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ABSTRACT 
Catchment management in the developing world rarely include detailed hydrological components. 

Here, changes in the hydrological response of a 200-ha catchment management in north Ethiopia 

are investigated. The management included various soil and water conservation measures such as 

the construction of dry masonry stone bunds and check dams, the abandonment of post-harvest 

grazing and the establishment of woody vegetation. Measurements at the catchment outlet indicated 

a runoff depth of 5 mm or a runoff coefficient (RC) of 1.6 % in the rainy season of 2006. Combined 

with runoff measurements at plot scale, this allowed calculating the runoff Curve Number (CN) for 

various land uses and land management techniques. The pre-implementation runoff depth was then 

predicted using the CN values and a ponding adjustment factor, representing the abstraction of 

runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth 

for the 2000 land management situation was predicted to be 26.5 mm (RC = 8 %), in line with 

current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after 

catchment management. The yearly rise in water table after the onset of the rains (∆T) relative to 

the water surplus (WS) over the same period increased between 2002-2003 (∆T/WS = 3.4) and 

2006 (∆T/WS >11.1). Emerging wells and irrigation are other indicators for improved water supply 

in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for 

the destructive effects of flash floods. Due to an increased soil water content, the crop growing 

period is prolonged.  It can be concluded that this catchment management has resulted in a higher 

infiltration rate and a reduction of direct runoff volume by 81 % which has had a positive influence 

on the catchment water balance.  

 

Key words: Catchment management; Curve Number; Ponding adjustment factor; Runoff 

coefficient; Water table; Watershed 

 

 

1. Introduction 
Impact studies have demonstrated that investments in catchment management in the developing 

world do pay off in economic terms (see for instance Boyd and Turton, 2000; Holden et al., 2005; 

Reij and Steeds, 2003). However, such impact studies rarely (see for instance Kerr et al., 2002) 
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include detailed hydrological components, though catchment management is generally regarded as a 

major determinant of hydrological processes (Brooks et al., 2003; Haigh and Křeček, 2000; Harris 

et al., 2004; Satterlund and Adams, 1992; Whitmore, 1967). Quantitative impact studies may 

include thorough comparisons of hydrological processes in nearby located similar “twinned” 

catchments (Bosshart, 1998b; Huang et al., 2003; Serrano Muela et al., 2005; Shipitalo et al., 

2000), statistical comparisons of several (generally homogenous but small) catchments (Bingner, 

1996; Shipitalo and Edwards, 1998; Shipitalo et al., 2006), model simulations with ground truthing 

(Bingner, 1996; O'Loughlin et al., 1989; Twery and Hornbeck, 2001), and process monitoring and 

quantification over several years before and after catchment management (Dragoun and Harrold, 

1971; Huang et al., 2003; Huang and Zhang, 2004; Kuhnle et al., 1996; Lacombe et al., 2008; Mu 

et al., 2007; Schwab et al., 1993; Woldeamlak and Sterk, 2005). General tendencies include 

increased infiltration and decreased direct runoff after catchment management (Bruijnzeel, 2004; 

Descheemaeker et al., 2006b; Huang et al., 2003; Kuhnle et al., 1996; Lacombe et al., 2008; Mu et 

al., 2007; Satterlund and Adams, 1992; Schwab et al., 1993; Shipitalo and Edwards, 1998; Shipitalo 

et al., 2006; Twery and Hornbeck, 2001; Whitmore, 1967). Effects of extreme events on runoff 

response may vary between study areas (Huang et al., 2003; Huang and Zhang, 2004), but most 

commonly peak flows are levelled down but remain strong after catchment management (Dragoun 

and Harrold, 1971). Generally, spring discharge and base flow, of uttermost importance in semi-arid 

areas, are on the rise after catchment management (Dragoun and Harrold, 1971; Huang and Zhang, 

2004). Yet, there are claims that no well-documented case exists where reforestation and soil 

conservation measures have produced a significant increase in base flow (Bruijnzeel, 2004). 

Total runoff volume is higher in the absence of forest or conservation measures (Bruijnzeel, 2004; 

Dragoun and Harrold, 1971; Harrold et al., 1962); yet such high runoff amounts at the peak of the 

rainy season are of no use since there is no need for irrigation water at that time. Such high volumes 

and the concomitant high sediment load also lead to reservoir sedimentation. Despite challenging 

case studies (sensu Bruijnzeel, 2004), the working hypothesis remains that catchment management 

in semi-arid areas may lead to better water availability in the dry season which is of far greater 

importance than decreases in direct runoff during the rainy season. 

A few studies were conducted in the African highlands (Descheemaeker et al., 2006b; 2008; 

Girmay et al., 2009; Hurni et al., 2005; Rockstrom, 2000; Stroosnijder, 2009; Walmsley et al., 

2001; Whitmore, 1967; Woldeamlak and Sterk, 2005) showing the importance of optimal use of 

both “green” (stored in the soil and available to plants) and “blue” water (runoff and stream base 

flow that may be tapped, transported and used elsewhere (Stroosnijder, 2009)), which allowed to 

make direct linkages to improved livelihoods (Collick, 2008; Falkenmark, 2004; Rockstrom, 2000; 

Walmsley et al., 2001). 

* * * Insert Fig. 1 here * * * 

* * * Insert Fig. 2 here * * * 

Direct runoff has been measured in Ethiopia (Fig. 1) at various temporal and spatial scales (from 

runoff plot to basin). Annual runoff coefficients (RC) for large catchments (A ≥ 100 km²) show 

decreasing runoff coefficients with increasing catchment area (Fig. 2). Several characteristics of the 

Blue Nile basin explain its higher RC: presence of openfield, large Vertisol areas and much rain. 

The larger catchments of the Blue Nile include Lake Tana. Despite the significant evaporation from 

this lake , RCs are still larger than those for catchments with similar dimensions belonging to the 

other basins. For this reason, the Blue Nile basin is considered separately from the Tekezze, Awash 

and Wabi Shebele basins (Fig. 2), which are mainly situated in dry sub-humid to arid regions 

(Engida, 2000). In the Wabi Shebele basin, decreasing RC with increasing catchment area has been 

explained by (1) the fact that the small catchments are mostly situated in the headwaters where 

nearly impervious, basalt-derived soils dominate, and (2) by a smaller mean annual basin 

precipitation and higher evaporation in the larger catchments which include (semi)arid lowlands 

(Bauduin and Dubreuil, 1973). Despite the wide data scatter for the Blue Nile basin, it can be 

observed that RC are larger than in the other basins but that they follow a parallel trend (Fig. 2). 

Decreasing RC with increasing catchment area in the Blue Nile basin is thought to be a result of (a) 
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runoff transmission losses, evaporation (from land and lake surface) and possibly lithological 

heterogeneity, and (b) smaller rain depth and larger potential evapotranspiration depth in the 

western areas of the Blue Nile catchment along the border with Sudan. These areas reduce the 

overall runoff depth for the whole catchment (Conway, 1999).  

At the scale of small catchments in Ethiopia, soil and water conservation (SWC) activities are 

currently the most widespread form of agricultural intensification (sensu Adégbidi et al., 2004; 

Turton and Bottrall, 1997; Zaal and Oostendorp, 2002), particularly in the uplands. Initially, mainly 

physical structures were introduced (e.g. stone and soil bunds, check dams) but starting from the 

1980s it has been realised that vegetation restoration and protection (grass strips, exclosures and 

non-grazing policy) are also important and less costly (Chadhokar and Solomon, 1988; 

Descheemaeker et al., 2006a; 2006b; Krüger et al., 1997). Positive effects of individual SWC 

measures (both physical and biological) on hydrology and soil loss were found in a variety of agro-

ecological zones and under various land uses (Collick, 2008; Descheemaeker et al., 2006b; 2008; 

Desta et al., 2005; El Swaify and Hurni, 1996; Nyssen et al., 2006; 2007; 2009a; Vancampenhout et 

al., 2006), potentially clearing the way for a more sustainable agricultural system. Relatively low 

RCs, recently measured in the Geba catchment (Fig. 2) (Amanuel, 2009; Vanmaercke et al., 2010) 

also tend to reflect the impact of SWC activities that have taken place over the last decades. 

* * * Insert Table 1 here * * * 

Generally, runoff coefficients from small (< 200 m
2
) runoff plots are very variable (0 - 50 %) 

(Table 1), which is attributed to the large range of experimental conditions. Besides different slope 

gradients, local differences in soil texture, land use, vegetation cover, organic matter content, rock 

fragment cover and SWC practices result in a wide range of infiltration rates obtained from runoff 

plots (Descheemaeker et al., 2006b; Feleke, 1987; Mwendera and Saleem, 1997). Results from 

runoff plots may certainly not be extrapolated to catchments.  

In order to improve their effectiveness, individual indigenous and introduced SWC technologies can 

be combined as a starting point for integrated conservation programmes (Herweg and Ludi, 1999; 

Nyssen et al., 2000b). The expected benefits of enhanced SWC in Ethiopia (El Swaify and Hurni, 

1996; Hurni et al., 2005) are (1) control of upland soil erosion, (2) reduction in sediment load of the 

region’s rivers, (3) improvement in the hydrologic regime, including reduced peak flows (Fig. 3), 

and (4) addressing food security needs of Nile basin states. There is clearly a possibility of joint 

gains: rainfed agriculture in the Ethiopian highlands benefits from SWC, whereas irrigated 

agriculture in downstream regions benefits from decreased sediment load and improved base flow 

(El Swaify and Hurni, 1996; Waterbury and Whittington, 1998).  

* * * Insert Fig. 3 here * * * 

Despite the large number of studies on individual SWC measures, impact studies on integrated 

catchment management are rare, particularly in tropical, semi-arid highlands. Hence, this paper 

aims at analysing the hydrological impacts of catchment management and the implications for 

livelihoods through a case study in May Zeg Zeg (MZZ), a representative catchment in the Nile 

headwaters.  

 

2. Study area 
The MZZ catchment (200 ha), situated near the town of Hagere Selam (13°40′ N, 39°10′ E) and ca. 

50 km to the west of north Ethiopia’s Tigray regional capital Mekelle (Fig. 1), was selected for this 

study as it is characterised by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural 

relief, typical for the north Ethiopian highlands. The local geology comprises subhorizontal series 

of alternating hard and soft Antalo limestone layers, some 400 m thick, overlain by Amba Aradam 

sandstone (Hutchinson and Engels, 1970). These Mesozoic sedimentary rocks are covered by two 

series of Tertiary lava flows, separated by silicified lacustrine deposits (Arkin et al., 1971; Merla, 

1938; Merla et al., 1979). Erosion, in response to the Miocene and Plio-Pleistocene tectonic uplifts 

(ca. 2500 m), resulted in the formation of tabular, stepped landforms, reflecting the subhorizontal 

geological structure. The uppermost levels of the landscape at about 2500–2800 m a.s.l. are formed 

in the basalt series. Other structural levels correspond to the top of the Amba Aradam sandstone and 
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to the top of hard layers within the Antalo limestone (Nyssen et al., 2003a). The Atbara–Tekezze 

river system drains the runoff from the study area to the Nile. The main rainy season (> 80% of 

total rainfall) extends from June to September but is preceded by three months of dispersed and less 

intense rains (Nyssen et al., 2005). Average yearly precipitation is 762 mm; whereas 2000, 2001, 

2005 and 2006 correspond to the average rainfall situation, the years 2002-2004 were well below 

average (Fig. 4). High rain erosivity is due to relatively large drop size and concomitant kinetic 

energy  (Nyssen et al., 2005). 

* * * Insert Fig. 4 here * * * 

Cropped fields are the dominant land use (around 65%) in the study area. The agricultural system in 

the north Ethiopian highlands has been characterized as a ‘grain–plough complex’ (Westphal, 

1975). The main crops are barley (Hordeum vulgare L.), wheat (Triticum sp.) and tef (Eragrostis 

tef), an endemic cereal crop. Various species of pulses are also an important part of the crop 

rotation. Soil tillage is carried out with ox-drawn ard ploughs (Nyssen et al., 2000a; Solomon et al., 

2006). Livestock (cattle, sheep, and goats) is a major component of the agricultural system and 

grazes freely, including stubble grazing after harvesting. Steep slopes (>0.3 m m
−1

) are mainly 

under rangeland, parts of which have been set aside recently to allow vegetation recovery 

(exclosures) (Descheemaeker et al., 2006a).  

SWC measures, especially stone bund building and the establishment of exclosures (vegetation 

restoration), have been implemented as part of routine land management activities that were started 

in the 1980s. As part of outreach accompanying research in the region around Hagere Selam, an 

integrated catchment programme was set up in 2004 in the MZZ catchment by researchers in 

cooperation with a local NGO. The main objectives were improvement of the livelihood of the 

communities in three adjacent villages as well as demonstrating and promoting global catchment 

management towards rural communities in the highlands of northern Ethiopia. This was done by the 

installation of a sustainable catchment management and a programme for capacity building and 

awareness raising regarding integrated catchment management. More specifically the project 

included the implementation of site-specific conservation techniques aimed at increasing water 

infiltration and conserving soil, i.e. the construction of dry masonry stone bunds on all land and 

check dams in gullies, the abandonment of post-harvest grazing and the set aside of degraded 

rangelands which results in exclosures (Fig. 5) (Amanuel and Nyssen, 2003; Nyssen et al., 2003b; 

2009b). 

* * * Insert Fig. 5 here * * * 

 

3. Methods 

The research objective has been achieved by studying the changes in hydrology of the MZZ 

catchment within the period 2000-2006, before (< 2004) and after (> 2004) catchment management, 

particularly with regard to direct surface runoff, base flow and water table. Contrasts have also been 

made with larger catchments within which MZZ is nested. 

 

3.1. Survey of bio-physical features of the catchment 

A field survey of relevant bio-physical features was conducted in the MZZ catchment during the 

rainy season (July - October) of 2006. A detailed land use map was made using GPS (Clymans, 

2007), whereby the same land use classes were used as those of the observed counterfactual, an 

earlier survey in 2000, before catchment management (Naudts, 2001; Nyssen et al., 2008; 2009b). 

Stone bund densities and land management practices were also mapped. Runoff storage volumes 

behind SWC structures (stone bunds and trenches) were measured. All dry masonry check dams in 

gully beds were located by GPS, and their storage volumes measured. 

* * * Insert Fig. 6 here * * * 
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3.2. Daily precipitation measurements 

Four rain gauges were installed in and nearby the catchment (Fig. 6), constructed with simple 

materials: a cylinder made from two metal tins was fixed vertically in cement, on top of a 1.5 m 

high tower. A strong plastic bottle, with a funnel fixed at its top was inserted in the tins (Nyssen et 

al., 2005). Rain gauges were read daily (at 8 AM) by secondary school students residing in the 

neighbourhood. Observations covered 7 years (2000-2006) for three rain gauges, except for one rain 

gauge (Zenak’o), where there are some missing years. Minor temporal data gaps, due to defect rain 

gauges were filled up using a regression curve fitted between available data of the defect rain gauge 

and neighbouring stations. Using the Thiessen Polygon method weighted average daily rainfall 

depths in the study catchment were obtained (Clymans, 2007).  

 

3.3. Monitoring of the groundwater table position   

The groundwater table was monitored weekly between 2002 and 2006 in the main main valley 
bottom (which is not incised at that location) where the water table is at the highest position in the 

catchment. Here, Tertiary basalts overlay sandstone which acts as an aquiclude (Fig. 6), and where 

the ground water table is at the highest position in the catchment. A piezometer, a PVC tube of 63 

mm across with an open bottom end, was placed in a 2 m deep augered borehole. The tube was 

perforated with heated nails to form a sieve, which helped quicken the equilibrium of the water 

level within the tube with the ground water table at its position. The soil around the top of the 

piezometer was compacted and the tube itself surrounded with rocks and covered by a large rock to 

reduce direct infiltration of rainfall and surface runoff. Depth from the soil surface to the water level 

was measured weekly by metre stick (± 0.01m).  

* * * Insert Fig. 7 here * * * 

 

3.4. Runoff discharge at the catchment’s outlet 
Near the catchment’s outlet, a cement dam (Fig. 7) was built for irrigation purposes. During the 

rainy season the outlet pipe is opened entirely because natural rains supply sufficient water for crop 

production in the downstream areas. From 13 July to 8 September 2006, measurements of runoff 

discharge were conducted at the dam. Runoff discharges (eq. 1) were based on water height 

measurements and related pipe outlet discharge at the cement dam (Fig. 7). Adding up two runoff 

discharges, (a) runoff discharge overtopping the cement dam and (b) runoff discharge at the pipe 

outlet, 

pipeoverflowout QQQ +=         (1) 

allowed calculating outgoing runoff volumes: 

∑
∆

=

n

t

outP QV          (2) 

where: Qout = outgoing runoff discharge (m
3
 s

-1
), 

Qoverflow = runoff discharge (m
3
 s

-1
) at the dam crest, 

Qpipe = runoff discharge (m
3
 s

-1
) at pipe outlet, 

Vp = outgoing volume (m
3
) per event. 

The dam had a rectangular shaped crest (or overflow) for which runoff discharge (Qoverflow) was 

calculated from depth measurements (every 2 minutes) following classic hydraulics procedures 

(Simon, 1981). 

Estimations of runoff discharge at the pipe outlet (Qpipe) were based on three measurements 

conducted in the field (Fig. 7): (1) water height behind the dam (measured with a gauge every 15 

minutes during the rainfall events), (2) discharge measurement with bucket, and (3) projectile 

distance of the water at the pipe outlet. The purpose of these measurements was to calculate runoff 

discharges with the theoretical Bernoulli equation (Simon, 1981) using the water height (1 in Fig. 7) 

and correct where necessary with field observations on (2) and (3).  

At the outlet of the pipe direct runoff discharges were also calculated by measuring the time to fill a 



 6 

bucket (2 in Fig. 7) with known volume. For each water height an average discharge rate was 

calculated. However the range of water heights linked with runoff discharges is limited: for a water 

height of 0.3 m and above, the forces of squirting water were so high that no accurate runoff 

discharge measurements could be made by bucket.  

Indirect runoff discharge measurements were also conducted, based on the Purdue trajectory 

method (Bos, 1978), in which an object with a certain horizontal starting velocity at a point y above 

the ground, reaches the surface at a point with distance x from the starting point. Field 

measurements of x and y gave the opportunity of assessing the starting velocity (3 in Fig. 7) and 

hence runoff discharge at the pipe outlet.  

Finally, the end of some falling limbs of daily runoff discharge, missed out in the field 

measurements because of early darkness, was reconstructed based on a careful analysis in which 

these incomplete series data were compared with the complete series of 13/08/2006. Differences in 

water depths behind the dam (seen as a proxy for runoff discharges) with 13/08/2006 and moment 

in event were used to estimate the lacking data. 

 

 

3.5. Runoff prediction with the Curve Number method 
The daily runoff in small rural catchments can be estimated based on the curve number method 

(SCS, 2004), for which a simplified infiltration- and runoff model (i.e. Horton model) and empirical 

approaches were used. A curve number reflects the reaction of an area with a certain land use, soil 

and vegetation properties in terms of direct overland flow. The relations between curve number 

(CN), storage parameter (S) and daily runoff discharge are: 

SP

SP
R

8.0

)2.0( 2

+

−
=  when P ≥ 0.2S, and R = 0 when P < 0.2S   (3) 

254
25400

−=
CN

S         (4) 

where: R = runoff (mm), 

P = rainfall (mm), 

S = storage parameter (mm), 

CN = curve number. 

This method was developed based on rainfall and runoff data from small drainage basins in the 

USA and became a widely used method to predict runoff in catchments ranging in size from 0.25 ha 

to 1000 km
2
 (Boughton, 1989). However, also data obtained from smaller runoff plots is used for 

curve number (CN) determination (Auerswald and Haider, 1996; Hawkins and Ward, 1998). Here, 

the approach to evaluate changes in catchment runoff was first to calibrate the SCS curve numbers 

for the catchment’s land units, using a combination of the results of catchment runoff measurements 

obtained in this study and CNs obtained from runoff plots in an earlier study (Descheemaeker et al., 

2008). Then these values were applied to the catchment with its land use and management as it was 

in 2000, but using the 2006 rainfall data, in order to interpret differences in catchment runoff in 

terms of management of the catchment. The various runoff sinks created by catchment management 

were accounted for (1) through incorporation of the effect of stone bunds and decreased stubble 

grazing in the CN, (2) through application of the “pond and swamp adjustment factor” (SCS, 1986), 

and (3) by decreasing the effective runoff-producing area with those areas whose runoff is absorbed 

in exclosures (Descheemaeker et al., 2009) 

 

3.6. Runoff at larger (10³ km²) catchment scale 
The runoff data obtained in MZZ catchment were compared to those of surrounding, larger 

catchments. Intensive measuring campaigns were conducted during the rainy seasons of 2004-2007 

at ten stations on rivers, all within 50 km from the study catchment (Amanuel, 2009; Vanmaercke et 

al., 2010). At each runoff measuring station, digital pressure transducers were installed, which 

recorded the flow depth on a continuous basis. Flow velocity was measured daily as well as each 

time that a large difference in flow depth was noted. Area of flow section were measured for each 

flow depth. These measurements allowed calculating the runoff discharge for each specific flow 
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depth. Hence, the continuous flow depth series could be converted to continuous runoff discharge 

series by means of rating curves. Such runoff measurements were also carried out in the Enda 

Selasse catchment (121 km²), which drains MZZ. These measurements were made in the period 

from 12 July until 10 September 2006, covering the largest part of the rainy season. 

 

4. Results and discussion 

4.1. Precipitation 
Total yearly rainfall depth for the different rain gauges showed great spatial variability in 2006, the 

year when runoff measurements were conducted. Hechi received 764 mm (for locations, see Fig. 6), 

Adi Kalkwal 535 mm, Harena 697 mm and Zenak’o 661 mm, and the area-weighted average 

(Thiessen method) was 626 mm for the study area. The period June – October contributed to 

approximately 70 % of the yearly rains.  

The 2006 annual rainfall in the catchment is well in range with the average for the period 2001-

2006 of 629 mm (Table 2). Seasonality was however below average with (1) a drier main rainy 

season and (2) a wetter spring rainy season.  

* * * Insert Table 2 here * * * 

 

4.2. Direct catchment runoff and runoff coefficients 

4.2.1. Runoff discharge 
At the MZZ catchment outlet, direct and indirect (bucket and Purdue trajectory methods) 

measurements were done, which allowed verifying the discharges derived from Bernoulli’s 

equation. A systematic overestimation of the Bernoulli runoff discharge (Fig. 8) seems to indicate a 

systematic error. The most appropriate explanation is that energy losses to the pipe were 

underestimated, most probably due to the fact that the pipe offers more than the theoretical 

resistance, which is among others related to the existence of a closing mechanism at the pipe outlet. 

Based on these findings the coefficient for energy losses in the Bernoulli equation was adjusted so 

that estimated and observed runoff discharge correspond to a 1:1 equation (Clymans, 2007). 

* * * Insert Fig. 8 here * * * 

Adding up the calculated values for daily runoff yielded a total runoff depth of 5.1 mm or an 

average runoff coefficient of 1.6 % for the rainy season. This RC of MZZ stays well below the RC 

of nearby larger catchments. Total runoff depth in July-September 2006 at the Enda Selasse 

catchment outlet, which drains MZZ, was 55 mm, with a corresponding RC of 15 %. Although this 

runoff depth comprises the base flow of the river, the main part of the runoff (an estimated 76 %) 

occurred during short, but intense flash floods (Amanuel, 2009; Vanmaercke et al., 2010).  

 

4.2.2. Impact of physical SWC measures on RC 
A reasonable explanation for this low RC in MZZ catchment is the positive influence of SWC 

measures. Most of the measures taken in MZZ reduce runoff by trapping overland flow, for instance 

in trenches behind stone bunds or in small basins behind check dams. 

The impact of runoff storage in the trenches behind stone bunds was calculated. Trenches are 

typically 0.5 m wide, 0.25 m deep and 0.75 m long, per m stone bund length. This can be 

recalculated to water storage depth (mm) by multiplying it with average stone bund density in the 

area (372.3 m ha
-1

), which leads to a static storage capacity of 35 m
3
 ha

-1
 or 3.5 mm. This means 

that rainfall producing runoff below 3.5 mm will not leave the field. In real conditions, water 

infiltration during the filling of the trenches leads to a dynamic storage capacity, which is higher 

than 3.5 mm. Taking this into account, the dynamic storage capacity (Morin and Kosovsky, 1995; 

Spence, 2007) of arable land that is covered with dense stone bunds (around 500 m ha
-1

; on 34 % of 

the catchment area) was estimated at 6 mm.   

 

4.2.3. Calibrated curve numbers for the catchment 
For semi-natural vegetation, experimentally obtained CN values in nearby catchments 

(Descheemaeker et al., 2008) were used as a starting point. For cropland, with and without stone 
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bunds, CN values were computed based on a combination of the measured catchment runoff values 

and the known CN values for semi-natural vegetation, which occupies all land that is not cropland 

(the built-up area in the catchment is negligible). On a storm basis, the following computations were 

made. The storm runoff at catchment scale could not be directly linked to curve numbers at land 

unit scale, since 242 check dams (1 – 2 m high) within the channels induce an important runoff 

abstraction. To take into account the effects of these in-gully structures, leading to smaller runoff 

depths at catchment scale than at plot scale, the “pond and swamp adjustment factor” (Fp; Table 4-2, 

(SCS, 1986)) was used. In particular, the lowest possible value of this adjustment factor (Fp = 0.72), 

initially foreseen for 5 % pond surface spread throughout the catchment, was adopted. This 

relatively strong adjustment is justified by the fact that the temporary ponds created behind the 

check dams in this study are not spread but rather concentrated in the drainage lines, the location 

where they contribute most to abstraction. 

* * * Insert Table 3 here * * * 

CN values for arable land with good stone bunds, with poor quality stone bunds (small storage 

volume) and without stone bunds were then obtained using the 2006 field estimates of dynamic 

runoff storage capacity in the trenches. Relative values were attributed to the storage parameter S 

for these different land management techniques (Table 3) whereby an increase of S by 6 mm was 

attributed for dynamic runoff storage in trenches on cropland “with good stone bunds”, and 2 mm 

for “medium stone bunds”. The catchment area producing direct runoff was also reduced by those 

areas draining into exclosures, where all runoff was retained by vegetation and infiltrates 

(Descheemaeker et al., 2009). Furthermore, due to strongly decreased soil compaction by livestock 

trampling and increased presence of stubble, cropland under zero grazing (in reality: strongly 

reduced grazing) was considered as resulting in “good hydrologic conditions” as opposed to “poor 

hydrologic conditions” in free grazing area; both notions according to (SCS, 2004). The difference 

between good and poor hydrologic condition leads to differences in water storage capacity ranging 

from 3 to 27 mm. A conservative value of 5 mm for the impact of increased storage resulting from 

“zero” grazing was adopted. Given this parameterisation (see Table 3), finding the suitable value for 

S in cropland (without any catchment management activity) will then automatically determine 

values of S on the managed croplands. Iteratively, values of S were tested, and at every iteration, 

CN values for every land use and management class calculated as well as area-weighted CN which 

allowed predicting catchment runoff, using equations (3) and (4) and involving the pond adjustment 

factor FP. In the process, values were assigned to S, until the value was found that allowed matching 

predicted runoff with observed runoff.  

To account for the effects of antecedent moisture condition on runoff production, the recorded data 

were first split into three groups based on the rainfall depth of the previous 5 days (P5 < 12.5 mm; 

12.5 mm < P5 < 27.5 mm; P5 > 27.5 mm) (SCS, 2004). Due to the small number of heavy rain 

events that resulted in significant runoff, results on these partial analyses appeared unreliable and it 

was decided to make an analysis involving the whole data series of the rainy season. The area-

weighted average CN that allowed matching observed and predicted runoff was 68.9. Next, the 

iterative injection of values for S (unmanaged cropland) allowed selecting the best fit set of CN that 

resulted in an average CN of 68.9 for the treated catchment (Table 4). Weighted average CN for the 

catchment before catchment management was then computed at 78.5. 

* * * Insert Table 4 here * * * 

 

4.2.4.  Changes in catchment runoff induced by the implementation of SWC measures 
In a next step, the obtained set of CN values was then applied to the catchment as it was in 2000, in 

order to calculate hypothetical runoff using the 2006 events, with equation 

RCA = FP * R        (5) 

where: RCA = runoff depth at catchment scale (mm), 

FP = ponding adjustment factor, with values of 1 in 2000 (no check dams) and 0.72 in 2006 

(numerous check dams), 

R = runoff depth at land unit scale (mm), calculated with eq. (3). 
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Total runoff depth measured from 15/7/2006 till 4/9/2006 was 5.1 mm, resulting in a RC of 1.6 %; 

calculations with eq. (3) and (5) for 2000 using the 2006 daily rainfall depths lead to a predicted 

total runoff depth of 26.5 mm, or RC of 8 %. Comparison of runoff rates pre and post catchment 

management clearly shows that there are large differences in runoff depth for most rain events (Fig. 

9). 

* * * Insert Fig. 9 here * * * 

* * * Insert Table 5 here * * * 

In small catchments in Ethiopia, some relatively low runoff coefficients are explained by specific 

physical conditions (Table 5). In the case of the Dombe “twinned” catchments, dense vegetation 

between the fields facilitates infiltration (Bosshart, 1998b), and a significant difference in runoff 

volume was observed between two similar catchments of which one has been treated by physical 

conservation measures and the other not. Small catchments are very sensitive to human 

intervention. The estimated RC of 8 % before catchment management is in line with RCs of nearby 

(larger) catchments, with RC values for the rainy season varying between 7.5 and 26.3% (average: 

18.6 %) (Amanuel, 2009; Vanmaercke et al., 2010) These runoff coefficients, however, are based 

on the total runoff volume, comprising also the base flow of the rivers. Therefore, these RC values 

slightly overestimate the actual percentage of rainfall that runs directly off. Nevertheless, a 

dominant part of the total runoff volumes of these catchments occurred during flash floods, caused 

by the direct runoff of rain.  

The effect of the decrease in catchment runoff after implementation of SWC measures could be 

observed in the field where farmers take advantage of the decreased runoff response to re-establish 

farmland in areas previously affected by severe gully erosion (Fig. 10). 

* * * Insert Fig. 10 here * * * 

* * * Insert Fig. 11 here * * * 

 

4.3. Effects of integrated catchment treatment on ground water level 
Measurements of the water table height in the piezometer located in the upper valley bottom taken 

from 2002 onwards allow a comparison of water levels over time (Fig. 11). It should be noted that 

the extremes of the position of the water table could not be measured: actual values of the water 

level will have been slightly over the surface at the end of the rainy season, and in several years 

deeper than 200 cm (bottom of the piezometer) by the end of the dry season. 

Overall, the water level sinks slowly during the dry season and reaches a minimum level just before 

the start of the rainy season (June), during which water levels rise quickly (Fig. 11). The sharp 

decrease from day 120 onwards in 2006 is related to the extraction of ground water for irrigation. 

Clearly, SWC measures increase infiltration and cause a rise in the water table and improved water 

availability over time. Variability of the water table over the period 2001-2006 was also influenced 

by rainfall depth and seasonality, as well as by integrated catchment management since 2004. 

* * * Insert Table 6 here * * * 

The average water levels for 2002, 2003, 2004 and 2006 (Table 6) give a good indication of 

variation in water depth over time. To test the impact of catchment management on ground water 

level, a comparison was made between the years preceding catchment management (records for 

2002 and 2003) and after it (2006). Water table depth measurements for 2001 and 2005 were too 

few to allow comparison and 2004 was a transitional year during which stone bunds were 

constructed. The period during which the water table remained at the soil surface was remarkable in 

2006, from 29 August 2006 till January 2007, although calculated water surplus was less in 2006 

than in 2002 (Table 7). Surplus occurs when rainfall depth is greater than potential 

evapotranspiration and the soil is at its field capacity. Then actual evapotranspiration equals 

potential evapotranspiration and surplus water is available for overland flow or ponding. In contrast 

to the fall in water level towards the end of the year, as in 2003 for example, the high water table in 

2006 is an indication that water was stored in the upper part of the catchment by soil and water 

conservation structures and has infiltrated. 

* * * Insert Table 7 here * * * 
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* * * Insert Fig. 12 here * * * 

Another indication of the positive effect of catchment management on water conservation is the 

rapid recharge of the water table from a very deep water table (due to water abstraction for 

irrigation – Fig. 12A) to a water table reaching the soil surface, in 2006 (Fig. 11). If infiltration rate 

has indeed increased after installation of the stone bunds, then the water table should show a greater 

rise in level for the same amount of rainfall. The ratio of maximal water table rise (∆T) over rainfall 

(P) for that period was calculated to allow this comparison (Table 7). The years before installation 

of stone bunds (2002 and 2003) show an average ratio (∆T/P) of 0.38. The ratio for 2006 is >0.56 

which is a >46 % increase from 2002-2003. When the rise in water table is given relatively to the 

water surplus (WS) over that period (Vandecasteele, 2007; Walraevens et al., 2009), an even larger 

difference is seen between 2006 (∆T/WS >11.1) and the previous years (∆T/WS = 3.4). From these 

data, it can be inferred that the SWC structures built in 2004 have indeed had a significant and 

positive impact on the water table and its recharge in the catchment.  

Emerging springs and irrigated fields (Fig. 12A) are other indicators for a better hydrology and 

water supply in the study area brought about by integrated catchment management. Irrigated fields 

in the lower gully system (Fig. 12B) also indicate that farmers are less frightened for flash floods 

which have a destructive effect on crops and parcels. The duration of natural uptake of water by 

rainfed crops is also prolonged due to greater soil water content over a longer period. 

There may be observations where forestation of catchments leads to decreased base flow 

(Bruijnzeel, 2004); obviously, if reforestation with water-consuming tree species is the main 

catchment management technique, this will lead to high evapotranspiration and possibly decreased 

spring discharges (Bruijnzeel, 2004; Dragoun and Harrold, 1971; Harrold et al., 1962). In the MZZ 

case, where catchment management is carried out through physical SWC structures, modified 

surface management and less water-demanding, generally indigenous tree species, positive impact 

on hydrology was demonstrated. Whereas this certainly contributes to irrigation development in the 

lower part of the catchment, the higher infiltration rates seem to benefit above all to in situ crop 

growth. 

 

5. Conclusions 
Overall, the impacts of catchment management on the hydrology are positive in MZZ. The main 

observed changes in hydrology are the decrease of the annual runoff coefficient by 81 % (from 8 % 

before catchment management down to 1.6 % after catchment management), the rapid recharge of 

the groundwater table after the dry season and the prolonged water supply at springs. These changes 

indicate that SWC measures increase infiltration and spread runoff in time. Besides their positive 

effect on hydrology, increased infiltration and lower runoff lead to lower soil loss rates and a higher 

sediment deposition rate within the catchment (Nyssen et al., 2009c). 

The reduced runoff and higher infiltration rates have a positive influence on the water balance in the 

MZZ catchment. Increased water availability leads to higher crop yield and crop diversity due to 

irrigation. Indications for an improvement of the water balance are an increased base flow and 

groundwater table, the appearance of springs in the gully channels, the establishment of cropland 

and rehabilitation of former vegetation cover in the gully system, and the creation of irrigated fields 

in the upper and lower parts of the MZZ catchment. 
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Figure captions 

Figure 1. Major drainage basins in Ethiopia, and location of the study area (�). The bold dashed 

line ( ─ ─ ─) represents major water divides between the Mediterranean Sea basin (west), the Rift 

Valley endorheic basins (centre) and Indian Ocean basin (east).  

 

Figure 2. Annual runoff coefficients (RC) vs. drainage area (A) for catchments of the basins of the 

Blue Nile (Conway, 2000; Daniel Gamachu, 1977; USBR, 1964), Tekezze 

(Hunting Technical Services, 1976), Wabi Shebele (Bauduin and Dubreuil, 1973), Awash and Rift 

Valley lakes (Daniel Gamachu, 1977; Fekadu Moreda and Bauwens, 1998; Vallet-Coulomb et al., 

2001). See Figure 1 for locations. Observation periods were from 3 to 30 years, with the exception 

of a few (USBR, 1964) data, which cover 1 or 2 years only (after Nyssen et al., 2004). RC (1-4 

years observations) measured recently in major streams of the Geba catchment (Amanuel Zenebe, 

2009; Vanmaercke et al., 2010) which surrounds the May Zeg Zeg catchment are highlighted.  

 

Figure 3. The Calamino river at Debri near Mekelle, looking downstream in 1974 (upper; photo 

R.N. Munro) and 2008 (lower). Major changes of this tributary of Tekezze river are the 

recolonisation of the river bed by woody perennials (Rumex nervosus, Nicotiana glauca) indicating 

decreased peak flows. Improved base flow is used for irrigating cash crops in the valley bottom 

whereas slopes have been terraced between 1974 and 2008. 

 

Figure 4. Annual precipitation in Hagere Selam. Annual average is 762 (± 171) mm. Source: 

National Meteorological Agency (www.ethiomet.gov.et), except 1992-1994: Dogu'a Tembien 

Agricultural Office. Missing data correspond to the period of civil war and the years thereafter. A 

tentative reconstruction of yearly rainfall for 1982-1988 was done through correlation with rainfall 

recorded at Mekelle station, 50 km away; for 1989-1991, rainfall data are also missing for Mekelle. 

 

Figure 5. Partial view of the managed May Zeg Zeg catchment, with check dams in the gully, 

exclosure at the back, and stone bunds in farmland and in the exclosure. 

 

Figure 6. Map of May Zeg Zeg catchment in 2006, with location of measurement installations and 

some major SWC interventions. 

 

Figure 7. Schematic representation of the cement dam where runoff measurements were made at the 

catchment outlet (for location see Fig. 6). 

 

Figure 8. Calculated runoff discharge (Qcalc, m³ s
-1

, based on Bernoulli’s equation) as a function of 

observed runoff discharges (Qobs, m³ s
-1

, based on (1) projectile trajectory method (crosses) and (2) 

direct runoff discharge measurements with bucket (dots) at the pipe outlet). 

 

Figure 9. Runoff depth at catchment scale (RCA), as measured in 2006 (after catchment 

management) and predicted for 2000 (before catchment management), based on 2006 rainfall data 

(P). 

 

Figure 10. Part of the lower gully system of MZZ before (1998) and after catchment management 

(2006). Both photographs were taken in August, during the main cropping season. Due to direct 

runoff abstraction in the upper catchment, gully bed morphology had stabilised and was managed 

by farmers who could confidently grow crops in the former gully bed. Note also shrub regrowth and 

slope stabilisation on the steeper slopes in the background. 

 

Figure 11. Water table fluctuations throughout the year in the upper valley bottom (see Fig. 6): 

water depth below the soil surface was measured with a the piezometer. 
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Figure 12. Irrigated vegetable gardens (A) in the upper part of the catchment (nearby the 

piezometer; photo Karl Herweg), and (B) in the lower gully system, with M indicating the outlet of 

the managed catchment, and U the outlet of the unmanaged catchment). Runoff flow directions in 

the channels are towards the lower left of photo B and arrows in both photographs indicate major 

irrigation canals. 
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Figure 2.  
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Figure 3.  
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Figure 5 

 

 
 



 22 

Figure 6. 
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Figure 7. 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12  
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 Tables 

 

 

Table 1. Annual rainfall and runoff data for selected experimental plots in the Ethiopian Highlands 
Location °N °E SG 

(%) 

A 

(m²) 

n yr P 

(mm) 

R 

(mm) 

RC 

(%)  

Land use Source 

Melkassa 8°24 39°20 10-

11 

80  2 806 367 45.5 bare fallow (Feleke, 1987) 

Afdeyu  15°41’ 38°35’ 31 180 1 3 382 162 42.4 tradit. cultivation (Herweg and Ludi, 

1999)
 

Afdeyu  15°41’ 38°35’ 31 180 1 3 382 87 22.8 tradit. cultivation, with 

grass strips 

(Herweg and Ludi, 

1999) 

Debre Zeit  8°45’ 38°59’ 4-8 20  1 350
a 

80 22.9 rangeland, very intense 

grazing 

(Mwendera and 

Saleem, 1997)
 

Debre Zeit 8°45’ 38°59’ 4-8 20  1 350
a
 22 6.3 rangeland, no grazing (Mwendera and 

Saleem, 1997) 

Debre Zeit 8°45’ 38°59’ 0-4 20  1 350
a
 34.5 9.9 rangeland, very intense 

grazing 

(Mwendera and 

Saleem, 1997)
 

Debre Zeit 8°45’ 38°59’ 0-4 20  1 350
a
 7.3 2.1 rangeland, no grazing (Mwendera and 

Saleem, 1997) 

Maybar  11°07’ 39°19’ 28 180 1 4 1211 24 2.0 tradit. cultivation (Herweg and Ludi, 

1999) 

Maybar
 

11°07’ 39°19’ 28 180 1 4 1211 16.7 1.4 tradit. cultivation, with 

grass strips  

(Herweg and Ludi, 

1999) 

Hunde Lafto 8°40’  40°25’ 21 180 1 3 935 12 1.3 tradit. cultivation (Herweg and Ludi, 

1999) 

Hunde Lafto 8°40’  40°25’ 21 180 1 3 935 6.6 0.7 tradit. cultivation, with 

grass strips  

(Herweg and Ludi, 

1999) 

Andit Tid 9°46’  39°47’ 24 180 2 5 1358 354 26.1 tradit. cultivation (Herweg and Ludi, 

1999) 

Andit Tid 9°46’  39°47’ 24 180 2 5 1358 236 17.4 tradit. cultivation, with 

grass strips  

(Herweg and Ludi, 

1999) 

Adi Gudom 13°14' 39°32' 3 95 2 1 422
a 

65.3 15.5 tradit. cultivation (Tewodros et al., 2009) 

Adi Gudom 13°14' 39°32' 3 95 2 1 422
a 

25.5 6.0 permanent-bed based 

conservation agriculture 

(Tewodros et al., 2009) 

SG = slope gradient; A = plot area; n = number of replicates; yr = number of years of observation; P 

= mean annual precipitation; R = mean annual runoff; RC = runoff coefficient (100 * R P
-1

) 
a
 within measurement period (< 1 y) 
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Table 2. Total and average precipitation (mm) in the study area in the period 2001-2006 subdivided 

according to rainy season (June – September) and dry season (October – May) 

Period 2001 2002 2003 2004 2005 2006 Average 

October-May 116 75 111 32 170 200 117 

June-

September 
606 491 428 526 596 425 512 

Total 722 566 540 558 766 626 629 
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Table 3. Values of storage parameter S and assumptions used to calculate S for land use and 

management classes on arable land in May Zeg Zeg catchment in 2006. 

Land use and management Area (ha) % S (mm)  

Fallow land 0.1 0.1 29.8 
2  

Cropland (free grazing, no stone bunds
1
) 3.0 2.4 x 

3  

Cropland (free grazing, stone bunds of medium quality
1
) 35.0 27.4 x + 2 4  

Cropland (free grazing, good stone bunds
1
) 18.1 14.2 x + 6 5  

Cropland ("zero" grazing, no stone bunds
1
) 1.5 1.1 x + 5 6  

Cropland ("zero" grazing, stone bunds of medium quality
1
) 4.9 3.9 x + 5 + 2 4 6 

Cropland ("zero" grazing, good stone bunds
1
) 22.7 17.8 x + 5 + 6 5 6  

Exclosure (no stone bunds
1
) 0.0 0.0 301.9 7  

Exclosure (stone bunds of medium quality
1
) 5.0 3.9 303.9 4 

Exclosure (good stone bunds
1
) 29.5 23.1 307.9 5 

Grassland 0.8 0.6 301.9 7  

Grassland with dense runoff collector trenches 3.0 2.3 307.9 5 

Rangeland 4.0 3.2 29.8 
2 

Land accounted for in CN calculation 127.5 100.0  
 

Land draining to sinks (exclosures) 37.1  N.A. 
 

TOTAL 164.7    

 

1
 Good quality stone bunds (density > 400 m ha

-1
; trenches in good state), medium quality (density 

200-400 m ha
-1

 and trenches in good state, or density > 400 m ha
-1

 but absence of trenches behind 

the bunds), and no or poor stone bunds (density < 200 m ha
-1

, no trenches, many collapsed stone 

bunds); 
2
Calculation with eq. (11), using a CN value of 89.5, weighted average of rangeland CNs 

measured at plot scale (n = 702) (Descheemaeker et al., 2008); 
3
S = x, to be determined in the 

study; 
4
For stone bunds of medium quality, dynamic storage depth behind stone bunds and in 

trenches estimated at 2 mm; 
5
For stone bunds of good quality, dynamic storage depth in trenches 

estimated at 6 mm; 
6
Increased storage depth resulting from “zero” grazing estimated at 5 mm; 

7
Calculation with eq. (11), using a CN value of 45.7, weighted average of CNs for medium to old 

exclosures, measured at plot scale (n = 2163 plot-event data) (Descheemaeker et al., 2008). 
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Table 4 

Curve numbers (CN) for various land use and management types in May Zeg Zeg catchment, 

allowing calculation of weighted average CN for 2000 and 2006. 

2000 2006 Land use and management type 

CN
2
 Area 

(ha) 

% 

 

CN
2 

Area 

(ha) 

% 

Fallow land 89.5 1.6 1.1  89.5 0.1 0.1 

Cropland (free grazing, no stone bunds
1
) 79.9 25.7 17.8  79.9 3.0 2.4 

Cropland (free grazing, stone bunds of medium 

quality
1
) 

79.4 63.3 43.9  79.4 35.0 27.4 

Cropland (free grazing, good stone bunds
1
) 78.5 11.1 7.7  78.5 18.1 14.2 

Cropland ("zero" grazing, no stone bunds
1
) 78.7 0.0 0.0  78.7 1.5 1.1 

Cropland ("zero" grazing, stone bunds of medium 

quality
1
) 

78.2 0.0 0.0  78.2 4.9 3.9 

Cropland ("zero" grazing, good stone bunds
1
) 77.3 0.0 0.0  77.3 22.7 17.8 

Exclosure (no stone bunds
1
) 67.3

 

3 
24.4 16.9

  
 45.7 

4 
0.0 0.0 

Exclosure (stone bunds of medium quality
1
) 66.6 0.0 0.0  45.5 5.0 3.9 

Exclosure (good stone bunds
1
) 65.6 0.0 0.0  45.2 29.5 23.1 

Grassland 45.7 0.9 0.6  45.7 0.8 0.6 

Grassland with dense runoff collector trenches 45.2 0.0 0.0  45.2 3.0 2.3 

Rangeland 89.5 17.1 11.9  89.5 4.0 3.2 

Land involved in CN calculation  144.1 100.0   127.5 100.0 

Land draining to sinks NA 19.8   NA 37.1  

TOTAL  163.9 100.0  164.7 100.0 

Catchment weighted average CN   78.5   68.9 
1
 Good quality stone bunds (density > 400 m ha

-1
; trenches in good state), medium quality (density 

200-400 m ha
-1

 and trenches in good state, or density > 400 m ha
-1

 but absence of trenches behind 

the bunds), and no or poor stone bunds (density < 200 m ha
-1

, no trenches, many collapsed stone 

bunds); 
2
 Obtained from (Descheemaeker et al., 2008) and Table 3; 

3
 Young to medium-aged 

exclosures; 
4
 Medium-aged to old exclosures. 
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Table 5. Runoff data for selected small catchments in the Ethiopian Highlands 
Catchment °N °E Alt. 

range 

(m) 

Area 

(km²) 

Period 

(years) 

Mean 

annual 

precip.
a
 P 

(mm) 

Mean 

annual 

runoff
a
 R 

(mm) 

Runoff 

coeff. (100 

* RP
-1

) 

Source 

Anjeni  10°23’ 37°31’ 

 

100 1.13 10 1615.8 

(± 238.4) 

731.0 45.2 (Bosshart, 1998a; 

Liu et al., 2008) 

Dombe
 
(without SWC) 7°28’ 38°22’ 125 0.94 12 1308.0 

(± 249.4) 

246.3 

(± 158.2) 

18.8 (Bosshart, 1998b) 

Dombe (with SWC) 7°28’ 38°22’ 105 0.73 12 1308.0 

(± 249.4) 

148.7 

(± 111.1) 

11.4 (Bosshart, 1998b) 

Hunde Lafto  8°41’ 40°24’ 352 2.37 11 935 80 9 (Herweg and 

Stillhardt, 1999) 

Maybar 11°07’ 39°19’ 328 1.13 12 1211 324 27 (Herweg and 

Stillhardt, 1999; 

Liu et al., 2008) 

Andit Tid  9°48’ 39°43’ 504 4.77 10 1379 754 55 (Herweg and 

Stillhardt, 1999; 

Liu et al., 2008) 

Dizi  8°12’ 35°33’ 224 6.73 4 1512 73 5 (Herweg and 

Stillhardt, 1999) 

Afdeyu (Eritrea) 15°41’ 38°35’ 210 1.61 7 382.5 

(± 123.7) 

19.6 

(± 16.5) 

5.1 (Bosshart, 1997) 

May Zeg Zeg (before 

catchment 

management, 

simulated) 

13°39’ 39°11’ 550 1.65 1 629 26.5 8 This study 

May Zeg Zeg (after 

catchment 

management) 

13°39’ 39°11’ 550 1.65 1 629 5.1 1.6 This study 

a
Standard deviation between brackets 

 

 

Table 6. Yearly average depth to the water table in the piezometer (T) and total annual 

precipitation, recorded at the nearest rain gauge (P). 

 T (cm) P (mm) 

2002 64.8 577.4 

2003 103.7 548.3 

2004 100.2 529.7 

2006 50.7 660.9 
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Table 7. Maximal yearly rise of the water table in the piezometer (∆T) compared to precipitation (P) 

and water surplus (WS), as derived from detailed water balance calculations in the catchment 

(Vandecasteele, 2007; Walraevens et al., 2009),  over the same periods. 

 Period ∆T (cm) P (mm) WS (mm) ∆T/P ∆T/WS 

2002 10 July – 13 September 190 406.2 56 0.47 3.39 

2003 27 June – 4 September 96 345.5 29 0.28 3.31 

2004 19 June – 4 September >200 460.8 95 >0.43 >2.11 

2006 10 June – 26 August >200 359.6 18 >0.56 >11.11 

Average 171.5 393.03 49.5 0.44 4.98 

 

 


