, whereas high optical power results in the bistability of
xm. The bistability window is equal to a few micrometers
for optical powers that are comparable to the power used
in the experiment, which confirms our interpretation of the
experimental findings.

IV. CONCLUSIONS

In conclusion, due to their reorientational nonlinearity and
their complex refractive index distribution, chiral nematic LC
cells support the propagation of undulating solitonlike beams,
or nematicons. We have demonstrated that, above a power
threshold, these nematicons undergo a symmetry-breaking
instability associated with the appearance of bistability as
experimentally demonstrated and theoretically shown from
a model derived from the minimization of the Oseen-Frank
free energy of the helical LC structure. Symmetry breaking,
bistability, and switching are features of great potential
interest for applications to all-optical signal processing and
reconfigurable optical interconnects.
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