Effective Electrical Passivation of Ge(100) for HfO₂ Gate Dielectric Layers Using O₂ Plasma Qi Xie,^a Davy Deduytsche,^a Marc Schaekers,^b Matty Caymax,^{b,*}Annelies Delabie,^{b,*} Xin-Ping Qu^{c,*} and Christophe Detavernier^{a,z} ^aDepartment of Solid State Science, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium The O_2 plasma pretreatment was investigated for passivation for HfO₂ high-k Ge metal-oxide-semiconductor devices. With proper in situ O_2 plasma passivation, the capacitance–voltage hysteresis was substantially reduced from ~ 900 to ~ 50 mV for the HfO₂/Ge gate stacks. Capacitors show well-behaved capacitance–voltage characteristics on both p- and n-type Ge substrates, indicating an efficient electrical passivation of the Ge interface. The interface trap density for both types of Ge substrates after passivation is below 4×10^{11} eV $^{-1}$ cm $^{-2}$. A leakage current density of 1.5×10^{-7} and 2.1×10^{-8} A/cm 2 was obtained for the HfO₂/p-Ge and HfO₂/n-Ge capacitor with equivalent oxide thickness of 1.8 nm at $V_{FB}\pm 1$ V, respectively. Manuscript submitted November 21, 2010; revised manuscript received January 10, 2011. Published February 18, 2011. Continuous scaling of the complementary metal-oxide-semiconductor (CMOS) devices is pushing the traditional SiO₂ gate dielectric to a fundamental limit. Novel gate dielectric materials with a higher permittivity are in great demand in order to reduce the equivalent oxide thickness (EOT) and control the leakage current at acceptable level. HfO₂ is a promising candidate for gate dielectric due to its relatively high dielectric constant, wide bandgap, and good thermal stability. Germanium (Ge) received an intensive interest because of improved electron (3900 vs 1400 cm²/Vs) and hole (1900 vs 500 cm²/Vs) bulk mobilities over Si.² However, one of the critical issues for Ge is the poor interface quality. Attempts at direct formation of a high-k dielectric on Ge have not been successful.³ Proper passivation of the Ge surface is required before it can be used as a channel material. Different approaches have been employed for Ge surface passivation including H₂O prepulsing, ⁶ thermal oxide treatment, ^{7–9} ozone oxidation, ^{10,11} atomic O beam, ¹² epitaxial Si passivation, ¹³ and surface nitridation. ¹⁴ A relatively low interface trap density (to the low to mid of 10^{11} eV⁻¹cm⁻²) was obtained for various dielectric including Al₂O₃, HfO₂, and ZrO₂. Promising electrical properties and small capacitance–voltage (C-V) hysteresis was achieved by adding an interlayer (IL) either GeON¹⁵ or TaON¹⁶ for HfO₂ dielectric while GeO₂ is commonly believed to be a poorly passivating oxide. In recent articles, it has been demonstrate that GeO2 can also act as a promising electrical passivation layer for high-k dielectric deposited by means of atomic layer deposition (ALD).^{7,8} However, very large C-V hysteresis (\sim 900 mV) was observed for the HfO2 gate stack by using thermally grown GeO₂ passivation layer.^{7,8} In previous literatures, excellent electrical characteristics in GeO2/Ge MOS capacitors (MOSCAPs) grown by electron cyclotron resonance generated oxygen plasma were reported.¹⁷ A high quality of germanium oxide was obtained by using atomic oxygen exposure. ¹⁸ However, GeO₂ exhibits a low dielectric constant (5–6)¹⁹ and water solubility and, therefore, is not suitable to be used by itself as a gate dielectric. A combination of GeO_2 and a dielectric with higher k value (e.g., HfO_2 or ZrO_2) is of great interest to obtain a low EOT and meet the requirements for future scaling. Recently, promising results were obtained for TiO₂ dielectric on Ge using ultrathin HfO₂/GeO₂ IL.²⁰ In this work, we investigate the HfO₂ gate dielectric on Ge and the GeO₂ passivation layer formed by remote radio frequency (rf) generated O₂ plasma. Air exposure was avoided between Ge passivation and subsequent ALD HfO₂ deposition. Interface trap density (D_{it}), fixed charge den- sity, and gate leakage current density (J_g) were comprehensively evaluated for the MOSCAPs on both p- and n-type Ge substrates. Ge(100) wafers (resistivity 0.05–0.1 Ω cm) were cleaned in a 0.5% HF solution followed by 5 min in deionized (DI) water. Then, the wafers were immediately loaded into the homebuilt ALD chamber through a loadlock. The details for the ALD setup were given in our previous work. 21,22 Prior to the HfO₂ deposition, Ge wafers were pretreated with surface oxidization at 250°C by using an O₂ plasma [remote inductively coupled plasma (ICP) source, downstream configuration]. The Ge wafers were exposed to the O₂ plasma at 200 W with a pressure around 1×10^{-3} mbar, and the exposure time was varied from 30 to 60s. HfO₂ dielectric were subsequently grown by plasma-enhanced ALD (PE-ALD) with Tetrakis(ethylmethylamido)hafnium(IV) (TEMAH) and O₂ plasma at 250°C. Comparing to conventional thermal ALD, PE-ALD is considered a promising approach to deposit films at lower temperature with a high quality due to the higher reactivity of radicals. Additionally, degradation of hygroscopic GeO₂ IL was suppressed due to the absence of using H₂O when using PE-ALD. No air exposure for the samples during the O2 plasma pretreatment and PE-ALD depositions. The samples remain stationary in the ALD chamber while the plasma source was separated from the ALD chamber through a computer controlled valve during the precursors pulse time to avoid contamination of the ICP source. A shadow mask was used to pattern the sputtered 50 nm thick Pt gate electrodes. A Ti(20 nm)/Pt(40 nm) bilayer structure was deposited as back electrode by sputtering. Postmetallization annealing (PMA) was conducted in a forming gas ambient at 350°C for 30 min before electrical measurements. The thickness of the films was measured both by ellipsometry and x-ray reflectivity (XRR). The chemical composition of the film was analyzed by depth profiling x-ray photoelectron spectroscopy (XPS) using Al Kα x-rays. The C-V measurement was carried out using an HP 4192A impedance analyzer at various frequencies. The current was measured with a Keithley 617 electrometer, and the applied voltage to the capacitors was calibrated with a HP 3478A multimeter. The C-V hysteresis characteristics for the Pt/HfO₂/GeO₂/p-Ge MOSCAP without and with surface passivation are shown in Fig. 1. A very large C-V hysteresis (\sim 900 mV) at flatband voltage was observed for the sample without surface passivation independent of the measured frequency (Fig. 1a), which is consistent with previous articles. The believed that the hysteresis is caused by the intermixing of GeO_x and HfO₂. By using O₂ plasma pretreatment, much lower hysteresis (\sim 50 mV) was obtained although the HfO₂ deposition process is similar when compared to the MOSCAP without passivation. It might be due to the more uniform and stable GeO₂ IL ^bIMEC, Kapeldreef 75, B-3001 Leuven, Belgium ^cState Key lab of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China ^{*} Electrochemical Society Active Member. ^z E-mail: Christophe.Detavernier@Ugent.be **Figure 1.** C-V hysteresis characteristics for HfO₂/p-Ge(100) gate stack with Pt as top electrode: (a) without O₂ plasma passivation and (b) with O₂ plasma passivation. created by O_2 plasma treatment when it is conducted directly prior to the ALD process. For the MOSCAP without O_2 plasma pretreatment, the O_2 plasma during the initial ALD cycles may induce an intermixing reaction with the uncovered Ge surface and also the adsorbed TEMAH precursors (before the formation of a continuous HfO_2 film), which results in a nonuniform interface and more intermixing between HfO_2 and Ge substrate and, therefore, a larger C-V hysteresis. The MOS devices properties on Ge are strongly correlated to the oxidation states of Ge at the interface. Complete Ge oxidation (GeO₂ or Ge⁴⁺) at the interface is considered the best passivation IL. XPS results indicate a high quality of GeO₂ IL formed by O₂ plasma, evidenced by the chemical shift of ~3.4 eV of Ge 3d referenced to Ge bulk and absence of apparent Ge suboxide contribution (not shown). Ge 3p has no overlap with Hf or O peaks and was, therefore, selected for XPS analysis for the samples after HfO2 deposition. The IL retains its GeO₂ nature mostly, and the atomic ratio of Ge/O at the interface is close to 1:2. A chemical shift of \sim 2.8 eV was observed for the Ge 3p binding energy (BE) compared to the bulk Ge, as shown in Fig. 2. The shift is smaller than that for Ge⁴⁺ (3 eV) while larger than Ge^{3+} (2.5 eV), and the degradation is due to the subsequent HfO₂ deposition process, which caused partial intermixing of the GeO₂ and HfO₂.^{7,11,12} However, the degradation is not significant because the decrease of BE shift is only \sim 0.2 eV. XPS measurement also shows the atomic concentration of Ge in HfO₂ films is less than 3%, which indicates a sufficient suppression of Ge outdiffusion by using rf-GeO₂ and in situ PE-ALD HfO₂. This observation is consistent with small C-V hysteresis properties large hysteresis is usually caused by the bulk oxide traps related to Ge outdiffusion.^{7,8,12} MOSCAPs with various thicknesses (3–18 nm) of HfO₂ were fabricated, and capacitance at strong accumulation was measured for the MOSCAPs with passivation (data not shown). EOT was extracted by fitting the C-V characteristics based on the Ge-simulator, taking the quantum-mechanical effect into consideration. Based on the equation EOT = $t_{\rm IL} + (k_{\rm SiO}/k_{\rm ox})t_{\rm ox}$, extrapolation suggests a relative dielectric constant of HfO₂ $k_{\rm ox}$ is ~24 and the EOT contributed from the GeO₂ interlayer $t_{\rm IL}$ is ~1 nm, which gives the physical **Figure 2.** (Color online) XPS Ge 3p spectra at the GeO₂/Ge interface for the HfO₂/GeO₂/Ge stacks. Two components were extracted: Ge and GeO₈. thickness of GeO₂ around 1.4–1.5 nm, considering the GeO₂ dielectric constant of \sim 5.6.¹⁹ It is worth mentioning that the HfO₂ film grown by thermal ALD (using H₂O) exhibits a lower k value of \sim 18. Figure 3 shows the C-V characteristics of the Pt/HfO₂/GeO₂/Ge MOSCAPs measured at different frequencies (200 Hz to 1000 KHz) on both p- and n-type Ge(100). The thickness of HfO2 is around 5 nm for both stacks. EOT increased around 15% after annealing in forming gas anneal (FGA) ambient at 350°C for 30 min. Wellbehaved C-V curves are observed for both gate stacks without significant frequency dispersion, stretch out, or bumps in the depletion region. The C-V characteristics also show evidence of inversion with a minority carrier response at a low frequency and a flat C_{min} at a high frequency. This indicates the efficient electrical passivation of the Ge interface. It should be noted that an inversion layer was formed at relatively high frequency (1 kHz) compared to Si. This is related to the short minority carrier response time in Ge, which is related to the small bandgap of Ge (\sim 0.66 eV). It has been reported previously that the transition frequency from low frequency to high frequency behavior is around 6 kHz for Ge, which is about 2 orders of magnitude higher than Si MOSCAP (\sim 70 Hz).²³ D_{it} was calculated based on the high-low frequency,²⁴ and the Berglund integral method was used to relate the gate voltage to the corresponding surface potential.²⁵ The plots for the D_{it} obtained by this method are shown in the inset of Fig. 3. It was limited in the depletion region to avoid the weak inversion response. The D_{it} at flatband condition is $3.3\times10^{11}~eV^{-1}cm^{-2}$ and $3.7\times10^{11}~eV^{-1}cm^{-2}$ for the $HfO_2/GeO_2/$ p-Ge and the HfO₂/GeO₂/n-Ge MOSCAPs, respectively. It shows substantially a lower D_{it} comparing to the GeO_xN_y IL formed by in situ NH_3 plasma ($\sim 6 \times 10^{11} \ eV^{-1} cm^{-2}$) although the subsequent HfO_2 deposition is identical.²⁶ Figure 4 represents the surface potential of HfO₂/GeO₂/Ge stacks, extracted by the Berglund method for both p- and n-Ge(100). **Figure 3.** *C-V* characteristics of HfO_2 on Ge(100) substrate with O_2 plasma passivation measured at various frequencies: (a) $HfO_2/GeO_2/p$ -Ge and (b) $HfO_2/GeO_2/n$ -Ge MOSCAPs. The thickness of HfO_2 and GeO_2 is ~ 5 and 1.4 nm, respectively. The insets show the energy distribution of the D_{it} for both the MOSCAPs. Figure 4. Surface potential as a function of gate bias for both types of capacitors. The modulation of surface potential with the gate bias indicates that the Fermi level at the surface is swept through the entire Ge bandgap (\sim 0.66 eV), which indicates that the Ge surface is unpinned. The effective workfunction of the gate electrode in the MOS stack can be extracted by estimating the flatband voltage for a series of capacitors with various EOT. Under conditions of minimal bulk dielectric charge, a plot of V_{FB} vs EOT is supposed to follow the relation $q V_{FB} = \varphi_{ms} - (Q_{fix} \times EOT)/\epsilon_{ox}$, where the slope (Q_{fix}) is the fixed charge density at the dielectric/semiconductor interface, and the linear intercept (φ_{ms}) is the metal/semiconductor workfunction difference. Extrapolation (data not shown) suggests fixed charge densities around 3×10^{12} cm $^{-2}$ and an effective workfunction of Pt of \sim 4.8 eV. Figure 5 shows the comparison of the J_g as a function of EOT according to the published data and this work. A J_g of 1.5×10^{-7} A/cm² and 2.1×10^{-8} A/cm² was obtained for the HfO₂/p-Ge and HfO₂/n-Ge capacitors with EOT of 1.8 nm at $V_{FB}\pm 1$ V, respectively. With the decreasing thickness of HfO₂ and GeO₂, an EOT of 1.3 nm and J_g of 1×10^{-6} A/cm² at $V_{FB}\pm 1$ V were achieved. A low J_g indicates a high quality of the HfO₂ films deposited by PE-ALD compared to other process. Hf 4f XPS spectra are investigated, and stoichiometric HfO₂ was obtained by PE-ALD without a significant binding energy shift or defects. XRR results suggest that the density of the HfO₂ approaches its bulk value. High density and high quality of HfO₂ films grown by PE-ALD are related to the highly reactive O radicals and the absence of H₂O during the ALD process, which avoids degradation of the GeO₂ IL during Figure 5. Comparison of J_g at $V_{FB} \pm 1$ V with respect to different EOTs according to the published data and this work. the ALD growth. A comparison of the HfO_2 dielectrics grown with both thermal ALD (using H_2O) and PE-ALD on the identical GeO_2 IL formed by in situ O_2 plasma treatment was conducted. Substantially a higher C-V hysteresis (250 vs 50 mV) and also a lower dielectric breakdown was observed for the capacitor with the thermally grown HfO_2 compared to the PE-ALD grown HfO_2 , although the GeO_2 IL was identical. To conclude, the MOSCAPs demonstrate a very promising comprehensive device performances including excellent C-V characteristics on both p- and n-type Ge(100), small C-V hysteresis, low D_{it} , and low J_g . The good overall behavior is due to the combinations of three factors, i.e., high quality of GeO₂ formed by O₂ plasma, high quality of HfO₂ grown by PE-ALD, and absence of air exposure (i.e., in situ). ## Acknowledgments This work was supported by the Bilateral Scientific and Technological Corporation Project Flanders-China (01SB1809) and by the IWT-SBO Metacel Project. Universiteit Gent assisted in meeting the publication costs of this article. ## References - 1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001). - C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. - Int. Electron Devices Meet., 2002, 437. - C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, IEEE Electron Device Lett., 23, 473 (2002). E. P. Gusev, H. Shang, M. Copel, M. Gribeyuk, C. D. Emic, P. Kozlowski, and - E. P. Gusev, H. Shang, M. Copel, M. Gribeyuk, C. D. Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett., 85, 2334 (2004). - D. S. Yu, K. C. Chiang, C. F. Cheng, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, *IEEE Electron Device Lett.*, 25, 559 (2004). - S. Swaminathan, Y. Oshima, M. A. Kelly, and P. C. McIntyre, *Appl. Phys. Lett.*, 95, 032907 (2009). - A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. V. Elshocht, M. Caymax, M. Heyns, and M. Meuris, *Appl. Phys. Lett.*, 91, 082904 (2007). - F. Bellenger, M. Houssa, A. Delabie, V. Afanasiev, T. Conard, M. Caymax, M. Meuris, K. D. Meyer, and M. M. Heyns, *J. Electrochem. Soc.*, 155, G33 (2008). - K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, *Appl. Phys. Lett.*, 95, 022102 (2009). - D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, *IEEE Electron Device Lett.*, 29, 328 (2008). - A. Delabie, A. Alian, F. Bellenger, M. Caymax, T. Conard, A. Franquet, S. Sioncke, S. Elshocht, M. M. Heyns, and M. Meuris, *J. Electrochem. Soc.*, 156, G163 (2009). - P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, G. Mavrou, D. Tsoutsou, Y. Panayiotatos, A. Dimoulas, C. Marchiori, and J. Fompeyrine, *Appl. Phys. Lett.*, 93, 082904 (2008). - M. Caymax, F. Leys, J. Mitard, K. Martens, L. Yang, G. Pourtois, W. Vandervorst, M. Meuris, and R. Loo, J. Electrochem. Soc., 156, H979 (2009). - J. J. H. Chen, N. A. Bojarczuk, H. Shang, M. Copel, J. B. Hannon, J. Karasinski, E. Preisler, and S. K. Banerjee, *IEEE Trans. Electron Devices*, 51, 1441 (2004). - C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, *IEEE Electron Devices Lett.*, 25, 274 (2004). - T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. McIntyre, *Appl. Phys. Lett.*, 90, 112912 (2007). - 17. Y. Fukuda, T. Ueno, S. Hirono, and S. Hashimoto, *Jpn. J. Appl. Phys.*, 44, 6981 (2005). - A. Molle, M. N. K. Bhuiyan, G. Tallarida, and M. Fanciulli, *Appl. Phys. Lett.*, 89, 083504 (2006). - S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, and R. Nakane, *Microelectron. Eng.*, 84, 2314 (2007). - Q. Xie, D. Deduytsche, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, and C. Detavernier, *Appl. Phys. Lett.*, 97, 112905 (2010). - Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, G. P. Ru, B. Z. Li, and X. P. Qu, *J. Appl. Phys.*, 102, 083521 (2007). - Q. Xie, J. Musschoot, D. Deduytsche, R. L. Meirhaeghe, C. Detavernier, S. Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, *J. Electrochem. Soc.*, 155, H688 (2008). - A. Dimoulas, G. Velliantis, G. Mavrou, E. K. Evangelou, and A. Sotiropoulos, *Appl. Phys. Lett.*, 86, 223507 (2005). - D. K. Schroder, Semiconductor Material and Device Characterization, pp. 337–419, John Wiley & Sons, New York (1998). - 25. C. N. Berglund, IEEE Trans. Electron Devices, 13, 10 (1966). - Q. Xie, J. Musschoot, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, S. V. D. Berghe, J. Liu, and C. Detavernier, *Appl. Phys. Lett.*, 97, 222902 (2010).