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Abstract

Numerical techniques frequently used for the simulation of one bubble can be classified as inter-
face tracking techniques and interface capturing techniques. Most of these techniques calculate both
the flow around the bubble and the shape of the interface between the gas and the liquid with one
code. In this paper, a rising axisymmetric bubble is simulated with an interface tracking technique
that uses separate codes to determine the position of the gas-liquid interface and to calculate the flow
around the bubble. The grid converged results correspond well with experimental data.

The gas-liquid interface is conceived as a zero-mass, zero-thickness structure whose position
is determined by the liquid forces, a uniform gas pressure and surface tension. Iterations between
the two codes are necessary to obtain the coupled solution of both problems and these iterations are
stabilized with a fluid-structure interaction (FSI) algorithm. The flow around the bubble is calculated
on a moving mesh in a reference frame that rises at the same speed as the bubble. The flow solver
first updates the mesh throughout the liquid domain given a position of the gas-liquid interface and
then calculates the flow around the bubble. It is considered as a black box with the position of the
gas-liquid interface as input and the liquid forces on the interface as output. During the iterations,
a reduced-order model of the flow solver is generated from the inputs and outputs of the solver.
The solver that calculates the interface position uses this model to adapt the liquid forces on the
gas-liquid interface during the calculation of the interface position.

1 Introduction

Bubbles have since long been of interest to both experimental and numerical researchers. Bubbly flow
frequently occurs in reactors where it improves the mixing and reaction of the constituents [1]. By con-
trast, cavitation erodes metal surfaces due to the high pressure during bubble collapse [2]. An excellent
overview of the various bubble shapes is provided by Clift, Grace and Weber, who establish a relation
between the bubble shape and the Reynolds and Eötvös number [3]. Consequently, there is a lot of
experimental data available to validate numerical techniques [3, 4, 5]. With the extended knowledge
of bubble behaviour, the benefits of bubbly flow can be further enhanced and damage encountered in
cavitation problems can be limited.

Numerical techniques frequently used for simulating a limited number of bubbles can be subdivided
based on how they treat the interface between the liquid and the gas. Interface tracking techniques
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position grid nodes on the interface and the grid is thus deformed by the bubble motion. Conversely,
interface capturing techniques employ a static grid and therefore do not place grid points on the interface,
but they reconstruct the interface from a marker in the flow field. Although the former techniques provide
a sharper representation of the interface than the latter for the same grid spacing, the complexity of the
interface motion is more limited. Interface tracking has been developed by Ryskin et al. [6], Glimm et
al. [7] and Tryggvason et al. [8]. Examples of interface capturing techniques are the Volume Of Fluid
(VOF) and Level Set (LS) method, reviewed respectively by Scardovelli et al. [9] and Osher et al. [10].

More recently, advances in computer power have enabled the numerical solution of fluid-structure
interaction and other coupled problems. Fluid-structure interaction is of paramount importance in aeroe-
lastic analysis of wings [11] and buildings [12], but also in biomedical applications [13, 14, 15]. Fluid-
structure interaction simulations can be performed with a single code for fluid and structure, the so-
called monolithic approach, as opposed to the partitioned approach with separate codes for fluid and
structure. The latter approach enables the reuse of well-validated codes but requires coupling iterations
between the flow and the structure to satisfy the kinematic and dynamic conditions on the common
boundary of the fluid and the structure. A coupling algorithm is necessary to stabilize these iterations
and the last decade has witnessed a continuous progress in the development of these coupling algorithms
[14, 16, 17, 18, 19, 20].

Most of the above-mentioned bubble simulation techniques compute the gas, the liquid and the
interface in between with a single code. Conversely, the interface between the gas and the liquid can be
conceived as a zero-thickness structure whose position is determined by the equilibrium between fluid
forces and surface tension. From this point of view, a bubble consists of a structure with a fluid on either
side. The bubble simulation is thus divided in a flow simulation and a structure simulation.

The partitioned approach to bubble simulation has already been followed by Ryskin et al. [6], who
calculated the steady shape of a bubble, starting from a given initial position of the bubble, with the
following iterative procedure. The Cartesian coordinates (x, r) are first mapped to a coordinate system
(ξ, η) where the ξ axis corresponds with the interface. The flow around the bubble is subsequently
calculated by performing a limited number of iterations with a Navier-Stokes solver. The surface tension
is then calculated from the curvature of the liquid-gas interface and compared with the liquid’s force. The
difference between these forces is considered as a normal force on the liquid-gas interface and is added
to the mapping functions with an underrelaxation factor which is determined by trial and error. Finally
the new position of the interface is calculated by applying these modified mapping functions. These
steps are repeated until all equations and boundary conditions are satisfied. It is important to mention
that the new position of the interface is not determined directly from the force unbalance but indirectly
by modifying the coordinate transformation to avoid instability and that both the flow problem and the
structural problem are not solved completely because it is observed that this also leads to instability.

The instability of the interaction between the flow problem and the structural problem in a partitioned
simulation of a bubble that was observed by Ryskin et al. can be cured in a more robust way, that is
without determining an underrelaxation factor by trial and error, by using a fluid-structure interaction
coupling algorithm. These coupling algorithms have been developed to deal with the instability of the
interaction between the flow and the structure in the partitioned approach to fluid-structure interaction
and can thus be applied to partitioned simulations of bubbles and other problems with an interface as
well.

This paper focuses on the application of the fluid-structure coupling algorithm first described by
Vierendeels et al. [20] to partitioned bubble simulation. It is shown that one can obtain accurate, steady-
state results of an axisymmetric bubble, rising in a stagnant mineral oil due to buoyancy with this tech-
nique. The shape of the bubble is calculated by coupling a flow solver for the fluid zone and a structure
solver which calculates the interface position. The fluid-structure interaction coupling algorithm from
Vierendeels et al. [20] for unsteady simulations is used in this paper to determine the interface position
that balances the forces on fluid and structure in a steady simulation. This coupling algorithm was devel-
oped for a black-box flow solver and structure solver but in this paper it is modified to take advantage of
the accessibility of the structure solver. The numerical results are thoroughly verified with experimental



data from Hnat et al. [5] and can be used as a benchmark for other bubble simulation codes.
The remainder of this paper is organized as follows. The flow solver and structure solver are defined

in Sections 2 and 3, prior to an overview of the fluid-structure interaction coupling algorithm in Section 4.
In Section 5, the results of the simulations are presented and compared with experiments from literature,
followed by the conclusions in Section 6.

2 Flow solver

To fit in the fluid-structure interaction framework, the flow solver has to calculate the sum of the pressure
and normal viscous force – further called the fluid load – of the liquid on the interface for a given shape
of the bubble. Therefore, it has to calculate the pressure and velocity in the liquid domain around the
bubble where pressure variation stems from gravity, inertia and viscosity. As the density and viscosity
of a gas are typically orders of magnitude lower than those of a liquid, the pressure gradient inside the
bubble is neglected with respect to the pressure variations on the liquid side of the interface. The gas
flow inside the bubble is not calculated in this paper, but for cases where this assumption is no longer
valid, the flow solver can easily calculate the gas flow as well.

The axisymmetric geometry of the mesh to calculate the flow in the liquid is similar to the experi-
mental setup from Hnat et al. [5]. It consists of a cylindrical tank of 1.0 m high with a radius of 0.75 m
whose axis of symmetry is aligned with the gravitational field. The bubble is positioned 0.5 m above the
bottom of the reservoir.

The motion of a bubble that rises through a liquid is unsteady in reality as the bubble volume changes
due to the hydrostatic pressure gradient. However, in the cases studied in this paper the shape and rise
velocity of the bubble do not change significantly after an initial settling time and, therefore, the bubble
shape is calculated with a steady simulation in a reference frame that moves at the same speed and in
the same direction as the bubble. In this reference frame, the interface is modelled as a static free-slip
wall and the liquid surrounding the bubble is given a downward velocity equal to the rise velocity of
the bubble. In the absolute reference frame, the cylindrical wall of the tank is stationary and the top
of the reservoir is a velocity inlet with zero velocity. The pressure at the bottom of the reservoir is set
to zero with a pressure outlet. The correct absolute pressure level and the pressure due to gravity are
subsequently added in the structure solver.

The finite volume flow solver (Fluent 6.3, Fluent Inc.) receives the position of the N nodes on the
interface and automatically updates the position of the other grid nodes in the liquid domain with a
spring model. It then calculates the pressure and velocity throughout the liquid domain, returning the
fluid load in all the nodes of the interface. The action of the flow solver can be summarized as

P = F (X) (1)

with X an array containing the axial and radial coordinate of the interface nodes and P an array with
the fluid load in those nodes.

X =
[
x1 r1 x2 r2 . . . xN rN

]T (2)

P =
[
p1 p2 . . . pN

]T (3)

The pressure-based flow solver utilizes a coupled solution of the pressure and velocity field and a second-
order upwind scheme for the discretization of the momentum equation. The method presented here is
independent of the flow solver and any other solver should give similar results.

3 Structure solver

As mentioned above, the structure solver calculates the interface position for a given fluid load on the
liquid side of the interface. Each node on the interface has 2 degrees of freedom, namely its axial and
radial coordinate, so 2N degrees of freedom have to be determined.



In every interface node i (i = 1 . . . N ), the difference between the fluid load pi and the gas pressure
pG has to compensate for the surface tension.

(pi + pabs − ρL · G · xi) − pG + σ · κi = 0 (4)

with pabs the absolute pressure level at the bottom of the tank, ρL the fluid density, G the gravitational
acceleration, xi the height of node i above the bottom of the tank, σ the surface tension coefficient and
κi the local surface curvature. The gas pressure inside the bubble pG is calculated with the ideal gas law
from the mass of air and the temperature, both given constants. In Eq. (4), the fluid load pi consists of
the sum of the pressure and normal viscous force. The tangential forces on the interface and the variation
of the surface tension coefficient have been neglected. It will be shown in section 5 that simulations with
these simplifications yield good results for the parameter values of interest in this paper. The left-hand
side of Eq. (4) is further called gi. The surface curvature κi in node i is calculated by constructing local
4th order polynomial interpolants of the axial and radial coordinate from which the principal radii of
curvature are calculated.

Tangential motion of the nodes along the interface has no effect on the bubble shape or on the flow
field because the interface is modelled as a free-slip wall. Equidistance of the nodes is imposed to
establish their position along the interface. This results in N − 2 equations[

(xi − xi−1)
2 + (ri − ri−1)

2
]
−

[
(xi − xi+1)

2 + (ri − ri+1)
2
]

= 0 (5)

for i from 2 to N − 1. The left-hand side of Eq. (5) is further called hi. The radial degree of freedom of
the nodes on the axis of symmetry is constrained and thus h1 and hN are set to zero.

The 2N residual components gi and hi are stored in an array G(X, P ).

G(X, P ) =
[
g1 h1 g2 h2 . . . gN hN

]T (6)

The residual further denotes the L1-norm of this array. The structure solver calculates the interface
position X that results in a residual below the convergence criterion of the structure solver for a given
fluid load P . Its action can thus be summarized as

X = S(P ) (7)

The structure solver is an object oriented C++ code which has been developed by the authors. A modified
version of the structure solver has been used for the simulation of bubble growth and detachment [20].

4 Coupling algorithm

Now the coupling iterations between the flow solver F and the structure solver S to find the steady-state
bubble shape are analyzed. The flow solver is a black box code, which means that it cannot be modified
and that the sensitivity of the output with respect to the input is unknown. Conversely, the structure
solver is an accessible code, which is exploited by the coupling algorithm.

The flow solver first calculates the fluid load for two different bubble shapes chosen by the user,
which are rough estimates of the final solution.

P1 = F (X1) (8)

P2 = F (X2) (9)

These 2 inputs X1, X2 and outputs P1, P2 of the flow solver are stored in a database which will contain
all the inputs and the corresponding outputs of the flow solver during the following coupling iterations.

After these initial calculations, every following coupling iteration (indicated with subscript k, k > 2)
consists of the following steps.



1. A reduced-order model of the flow solver is constructed based on the database of its inputs and
outputs. At the beginning of coupling iteration k, the database contains k − 1 inputs and the
corresponding outputs of the flow solver.

X1 X2 . . . Xk−1 (10)

P1 P2 . . . Pk−1 (11)

This is a database of interface positions and the corresponding fluid loads on the interface. The
state of the entire fluid domain in every coupling iteration is thus not stored. Consequently, the
size of this database is small compared to the storage for the flow domain. The first k − 2 inputs
and outputs are converted into differences relative to the last input and output by subtracting Xk−1,
respectively Pk−1.

∆X1 ∆X2 . . . ∆Xk−2 (12)

∆P1 ∆P2 . . . ∆Pk−2 (13)

with

∆Xi = Xi − Xk−1 (14)

∆Pi = Pi − Pk−1. (15)

This is only possible if there are at least 2 inputs and outputs in the database and thus the preceding
calculations in Eqs. (8-9) are indispensable.

The reduced-order model has to approximate the fluid load P for an arbitrary position of the
interface X . Therefore, X is also converted into a difference ∆X relative to Xk−1.

∆X = X − Xk−1 (16)

∆X is then decomposed as a linear combination of the known ∆Xi with i ranging from 1 to k−2.

∆X ≈ U · α (17)

with

U =
[
∆X1 ∆X2 . . . ∆Xk−2

]
(18)

α =
[
α1 α2 . . . αk−2

]T (19)

This decomposition is approximate as the columns of U are only part of the basis for the space with
all possible ∆X . The coefficients α are calculated with the least squares approach to minimize
the L2-norm of the error between ∆X and U · α.

α =
(
UT · U

)−1 · UT · ∆X (20)

The matrix inversion in the previous equation is cheap as the dimension of the matrix is k − 2.
The inversion fails if the columns of U are linearly dependent.

The change in fluid load ∆Pi that corresponds with every component ∆Xi (i from 1 to k − 2) in
Eq. (17) is known. If the response of the flow solver were linear, then the change in fluid load
corresponding with U · α would be V · α, with

V =
[
∆P1 ∆P2 . . . ∆Pk−2

]
. (21)



The reduced-order model approximates the change in fluid load ∆P that corresponds with ∆X
by V · α. According to the reduced-order model, the fluid load P corresponding with interface
position X is

P = Pk−1 + V · α (22)

= Pk−1 + V ·
(
UT · U

)−1 · UT · ∆X (23)

= Pk−1 + A · (X − Xk−1) (24)

= P̂ (X) (25)

with A the approximate Jacobian of the flow solver, which is built up with inputs and outputs from
the database.

2. The structure solver calculates the position of the interface with Newton-Raphson iterations, indi-
cated with superscript s. The reduced-order model of the flow solver updates the fluid load on the
interface after every Newton-Raphson iteration. It would be very time consuming to use the real
flow solver for this purpose. Moreover, the Jacobian A of the reduced-order model can be inserted
into the Newton-Raphson iterations

Xs+1
k = Xs

k −
[

dG

dX

∣∣∣∣s +
dG

dP

∣∣∣∣s · A]−1

· G(Xs
k, P s

k ) (26)

P s+1
k = P̂ (Xs+1

k ) (27)

where . . . |s signifies that the Jacobian is evaluated in Xs
k, P s

k . The dimension of the matrix is
2N , which is small in comparison with the number of cells in the liquid domain, and thus a direct
solver is used. After every Newton-Raphson iteration, the residual is calculated and compared
with the convergence criterion. At convergence, the nonlinear equations are satisfied (up to the
convergence criterion), even though the reduced-order model is only linear. The reduced-order
model merely helps to obtain convergence of the coupled problem but it does not influence the
final results.

Analysis of the partitioned simulation of coupled problems has demonstrated that the displacement
modes of the interface with a low wave number are most unstable and once these displacement
modes are treated implicitly, as is the case when they are included in the approximate Jacobian,
the coupling iterations will converge quickly [21].

3. Once the structure solver has converged, the flow solver calculates the real fluid load Pk.

Pk = F (Xk) (28)

4. The new input Xk and output Pk of the flow solver are added to the database.

5. The fluid load from the flow solver is inserted into the structure solver and the residual is calcu-
lated. The calculation finishes once the residual is below the convergence criterion.

5 Results and discussion

The partitioned approach to the rising bubble simulation has been applied to Bubble A in Table 1 from
Hnat et al. [5]. This is a spherical cap bubble without skirt, which means that the top of the bubble is
spherical but that the bottom is nearly flat. The surface tension is strong enough to prevent that a skirt
– a trail of small bubbles behind the main bubble – develops. The parameters for this simulation have
been listed in Table 1 and they correspond with a Reynolds number of Re = 19, a Weber number of
We = 15 and an Eötvös number of Eo = 39 if the bubble diameter is used as reference length. The
terminal rise velocity of this bubble is 0.215 m/s.



Table 1: Parameters for the simulation of Bubble A in Table 1 from Hnat et al. [5].

σ 0.0322 N/m
µL 0.118 Pa s
ρL 875.5 kg/m3

g 9.81 m/s2

Figure 1 shows the bubble shape for 80, 120, 160 and 240 nodes on the interface. The origin of
this figure is located at 0.5 m above the bottom of the tank. As the number of nodes on the interface
increases, the difference between the results decreases, indicating grid convergence of the calculations.
This figure also depicts the initial bubble shape (X1), which is a hand-made drawing of the bubble shape.
The second imposed bubble shape (X2) is calculated from the first one as

x′
i = xi ·

(
1 + δ · sin

(
π · i − 1

N − 1

))
(29)

r′i = ri ·
(

1 + δ · sin
(

π · i − 1
N − 1

))
(30)

for i from 1 to N . xi, ri are the coordinates in X1 and x′
i, r

′
i those in X2. The perturbation size δ has

been chosen 0.001, but δ = 0.01 or 0.0001 produces the same results for 120 nodes on the interface.
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Figure 1: Bubble shape for 80, 120, 160 and 240 nodes on the interface, together with the initial bubble
shape (X1). The origin of this figure is located at 0.5 m above the bottom of the tank.

The convergence history of the coupling iterations is shown in Figure 2 for N = 80, 160 and 240.
The convergence history for N = 120 is similar and has been omitted for clarity. The convergence
criterion used is 0.1 Pa because at that point, the maximal node displacement divided by the bubble
radius decreases below 1 · 10−3. The simulations with N = 80, 120, 160 and 240 required respectively



28, 23, 25 and 28 coupling iterations to reduce the residual below the convergence criterion. The number
of coupling iterations for N = 80 is a little higher due to the large displacement of the bubble in that
simulation.
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Figure 2: The convergence history of the normalized residual during the coupling iterations for 80, 160
and 240 nodes on the interface. The residual has been normalized with its initial value.

Table 2 summarizes the position of the bubble apex relative to the origin of Figure 1 and the ratio
B/A as a function of the number of nodes on the interface, where B is the length measured from the
bubble apex to the bottom of the wake and A is the maximum girth dimension of the wake as indicated
on Figure 3. A Richardson extrapolation based on this data has been performed and the error, which is
the relative deviation from the extrapolation, is also tabulated. The decreasing error for increasing N
proves the grid convergence of the results.

Table 2: The position of the bubble apex relative to the origin of Figure 1 and the ratio B/A, where A
and B are indicated on Figure 3, as a function of the number of nodes on the interface. Based on these
data, a Richardson extrapolation has been performed and the error, being the relative deviation from the
extrapolation, has been calculated.

N Position Error B/A Error
[10−3 m] [%] [-] [%]

80 5.320 87.52 1.29 15.18
120 2.843 0.21 1.23 9.82
160 2.839 0.07 1.16 3.57
240 2.837 0.00 1.13 0.89

Extrapolation 2.837 1.12

Finally, Figure 3 compares the calculated bubble shape for N = 240 and the experimental bubble
shape from Figure 1 in Hnat et al. [5]. The experimental part of this Figure is a shadowgraph that
visualizes the bubble without skirt and the flow lines under the bubble. The agreement of experiment
and calculation is excellent with regard to both bubble and wake shape.

The simulations presented above indicate that the steady-state shape of an axisymmetric bubble can



B
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Figure 3: The bubble and wake shape from the simulation for N = 240 (left) and the experimental
results (right) from Figure 1 in Hnat et al. [5]. The experimental part of this Figure is a shadowgraph
and thus shows both the bubble without skirt and the flow lines underneath.

be calculated with a partitioned fluid-structure interaction approach as long as the rise velocity and an
approximation for the initial bubble shape are known. The same accuracy should be obtained with
the monolithic methods mentioned in Section 1 which means that the results in this work, obtained by
coupling well-validated codes, can be used as a benchmark for new monolithic bubble simulation codes.
It should be emphasized that no parameters have been tuned to obtain these results.

The coupling algorithm described in [20] has not been applied to steady-state calculations before.
The inertia of the incompressible fluid does not hinder the convergence of the coupling iterations here.
Not surprisingly, the number of coupling iterations is higher in these steady-state simulations as the
displacement between the initial shape and the final shape is much larger than the displacement in a time
step. This method is therefore limited to situations where a reasonable estimation of the bubble shape is
known and where the interface is quite regular.

It has been demonstrated in [20] that the fluid-structure interaction coupling algorithm is capable of
accelerating unsteady simulations. Future work will be to extend this steady partitioned bubble simula-
tion technique to unsteady three-dimensional simulations and to ensure that it scales well such that more
complex problems like mixing, reaction and cavitation can be tackled.

6 Conclusions

A fluid-structure interaction method has been adopted to calculate the steady-state shape of an axisym-
metric bubble. This method successfully couples an existing and thoroughly validated black box flow
solver with a newly developed, accessible structure solver. The former calculates the flow around the
bubble and the latter the position of the interface which is conceived as a zero-thickness structure. Bub-
ble A in Table 1 from Hnat et al. [5] has been simulated and the grid converged results presented in this
paper bear strong resemblance to experiments.
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