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Models for Irreducible Representations
of Spin(m)

P. Van Lancker, F. Sommen∗ and D. Constales

ABSTRACT In this paper we consider harmonic and monogenic polyno-
mials of simplicial type. It is proved that these polynomials provide explicit
realizations of all irreducible representations of Spin(m).

1 Introduction

Let (e1, . . . , em) be an orthonormal basis of Euclidean space Rm endowed
with the inner product 〈x, y〉 =

∑m
i=1 xiyi, x, y ∈ Rm. By Rm (Cm) we

denote the real (complex) 2m-dimensional Clifford algebra over Rm gener-
ated by the relations e2

i = −1, i = 1, . . . ,m and eiej + ejei = 0, i 6= j. An
element of Cm is of the form a =

∑
A⊂M aAeA, aA ∈ C, M = {1, . . . ,m}

and eφ = e0 = 1. Reversion on Cm is the (principal) anti-involution de-
fined by ẽA = (−1)

s(s−1)
2 , s = ]A and extended by linearity to Cm. Con-
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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55758305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


272 Models for Irreducible Representations of Spin(m).

jugation on Cm is the anti-involution on Cm given by ā =
∑

A⊂M āAēA

where ēA = ēαh
. . . ēα1 and ēj = −ej , j = 1, . . . ,m. Vectors x ∈ Rm

are identified with Clifford numbers x =
∑m

j=1 xjej . The following sub-
groups of the real Clifford algebra Rm are of interest. The Pin group
Pin(m) is the group consisting of products of unit vectors in Rm; the
Spin group Spin(m) is the subgroup of Pin(m) consisting of products of
an even number of unit vectors in Rm. For an element s ∈ Pin(m) the
map χ(s) : Rm → Rm : x 7→ sxs̃ induces an orthogonal transformation
of Rm. In this way Pin(m) defines a double covering of the orthogonal
group O(m). The restriction of this map to Spin(m), x :7→ sxs̄ then de-
fines a double covering of the rotation group SO(m). The Dirac operator
on Rm is given by ∂x = e1∂x1 + . . . + em∂xm

. In spherical coordinates
x = ρω, ρ = |x| = (x2

1 + . . . + x2
m)1/2 and ω ∈ Sm−1, Sm−1 being the

unit sphere in Rm, the Dirac operator admits the polar decomposition
∂x = ω(∂ρ + 1

ρΓω) where Γω = −x ∧ ∂x is the spherical Dirac opera-
tor on Sm−1. In terms of the momentum operators Lij = xi∂xj

− xj∂xj
,

i, j = 1, . . . ,m on Rm the Γ-operator is given by Γ = −
∑

i<j eijLij while
the Laplace-Beltrami operator 4S =

∑
i<j L2

ij = Γ(m− 2− Γ).
The theory of harmonic functions of a matrix variable was presented in

detail in [GM]. They consider simplicial harmonics (i.e. harmonic polyno-
mials of a matrix variable invariant under the action of SL(r)) which pro-
vide models for irreducible representations of SO(m) with integer weight
(k, . . . , k, 0, . . . , 0) (r times k). This leads to the idea to look for models of
half integer weight irreducible representations of Spin(m) inside spaces of
monogenic functions of several vector variables. This theory was already de-
veloped to some extent in [Co] (in the case of several quaternionic variables
see e.g. [ABLSS], [Pa] and [Pe]). As a matter of fact, to obtain polynomial
irreducible representations of Spin(m) we look to spaces of polynomials
which are already irreducible with respect to the action of GL(m). These
are the so called simplicial polynomials or polynomials of Young type. To
obtain models for all integer (half integer) weight representations we then
impose harmonicity (monogenicity) conditions. This leads to the notion of
simplicial harmonic (monogenic) system. The models for the irreducible
representations of Spin(m) arise from the construction of specific highest
weight vectors. In the framework of Clifford algebra, weight vectors for
the fundamental representations were first constructed in [DS]. Later on
weight vectors for arbitrary (half)-integer weights were given in [So3]. Al-
though these weight vectors satisfy the simplicial (monogenic) harmonic
system, it took some extra ideas by the first author and basic facts from
[FH] to prove that they generate the spaces of simplicial (spinor valued
monogenic) scalar valued harmonic polynomials. As a result the simplicial
harmonic and monogenic system are (up to isomorphism) the most refined
Spin(m)-invariant systems of partial differential equations and thus pro-
vide the basic building blocks for any Spin(m)-invariant system.
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2 Irreducible Representations of GL(m) and
Polynomials of Simplicial Variables

Polynomials of k vector variables x1, . . . , xk where xl =
∑m

j=1 xljej can be
regarded as polynomials on Rk×m or on Rkm by the identification:

X =

 x1

...
xk

 =

 x11 · · · x1m

...
...

xk1 · · · xkm

 = (xlj)

The space of these polynomials will be denoted as P[x1, . . . , xk]. Its sub-
space of polynomials homogeneous of degree li in each vector variable xi

will be denoted by Pl1,...,lk [x1, . . . , xk]. The Fischer inner product on these
space is the usual Fischer inner product on polynomials of km scalar vari-
ables given by

〈P (x1, . . . , xk), Q(x1, . . . , xk)〉 =
[
P̄ (

∂

∂x1

, . . . ,
∂

∂xk

)Q(x1, . . . , xk)
]
0

(0)

=
[
P̄ (

∂

∂xlj
)Q(xlj)

]
0

(0)

and 〈R((gt)−1)P,R(g)Q〉 = 〈P,Q〉. Obviously polynomials of different de-
gree of homogeneity are orthogonal with respect to this inner product. The
right regular representation of GL(m) on P[x1, . . . , xm] or on a subspace
of homogeneous polynomials of fixed degree of homogeneity is given by:

R(g)P (x1, . . . , xm) = P (Xg) = P (x1g, . . . , xmg), g ∈ GL(m).

Up to equivalence all irreducible representations of GL(m) can be labelled
by m-tuples l = (l1, . . . , lm) of integers such that l1 ≥ · · · ≥ lm. An
explicit realization of these irreducible representations within the space
Pl1,...,lm [x1, . . . , xm] can be obtained by imposing row homogeneity condi-
tions on these polynomials. This can be achieved by specifying an extra left
group action on Pl1,...,lm [x1, . . . , xm]. This goes as follows (see e.g. [GR]).
Let Nm ⊂ GL(m) be the subgroup of GL(m) consisting of lower triangular
matrices such that all elements on the diagonal are one. The subspace of
Pl1,...,lm [x1, . . . , xm] consisting of polynomials invariant under the left ac-
tion of Nm, i.e. P (NmX) = P (X) is denoted by PNm

l1,...,lm
[x1, . . . , xm]. It

can be proved that this space is irreducible for the right regular represen-
tation of GL(m) and provides a model for the irreducible representation
with weight l = (l1, . . . , lm). We write:

PNm

l1,...,lm
[x1, . . . , xm] ∼= (l1, . . . , lm).
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This irreducible representation is completely determined by specifying its
highest weight vector

wl1,...,lm(x1, . . . , xm; e1, . . . , em)
= 〈x1e1〉l1−l2〈x1 ∧ x2e1 ∧ e2〉l2−l3 · · · 〈x1 ∧ · · · ∧ xme1 ∧ · · · ∧ em〉lm

where

〈x1 ∧ · · · ∧ xke1 ∧ · · · ∧ ek〉 = −[(x1 ∧ · · · ∧ xk)(e1 ∧ · · · ∧ ek)]0

= det

 〈x1e1〉 · · · 〈x1ek〉
...

...
〈xke1〉 · · · 〈xkek〉

 .

Thus
PNm

l1,...,lm
[x1, . . . , xm] = spanR{R(g)wl1,...,lm}.

It follows from Schur’s lemma that the weight vector wl1,...,lm is the repro-
ducing kernel of PNm

l1,...,lm
[x1, . . . , xm], i.e.

PNm

l1,...,lm
(x1, . . . , xm) = Dl1,...,lm〈w̄l1,...,lm(x1, . . . , xm; ·), PNm

l1,...,lm
(·)〉

for some non zero constant Dl1,...,lm . Consider now the representation of the
upper triangular subgroup (all diagonal elements equal to one) Um = N t

m

on Pl1,...,lm [x1, . . . , xm] given by:

ρ(u)P (X) = P (utX), u ∈ Um

and its derived representation given by:

(ρ̃(A)P )(X) =
d

dt
((ρ(exp tA)P )(X)) |t=0

where A belongs to the Lie algebra of Um. This algebra can be identified
with the algebra generated by the vector fields 〈xi∂xj

〉; j > i or equivalently
by the algebra generated by 〈xi∂xi+1〉; i = 1, . . . ,m − 1. Summarizing we
thus get the following equivalent characterizations of the irreducible repre-
sentation l = (l1, . . . , lm).

PNm

l1,...,lm
[x1, . . . , xm]

= {P ∈ Pl1,...,lm [x1, . . . , xm] : 〈xi∂xi+1〉P = 0, i = 1, . . . ,m− 1}

= {Pl1,...,lm(x1, . . . , xm) = Pl1,...,lm(x1, x1 ∧ x2, . . . , x1 ∧ · · · ∧ xm)}

A pure k-vector of the form x1∧· · ·∧xk is called a simplicial variable and
a variable of the form x1, x1 ∧x2, . . . , x1 ∧ · · · ∧xm is called a flag variable.
A polynomial P (x1, x1 ∧x2, . . . , x1 ∧ · · · ∧xm) depending on a flag variable
will be referred to as a simplicial polynomial.
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3 Simplicial Harmonic and Monogenic Polynomials

In this section we define some important SO(m) and Spin(m) invariant
systems of partial differential equations. Let P ∈ P[x1, . . . , xk]. Then we
call P harmonic if P satisfies the harmonic system of equations:

4xi
P (x1, . . . , xk) = 0, i = 1, . . . , k

〈∂xi
∂xj

〉P (x1, . . . , xk) = 0, i 6= j

where 4xi
denotes the Laplacian in the vector variable xi. The space of

these polynomials will be denoted by H[x1, . . . , xk]. This definition of har-
monicity corresponds to the notion of harmonic polynomials of matrix vari-
able described by Gilbert and Murray in [GM].
A polynomial P is called monogenic in several vector variables if it satisfies
the monogenic system (see also [Co], [Pe]):

∂xiP (x1, . . . , xk) = 0, i = 1, . . . , k. (1)

The space of monogenic polynomials is denoted by M[x1, . . . , xk]. Clearly
the monogenic system refines the harmonic system:
M[x1, . . . , xk] ⊂ H[x1, . . . , xk].
The corresponding Fischer decompositions are given by (see also [GM], [Co]
and [So1]):

P[x1, . . . , xk] =

= H[x1, . . . , xk]⊕⊥

(
k∑

i=1

|xi|2P[x1, . . . , xk] +
∑
i<j

〈xixj〉P[x1, . . . , xk]


= M[x1, . . . , xk]⊕⊥

(
k∑

i=1

xiP[x1, . . . , xk]

)
.

It is important to notice that the decompositions between brackets are not
unique. Only the harmonic or monogenic part of a polynomial are uniquely
determined. These systems can be further refined by considering them on
homogeneous polynomials of simplicial type, leading to the following defi-
nitions.
A polynomial P ∈ Pl1,...,lk [x1, . . . , xk] satisfies the simplicial harmonic sys-
tem if P is harmonic and of simplicial type, i.e:

4xi
P (x1, . . . , xk) = 0, i = 1, . . . , k

〈∂xi∂xj 〉P (x1, . . . , xk) = 0, i 6= j

〈xi∂xi+1〉P (x1, . . . , xk) = 0, i = 1, . . . , k − 1.

The Lie algebra generated by the operators 41, 〈xi, ∂xi+1〉, i = 1, . . . , k− 1
is the algebra consisting of the operators determining the harmonic system,
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together with the operators coming from the action of the upper triangular
group Uk. Hence the simplicial harmonic system is equivalent to

x1 7→ Pl1,...,lk(x1, x1 ∧ x2, . . . , x1 ∧ · · · ∧ xk) (2)

is harmonic in x1. This space will be denoted by HNk

l1,...,lk
[x1, . . . , xk]. Sim-

plicial harmonic polynomials of the form P (x1 ∧ · · · ∧ xk) are exactly the
harmonics studied by Gilbert and Murray in connection with equal weight
representations of SO(m).
A polynomial P ∈ Pl1,...,lk [x1, . . . , xk] satisfies the simplicial monogenic
system if P is monogenic and of simplicial type, i.e:

∂xiP (x1, . . . , xk) = 0, i = 1, . . . , k
〈xi∂xi+1〉P (x1, . . . , xk) = 0, i = 1, . . . , k − 1,

or equivalently, by taking commutators of ∂x1 , 〈xi, ∂xi+1〉

x1 7→ Pl1,...,lk(x1, x1 ∧ x2, . . . , x1 ∧ · · · ∧ xk) (3)

is monogenic x1. This space will be denoted by MNk

l1,...,lk
[x1, . . . , xk].

4 Irreducible Representations of Spin(m)

Let us recall some facts related to the algebraic construction of irreducible
representations of Spin(m) (see also [GM] and [FH]). Up to equivalence
the unitary irreducible Spin(m)-modules can be labelled by considering
the action of the maximal torus of Spin(m):

T = {s = exp(
1
2
e12t1) · · · exp(

1
2
e2M−1,2M tM ), tj ∈ R,M = [

m

2
]}.

Let R(s) : Spin(m) → V be an irreducible representation of Spin(m). If we
restrict this representation to the maximal abelian subgroup T of Spin(m),
the space V splits into weight subspaces generated by eigenvectors v satis-
fying

R(exp(
1
2
e12t1) · · · exp(

1
2
e2M−1,2M tM ))v = exp i(l1t1 + · · ·+ lM tM )v.

The eigenvalues are determined by M -tuples l = (l1, . . . , lM ) consisting
entirely of either integer or half integer numbers. They are the so called
weights of the representation. These weights can be ordered lexicograph-
ically: l = (l1, . . . , lM ) > l′ = (l′1, . . . , l

′
M ) if the first non zero difference

li − l′i is positive. In this way V may be identified with an ordered set of
M -tuples which is the same for equivalent representations. In this set of M -
tuples a unique weight can be singled out by considering the action of the
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Weyl group on the ordered weights. The Weyl group acts as a permutation
group on the numbers determining the weights together with an arbitrary
or even number of changes of signs when m is odd or even. Factoring out
this action one can see that V contains a unique highest weight with respect
to the ordering defined above. These are called highest weights and are of
the form:

l = (l1, . . . , lM ) : l1 ≥ l2 ≥ . . . ≥ lM if m = 2M + 1
l = (l1, . . . , lM ) : l1 ≥ l2 ≥ . . . ≥ |lM | if m = 2M

where all li ∈ Z or all li ∈ 1
2Z. By a theorem of Cartan the weight sub-

space corresponding to the highest weight is one dimensional; it is gen-
erated by the highest weight vector (defined up to a multiple). Moreover
each M -tuple of the form above is actually the highest weight of exactly
one irreducible representation of Spin(m). This gives the correspondence
between highest weights or highest weight vectors and unitary irreducible
Spin(m)-modules. Of particular importance are the so called fundamental
(the notion of fundamental we use is not the standard one) weights. These
are the highest weights of the form:

(1, 0, . . . , 0), . . . , (1, . . . , 1), (
1
2
, . . . ,

1
2
)

if m = 2M + 1, and

(1, 0, . . . , 0), . . . , (1, . . . , 1), (
1
2
, . . . ,

1
2
), (1, . . . , 1,−1), (

1
2
, . . . ,

1
2
,−1

2
)

if m = 2M .
Remark that we also consider (1, . . . , 1), (m odd) and (1, . . . , 1, 0),
(1, . . . ,±1), (m even) to be fundamental. Strictly speaking they are not
fundamental in the standard sense because they can be realized inside
tensor products of the other (standard) fundamental weights. All other
irreducible representations of Spin(m) can be built from these fundamen-
tal representations by a procedure called Cartan product. Let (V,R) and
(V ′, R′) be irreducible representations with weights l = (l1, . . . , lM ) and
l′ = (l′1, . . . , l

′
M ) and corresponding weight vectors wl and wl′ . Then the

tensor product (V ⊗ V ′, R ⊗ R′) is also a representation of Spin(m) and
usually splits in a lot of irreducible subpieces. However one piece is canon-
ically defined. By considering the action of the Weyl group on the weight
decomposition of this tensor product one arrives at the highest weight oc-
curring in V ⊗ V ′. This weight is given by (l1 + l′1, . . . , lM + l′M ) and has
weight vector wl⊗wl′ . By a theorem of Cartan it occurs exactly once in the
decomposition of V ⊗ V ′. The projection of V ⊗ V ′ on the highest weight
subspace is the Cartan product V [×]V of two irreducible representations.
Now any highest weight can be written uniquely as a linear combination of
our fundamental highest weights where the coefficient of the fundamental
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half integer weight representation is either zero or one (in case m is even we
take the convention that the weights (1, . . . , 1,−1), ( 1

2 , . . . , 1
2 ,− 1

2 ) only oc-
cur if the last number in a general highest weight is negative). Therefore an
arbitrary highest weight can be obtained in a canonical way inside a tensor
product of (symmetric) tensor powers of the fundamental representations
by means of the Cartan projection. If for example m = 2M + 1, the irre-
ducible representation s1(1, 0, . . . , 0)+ s2(1, 1, 0, . . . , o)+ · · ·+ sM (1, . . . , 1)
can be realized inside

Es1,...,sM
= Syms1(1, 0, . . . , 0)⊗ Syms2(1, 1, 0, . . . , 0)⊗ · · ·⊗

SymsM (1, . . . , 1)

while the representation s1(1, 0, . . . , 0)+s2(1, 1, 0, . . . , 0)+· · ·+sM (1, . . . , 1)
+( 1

2 , . . . , 1
2 ) can be realized inside

E′
s1,...,sM

= Es1,...,sM
⊗ (

1
2
, . . . ,

1
2
),

or in the submodule

(l1, . . . , lM )⊗ (
1
2
, . . . ,

1
2
).

Let E be a representation space of Spin(m) corresponding to a representa-
tion R. The Lie algebra of Spin(m) can be identified with the space Rm,2

of bivectors in Rm. Its infinitesimal representation is given by

dR(w)f = lim
ε→0

1
ε
(R(exp(εw)− 1)f.

The Casimir operator of the representation R is then defined by

C(R) =
1
4

∑
i<j

dR(eij)2.

The Casimir operator C(R) acts by scalar multiplication on the R-irre-
ducible pieces occurring in E. Its spectrum depends only on the highest
weights characterizing the irreducible pieces and not on the specific way
how the irreducible pieces are realized inside E. But there is no 1 − 1
correspondence between eigenspaces of the Casimir operator and highest
weights because different highest weights can produce the same eigenvalue
for the action of the Casimir operator. This has to do with the fact that
also higher order operators (which commute with all Spin(m)-invariant
operators) are needed to determine the highest weights in a unique way.
However, on the canonical representation space E = Es1,...,sM

the Casimir
operator C(R) behaves much better. We know that

Es1,...,sM
= (s1 + · · ·+sM , s2 + · · ·+sM , . . . , sM )⊕ lower highest weights .
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Now C(R) acts by scalar multiplication on each irreducible submodule oc-
curring in Es1,...,sM

. In particular C(R) acts by multiplication with some
constant Cs1,...,sM

on the leading weight space. It can be proved (see [FH])
that the action of C(R) on the remaining highest weights is scalar multi-
plication with constants which are all different from Cs1,...,sM

. This means
that inside Es1,...,sM

the irreducible representation (s1 + · · ·+ sM , . . . , sM )
is completely determined by the action of the Casimir operator. The same
is also true for the realization of (s1 + · · · + sM + 1

2 , . . . , sM + 1
2 ) inside

E′
s1,...,sM

. This result will prove to be very helpfull in the sequel.
We will now show how this abstract considerations can be made con-

crete in the language of Clifford algebra (see also [DS] and [So3]). Let s ∈
Spin(m); consider the following two unitary representations of Spin(m):

H(s)P (x1, . . . , xk) = sP (s̄x1s, . . . , s̄xks)s̄
L(s)P (x1, . . . , xk) = sP (s̄x1s, . . . , s̄xks).

To define representations of Pin(m) one just replaces s̄ by s̃. The H-
representation may act on the space of harmonic polynomials and actually
defines a representation of SO(m) while the L-representation will act on
monogenic polynomials. Both representations can be restricted to the cor-
responding subspaces of homogeneous simplicial harmonic or monogenic
polynomials:

H(s)Pl1,...,lk(x1, . . . , x1 ∧ . . . ∧ xk) = sPl1,...,lk(s̄x1s, . . . , s̄x1 ∧ . . . ∧ xks)s̄

and

L(s)Pl1,...,lk(x1, . . . , x1 ∧ . . . ∧ xk) = sPl1,...,lk(s̄x1s, . . . , s̄x1 ∧ . . . ∧ xks).

In case of scalar valued simplicial harmonic polynomials the H-representa-
tion is the usual representation of SO(m). The Casimir operators corres-
ponding to this representations were already considered in [So2]. Let Lxl,ij =
xli∂xlj

− xlj∂xli
be the ij-momentum operator in the variable xl. Let

4S,xl
=
∑

ij L2
xl,ij

be the Laplace-Beltrami operator in the variable xl

and 4S,xrxs
=
∑

i<j Lxr,ijLxs,ij be the “mixed” Laplace-Beltrami opera-
tor. The Casimir operators of both representations are then given by

1
4
C(H) =

∑
i<j

(Lx1,ij + · · ·+ Lxk,ij)2

=
k∑

l=1

4S,xl
+ 2

∑
1≤i<j≤k

4S,xixj

=
k∑

l=1

4S,xl
+ 2

∑
1≤i<j≤k

〈xi, xj〉〈∂xi , ∂xj 〉−

−〈xj , ∂xi
〉〈xi, ∂xj

〉+ 〈xj , ∂xj
〉
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while
1
4
C(L) =

∑
i<j

(Lx1,ij + · · ·+ Lxk,ij +
1
2
eij)2

=
1
4
C(H) +

k∑
i=1

Γxi
− m(m− 1)

8
.

From this it easily follows that the spaces of harmonic and monogenic
simplicial polynomials are eigenspaces of the C(H) and C(L) Casimir op-
erators respectively. The action of 1

4C(H) on HNk

l1,...,lk
[x1, . . . , xk] produces

the eigenvalue

−
k∑

j=1

lj(lj + m− 2j) ,

while the action of 1
4C(L) on MNk

l1,...,lk
[x1, . . . , xk] gives the eigenvalue

−
k∑

j=1

lj(lj + m− 2j + 1)− m(m− 1)
8

.

Models for fundamental representations can be realized inside the complex
Clifford algebra Cm. To see this, consider the actions of Spin(m) on Cm

given by
l(s)a = sa or h(s)a = sas̄.

This leads to the fundamental representations l of Spin(m) on spinor spaces
S and h of Spin(m) on k-vector spaces Cm,k, k ≤ M . In the odd dimen-
sional case we consider the basic isotropic vectors

Tj =
1
2
(e2j−1 − ie2j), T̄j = −1

2
(e2j−1 + ie2j)

and the idempotents Ij = Tj T̄j ; then the product I = I1 . . . IM is primitive
idempotent; the ideal C+

mI is minimal and gives a model for the spinor
space (see e.g. [DSS]). The action of the maximal torus gives

l(s)I = exp
1
2
(t1e12 + · · ·+ tMe2M−1,2M )I

= exp
i

2
(t1 + · · ·+ tM )I;

and the weight is given by ( 1
2 , . . . , 1

2 ). Next for the representation h one
uses the null-k-vectors

T1 ∧ · · · ∧ Tk, k = 1, . . . ,M

and the representation is given by

h(s)T1 ∧ · · · ∧ Tk = sT1 ∧ · · · ∧ Tks̄ = exp i(t1 + · · ·+ tk)T1 ∧ · · · ∧ Tk
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so that the weights are given by (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1).
Alternatively, these fundamental representations can also be realized by the
highest weight vectors 〈x1, T1〉, 〈x1∧x2, T1∧T2〉, . . . , 〈x1∧· · ·∧xm, T1∧· · ·∧
TM 〉. These weight vectors then simply generate the spaces of 1- up to M -
linear alternating forms. To produce highest weight vectors for irreducible
representations where the numbers determining the weight are all equal
we now take symmetric tensor powers of these fundamental highest weight
vectors T1, . . . , T1∧· · ·∧Tm or equivalently of 〈x1, T1〉, . . . , 〈x1∧· · ·∧xM , T1∧
· · · ∧ TM 〉. This may be done in a concrete way using polynomial functions
of simplicial variables

〈x1 ∧ · · · ∧ xk, T1 ∧ · · · ∧ Tk〉sk

on which the spin group acts like

H(s)F (x1 ∧ · · · ∧ xk) = F (s̄x1 ∧ · · · ∧ xks)

and the weight is found from the action of the maximal torus on this highest
weight vector

H(s)〈x1 ∧ · · · ∧ xk, T1 ∧ · · · ∧ Tk〉sk = exp(si(t1 + · · ·+ tk))

〈x1 ∧ · · · ∧ xk, T1 ∧ · · · ∧ Tk〉s,

i.e. the weight is given by (s, s, . . . , s, 0, . . . , 0) (where s appears k times).
It is not hard to see that this highest weight vector is simplicially har-
monic or equivalently, harmonic of a matrix variable. The space of sim-
plicially harmonic functions HNk

s,...,s,0,...,0[x1, . . . , xk] is then the irreducible
space to which this highest weight vector belongs. Models for all irreducible
representations with integer weight are obtained by taking further tensor
products of these highest weight vectors, i.e. by considering the simplicial
functions

F (x1, · · · , x1 ∧ · · · ∧ xM ) = 〈x1, T1〉s1 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM ,

whereby the representation of Spin(m) on simplicial scalar functions is
given by

H(s)F (x1, · · · , x1 ∧ · · · ∧ xM ) = F (s̄x1s, . . . , s̄x1 ∧ · · · ∧ xMs).

For the action of the maximal torus on the highest weight vectors we find

H(s)〈x1, T1〉s1 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM

= exp i((s1 + · · ·+ sM )t1 + · · ·+ sM tM )〈x1, T1〉s1 · · ·
〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM
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i.e. the weight is given by (s1 + · · ·+ sM , s2 + · · ·+ sM , . . . , sM ). Models for
all irreducible representations with half integer weight are now easily ob-
tained by multiplying this highest weight vector further with the primitive
idempotent I , i.e. to consider the spinor valued function

F (x1, · · · , x1 ∧ · · · ∧ xM ) = 〈x1, T1〉s1 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM I

whereby the representation of Spin(m) on spinor valued simplicial func-
tions is given by

L(s)F (x1, · · · , x1 ∧ · · · ∧ xM ) = sF (s̄x1s, . . . , s̄x1 ∧ · · · ∧ xMs).

For the action of the maximal torus on the highest weight vector we obtain

L(s)〈x1, T1〉s1 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM I

= exp i((s1 + · · ·+ sM +
1
2
)t1 + · · ·+ (sM +

1
2
)tM )

〈x1, T1〉s1 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM I

i.e. the weight is (s1 + · · ·+ sM + 1
2 , . . . , sM + 1

2 ). If we make this choice for
the highest weight vectors, there are the following observations that can be
made in the odd dimensional case. Using the H-representation each weight
vector
wl1,...,lM (x1, . . . , xm;T1, . . . , TM )

= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2〉l2−l3 . . . 〈x1 ∧ . . . ∧ xMT1 ∧ . . . ∧ TM 〉lM

and the corresponding irreducible representation belong to one space
HNM

l1,...,lM
[x1, . . . , xM ] of simplicial harmonic polynomials. This however is

not enough to conclude that this space of simplicial harmonic polynomials
itself is irreducible. To establish this we need to go back to our construc-
tion of the irreducible representation (l1, . . . , lM ). By Cartan projection
this irreducible representation is canonically realized inside a tensor prod-
uct of symmetric powers of the fundamental representations. This tensor
product contains in particular the space of simplicial harmonic polynomials
HNM

l1,...,lM
[x1, . . . , xM ]. Let Cl1,...,lM be the eigenvalue of the Casimir opera-

tor C(H) acting on the irreducible representation (l1, . . . , lM ). As pointed
out before, inside this tensor product Ker(C(H)−Cl1,...,lM ) ∼= (l1, . . . , lM ).
Because the highest weight vectors belong to exactly one space of har-
monic polynomials of simplicial type and these polynomials are already
eigenspaces of C(H) we thus obtain

HNM

l1,...,lM
[x1, . . . , xM ] ∼= (l1, . . . , lM )

where we consider scalar valued polynomials. If we now consider the L-
representation, then

wl1,...,lM (x1, . . . , xm;T1, . . . , TM )I1 . . . IM

= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2〉l2−l3 . . .
〈x1 ∧ . . . ∧ xMT1 ∧ . . . ∧ TM 〉lM I1 . . . IM ,
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together with the irreducible representation it generates under the action
of L, belongs to exactly one space MNM

l1,...,lM
[x1, . . . , xM ] of simplicial mono-

genic polynomials. Because this space is an eigenspace of the Casimir op-
erator C(L), it is now sufficient to consider spinor valued simplicial mono-
genic polynomials and to apply the same line of thinking as for the H-
representation. We thus obtain

MNM

l1,...,lM
[x1, . . . , xM ] ∼= (l1 +

1
2
, . . . , lM +

1
2
)

where the polynomials under consideration take values in the spinors. In the
even dimensional case (m = 2M) the construction of highest weight vectors
is similar except for the fact that there are now two inequivalent spinor
spaces which lead to inequivalent basic representations of Spin(m) namely
the spinor spaces C+

mI+ and C+
mI− whereby the primitive idempotents I+

and I− are given by

I+ = I1 . . . IM−1IM , I− = I1 . . . IM−1I
′
M ,

and
I ′M = T̄MTM =

1
2
(1 + iem−1em).

This has to do with the fact that the pseudoscalar E = e1 . . . em is
actually Spin(m)-invariant and has square (−1)M . Hence there are two
invariant projectors

P+ =
1
2
(1 + (−i)ME) and P− =

1
2
(1− (−i)ME)

onto the eigenspaces of E and, as we also have that I+ = P+I+ and I− =
P−I−, the spinor spaces C+

mI+ and C+
mI− are inequivalent under the action

of the representation l of Spin(m). The weights are obtained from the action
of the maximal torus and given by ( 1

2 , · · · , 1
2 ) resp. ( 1

2 , · · · ,− 1
2 ). Remark

that we also have that C−mI+
∼= C+

memI+
∼= C+

mI−em as equivalent spin
representations. In the same way, the space of M -vectors in Cm splits into
two inequivalent representations. The M -null frame T1 ∧ · · · ∧ TM satisfies

P+(T1 ∧ · · · ∧ TM ) = T1 ∧ · · · ∧ TM and P−(T1 ∧ · · · ∧ TM ) = 0

while the M -null frame T1 ∧ · · · ∧ T̄M satisfies

P−(T1 ∧ · · · ∧ T̄M ) = T1 ∧ · · · ∧ T̄M and P+(T1 ∧ · · · ∧ T̄M ) = 0.

These null frames provide weight vectors for representations of weight
(1, . . . , 1, 1) and (1, . . . , 1,−1) respectively. In terms of M -linear alternating
forms F (x1 ∧ · · · ∧xM ), these representations are given by forms satisfying
respectively the scalar system of equations

P−(∂x1 ∧ · · · ∧ ∂xM
)F (x1 ∧ · · · ∧ xM ) = 0
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and
P+(∂x1 ∧ · · · ∧ ∂xM

)F (x1 ∧ · · · ∧ xM ) = 0,

generating together the space of M -linear alternating forms. For the con-
struction of models for irreducible representations of Spin(m) with half
integer weight we now use two types of highest weight vectors

F+ = 〈x1, T1〉s1〈x1 ∧ x2, T1 ∧ T2〉s2 · · ·
〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ TM 〉sM I+,

F− = 〈x1, T1〉s1〈x1 ∧ x2, T1 ∧ T2〉s2 · · ·
〈x1 ∧ · · · ∧ xM , T1 ∧ · · · ∧ T̄M 〉sM I−,

and the corresponding weights are (s1 + · · · + sM + 1
2 , · · · ,±(sM + 1

2 )).
To obtain models for irreducible representations with integer weights one
just leaves away the factors I+, I− in the above definition of F+, F−. For
this choice of the highest weight vectors we now have that in case of the
H-representation both the weight vectors

wl1,...,lM (x1, . . . , xm;T1, . . . , TM )
= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2〉l2−l3 . . . 〈x1 ∧ · · · ∧ xMT1 ∧ · · · ∧ TM 〉lM

and

wl1,...,lM (x1, . . . , xm;T1, . . . , T̄M )
= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2〉l2−l3 . . . 〈x1 ∧ · · · ∧ xMT1 ∧ · · · ∧ T̄M 〉lM

belong to one space HNM

l1,...,lM
[x1, . . . , xM ] of simplicial harmonic polynomi-

als. Now the representation s1(1, 0, . . . , 0) + s2(1, 1, 0, . . . , 0) + · · ·+
sM (1, . . . , 1,±1) is realized inside

Es1,...,sM−1,±sM
= Syms1(1, 0, . . . , 0)⊗ Syms2(1, 1, 0, . . . , 0)⊗ · · ·⊗

SymsM (1, . . . , 1,±1).

In case sM = 0, the last symmetric tensor power in the above tensor prod-
uct does not occur and we can immediately apply the argument with the
Casimir operator as in the odd dimensional case, i.e.

HNM

l1,...,lM−1,0[x1, . . . , xM ] ∼= (l1, . . . , lM−1, 0).

Consider now the case where the last number in the weight is positive. Be-
cause (1, . . . , 1,+1) generates only half of the M -linear alternating forms,
the space SymsM (1, . . . , 1,+1) can not be identified with the space of sim-
plicial polynomials PNM

sM ,...,sM
[x1, . . . , xM ]. This means that we cannot em-

bed simplicial harmonics directly into Es1,...,sM−1,sM
. The extra conditions
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are found as follows. By the Capelli identity the generalized Euler operator
〈x1 ∧ · · · ∧ xM , ∂x1 ∧ · · · ∧ ∂xM

〉 can be expressed as

det


〈x1, ∂x1〉+ M − 1 〈x1, ∂x2〉 · · · 〈x1, ∂xM

〉
〈x2, ∂x1〉 〈x2, ∂x2〉+ M − 2 · · · 〈x2, ∂xM

〉
...

...
...

〈xM , ∂x1〉 〈xM , ∂x2〉 · · · 〈xM , ∂xM
〉


where the determinant of the M ×M -matrix of non commuting variables
Xij is given by

det (Xij) =
∑

σ∈SM

signσXσ(1)1 · · ·Xσ(M)M .

Because simplicial polynomials P (x1, x1∧x2, . . . , x1∧· · ·∧xM ) are annihi-
lated by the vector fields 〈xi, ∂xj 〉, j > i, it follows that only the diagonal
elements of this matrix contribute:

〈x1 ∧ · · · ∧ xM , ∂x1 ∧ · · · ∧ ∂xM
〉Pl1,...,lM (x1, x1 ∧ x2, . . . , x1 ∧ · · · ∧ xM )

=
M∏

j=1

(lj + M − j)Pl1,...,lM (x1, x1 ∧ x2, . . . , x1 ∧ · · · ∧ xM ),

lj being the degree of homogeneity in xj . For ∂x1 ∧ · · · ∧ ∂xM
acting on

simplicial polynomials we have the Fischer decomposition

PNM

l1,...,lM
[x1, . . . , xM ] = (PNM

l1,...,lM
[x1, . . . , xM ] ∩ Ker (∂x1 ∧ · · · ∧ ∂xM

))
⊕⊥x1 ∧ · · · ∧ xMPNM

l1−1,...,lM−1[x1, . . . , xM ].

Let now P be a polynomial which belongs to the first space in the above
decomposition. As the weight vector wl1,...,lM reproduces the space of sim-
plicial polynomials PNM

l1,...,lM
[x1, . . . , xM ], it follows that the Fischer inner

product

〈∂x1 ∧ · · · ∧ ∂xM
wl1,...,lM (x1, . . . , xM ; ·), P (·)〉 = 0.

Thus by the above Fischer decomposition

∂x1 ∧ · · · ∧ ∂xM
wl1,...,lM (x1, . . . , xM ;u1, . . . , uM ) = Qu1 ∧ · · · ∧ uM

for some simplicial polynomial Q. This polynomial can be identified using
the identity for the action of the generalized Euler operator on simplicial
polynomials, i.e.

∂x1 ∧ · · · ∧ ∂xM
wl1,...,lM (x1, . . . , xM ;u1, . . . , uM )

=
M∏

j=1

(lj + M − j)wl1−1,...,lM−1(x1, . . . , xM ;u1, . . . , uM )

u1 ∧ · · · ∧ uM .
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Remark that in this way we can also inbed the integer weight represen-
tations of Spin(m) in spaces of Cm,M -valued simplicial monogenic poly-
nomials. The identity above now clearly shows which conditions must be
imposed on the simplicial harmonic polynomials to embed them in the ten-
sor product Es1,...,sM−1,+sM

. As a matter of fact, these polynomials must
be null solutions of the scalar system of equations determined by the com-
ponents of P−(∂x1 ∧ · · · ∧ ∂xM

). Now we are in a situation to follow the
same line of thinking as in the odd dimensional case and we have

HNM

l1,...,lM
[x1, . . . , xM ] ∩ Ker P−(∂x1 ∧ · · · ∧ ∂xM

) ∼= (l1, . . . , lM−1,+lM )

HNM

l1,...,lM
[x1, . . . , xM ] ∩ Ker P+(∂x1 ∧ · · · ∧ ∂xM

) ∼= (l1, . . . , lM−1,−lM ),

and
HNM

l1,...,lM
[x1, . . . , xM ] ∼= (l1, . . . , lM−1,+lM )⊕

(l1, . . . , lM−1,−lM ), (lM > 0).

Of course this characterization remains true if lM = 0, but now the ex-
tra systems of scalar equations are satisfied in a trivial way and are ac-
tually redundant. In case lM > 0, this splitting is very natural because
HNM

l1,...,lM
[x1, . . . , xM ] is actually an irreducible Pin(m)-module correspond-

ing to the weight (l1, . . . , lM ). The important fact here is that in case of the
Pin-representation either the M -frame T1∧· · ·∧TM or T1∧· · ·∧ T̄M gener-
ate the whole space of M -linear alternating forms, so the conditions arising
from the components of P−(∂x1 ∧ · · · ∧ ∂xM

) or P+(∂x1 ∧ · · · ∧ ∂xM
) do not

occur. By regarding the irreducible Pin(m)-module HNM

l1,...,lM
[x1, . . . , xM ]

(lM > 0) as a Spin(m)-module, it splits as a sum of two irreducible
Spin-modules: (l1, . . . , lM−1,+lM ) ⊕ (l1, . . . , lM−1,−lM ). The two extra
Spin(2M)-invariant systems of scalar equations then simply identify the
sign of the last number in the weight. Let us consider as an example
the one variable case: m = 2,M = 1. Vectors x ∈ R2 are written as
x = e1x1 + e2x2 while the Dirac operator is given by ∂x = e1∂x1 + e2∂x2 .
Irreducible representations of Pin(2) are labelled by numbers k ∈ N and
the corresponding models are given by harmonic polynomials (in R2) which
are homogeneous of degree k. As Spin(2)-representations, the spaces of ho-
mogenous harmonic polynomials split into two pieces given by the kernel
of the components of P−∂x or P+∂x. Now

P+∂x = (
1− ie12

2
)∂x =

e1 − ie2

2
(∂x1 + i∂x2)

P−∂x = (
1 + ie12

2
)∂x =

e1 − ie2

2
(∂x1 − i∂x2)

and P+∂xP−∂x = −1+ie12
2 (∂2

x1
+∂2

x2
). Hence, as irreducible Spin(2)-modules,

the harmonic polynomials should be annihilated by the appropiate Cauchy-
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Riemann operators:

(+k) ∼= anti holomorphic polynomials homogeneous of degree k
(−k) ∼= holomorphic polynomials homogeneous of degree k.

In case of the L-representation we can follow the same procedure. Both
the weight vectors

wl1,...,lM (x1, . . . , xm;T1, . . . , TM )I1 . . . IM

= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2
l2−l3〉 . . .

〈x1 ∧ · · · ∧ xMT1 ∧ · · · ∧ TM 〉lM I1 . . . IM

and
wl1,...,lM (x1, . . . , xm;T1, . . . , T̄M )I1 . . . I ′M

= 〈x1T1〉l1−l2〈x1 ∧ x2T1 ∧ T2〉l2−l3 . . .

〈x1 ∧ · · · ∧ xMT1 ∧ · · · ∧ T̄M 〉lM I1 . . . I ′M

belong to the same space PNM

l1,...,lM
[x1, . . . , xM ] of simplicial monogenic poly-

nomials. Now the representation s1(1, 0, . . . , 0) + s2(1, 1, 0, . . . , 0) + · · · +
sM (1, . . . , 1,±1) +( 1

2 , . . . , 1
2 ,± 1

2 ) = (l1 + 1
2 , . . . , lM−1 + 1

2 ,±(lM + 1
2 )) can

be realized inside

E′
s1,...,sM−1,±sM

= Es1,...,sM−1,±sM
⊗ (

1
2
, . . . ,

1
2
,±1

2
),

or in the submodules of spinor valued simplicial harmonics

(l1, . . . , lM−1,+lM )⊗ (
1
2
, . . . ,

1
2
,+

1
2
) and

(l1, . . . , lM−1,−lM )⊗ (
1
2
, . . . ,

1
2
,−1

2
)

As in the integer weight case, we now immediately have for lM = 0:

PNM

l1,...,lM−1,0[x1, . . . , xM ] (C+
mI+ − valued) ∼= (l1 +

1
2
, . . . , lM−1 +

1
2
,+

1
2
)

PNM

l1,...,lM−1,0[x1, . . . , xM ] (C+
mI− − valued) ∼= (l1 +

1
2
, . . . , lM−1 +

1
2
,−1

2
),

i.e., the ± 1
2 at the end of the weights are distinguished by considering the

appropiate spinor values. Let us now consider the case where the last num-
ber in the weight is positive. To embed the spinor valued (corresponding to
I) simplicial monogenics in E′

l1,...,lM−1,+lM
we have to impose the condition
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that its harmonic components belong to the right space of simplicial har-
monics. This means that these simplicial monogenics should be annihilated
by the Spin(2M)-invariant scalar system of equations determined by the
components of P−(∂x1 ∧ · · · ∧ ∂xM

). Applying now the argument with the
Casimir operator we thus get for spinor valued (corresponding to C+

mI+)
polynomials:

PNM

l1,...,lM
[x1, . . . , xM ] ∩ Ker ( components of P−(∂x1 ∧ · · · ∧ ∂xM

))
∼= (l1 +

1
2
, . . . , lM−1 +

1
2
,+(lM +

1
2
)).

or in case of spinor values corresponding to C+
mI−:

PNM

l1,...,lM
[x1, . . . , xM ] ∩ Ker ( components of P+(∂x1 ∧ · · · ∧ ∂xM

))
∼= (l1 +

1
2
, . . . , lM−1 +

1
2
,−(lM +

1
2
)).

We now conjecture that in both cases the system of scalar equations deter-
mined by the components of P−(∂x1 ∧ · · · ∧ ∂xM

) and P+(∂x1 ∧ · · · ∧ ∂xM
)

are actually redundant; they should be satisfied automatically by sim-
plicial monogenics taking values in the appropiate spinor spaces. Now
PNM

l1,...,lM
[x1, . . . , xM ] (CmI+ valued) is an irreducible Pin(m)-module cor-

responding to the weight (l1 + 1
2 , . . . , lM−1 + 1

2 , lM + 1
2 ). Regarding it as a

Spin(m)-module, it splits as a direct sum of the two irreducible Spin-
representations (l1 + 1

2 , . . . , lM−1 + 1
2 , lM + 1

2 ) and (l1 + 1
2 , . . . , lM−1 +

1
2 ,−(lM + 1

2 )), lM > 0. On the level of Clifford algebra, this splitting comes
from the decomposition of the values of the space of CmI+-valued simpli-
cial monogenics: CmI+ = C+

mI+ ⊕ C−mI+
∼= C+

mI+ ⊕ C+
mI−em. Clearly the

space of C+
mI+-valued simplicial monogenics contains the weight vector

wl1,...,lM (x1, . . . , xm;T1, . . . , TM )I1 . . . IM

while the space of C+
mI−em-valued simplicial monogenics contains the in-

equivalent weight vector

wl1,...,lM (x1, . . . , xm;T1, . . . , T̄M )I1 . . . I ′Mem.

Hence for simplicial monogenics or half integer weight representations the
consideration of the appropiate values makes the “extra” scalar system of
equations needed in the integer weight case superfluous. We thus conclude:

PNM

l1,...,lM
[x1, . . . , xM ] ∼= (l1 + 1

2 , . . . , lM−1 + 1
2 ,+(lM + 1

2 ))

where the polynomials are C+
mI+-valued, and

PNM

l1,...,lM
[x1, . . . , xM ] ∼= (l1 + 1

2 , . . . , lM−1 + 1
2 ,−(lM + 1

2 ))

where the polynomials are C+
mI−-valued.
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