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ABSTRACT: Mass spectrometry-driven proteomics is increas-
ingly relying on quantitative analyses for biological discoveries.
As a result, different methods and algorithms have been
developed to perform relative or absolute quantification based
on mass spectrometry data. One of the most popular quantifica-
tion methods are the so-called label-free approaches, which
require no special sample processing, and can even be applied
retroactively to existing data sets. Of these label-free methods,
the MS/MS-based approaches are most often applied, mainly
because of their inherent simplicity as compared to MS-based
methods. The main application of these approaches is the
determination of relative protein amounts between different
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samples, expressed as protein ratios. However, as we demonstrate here, there are some issues with the reproducibility across
replicates of these protein ratio sets obtained from the various MS/MS-based label-free methods, indicating that the existing
methods are not optimally robust. We therefore present two new methods (called RIBAR and xRIBAR) that use the available MS/
MS data more effectively, achieving increased robustness. Both the accuracy and the precision of our novel methods are analyzed and
compared to the existing methods to illustrate the increased robustness of our new methods over existing ones.

KEYWORDS: quantitative proteomics, label-free, quality control

1. INTRODUCTION

In modern high-throughput proteomics studies, shotgun
techniques and high-end instruments allow thousands of pep-
tides and proteins to be identified with relative ease. These
peptide identifications and their inferred proteins provide a static
snapshot of (a part of) the proteome of the studied biological
system." Such snapshots can be made dynamic and more infor-
mative by relying on quantitative proteomic techniques that can
establish (relative) amounts of proteins in similar samples.
Quantitative approaches for shotgun experiments broadly fall
into two categories: label-based and label-free approaches.” In
the former, peptides are labeled with an isobaric or isotopic label
prior to MS and MS/MS analysis. The latter, on the other hand,
do not require these additional, sometimes time-consuming, and
often expensive protocol steps. Additionally, the absence of
specialized sample treatment also allows the label-free methods
to be applied retroactively to previously acquired data. The dif-
ferent label-free methods can provide both absolute protein
concentrations as well as relative protein concentration changes,
based on information from either the MS or the MS/MS spectra
acquired. Of these, MS/MS-based label-free methods are typi-
cally much easier to perform because they rely on information
already present for the peptide identification procedure, where-
as MS-based label-free methods require complex and CPU
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intensive algorithms for chromatogram alignment, accurate MS
peak picking, and peptide intensity calculation.”

Several different label-free MS/MS-based methods have been
developed over the past few years to perform MS/MS-based
label-free quantification. These methods rely on different as-
pects (or a combination of aspects) of the MS/MS information
including peptide identification count, identified spectrum count,
and the sum of MS/MS fragment ion intensity. Typical examples
of the various methods in use are provided by the NSAF
(Normalized Spectral Abundance Factor)® method for spectrum
counting, the emPAI (exponentially modified Protein Abun-
dance Index)* method for peptide counting, and the SIn
(normalized Spectral Intensity)® method for MS/MS fragment
ion intensity summing. It is of note that these three algorithms
were initially developed to estimate the absolute protein abun-
dance in an experiment. However, if two experiments are
performed, the corresponding protein abundance change be-
tween the two experiments can be calculated by simply taking the
ratio of both absolute protein abundance estimations. As we
will show here, however, there are important caveats relating to
relative label-free quantification for these three approaches,
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which include the generation of discontinuous ratio distributions,
and a lack of robustness in obtaining protein ratios between
samples when the proteins were identified by different peptide
sets in the different experiments. To address these issues, we have
developed two new methods for relative label-free quantification,
which are presented and carefully benchmarked here. Our results
show that our novel methods exhibit better robustness than
existing methods, and we further validate our approaches by
examining the precision and accuracy of their results within and
across sets. Throughout, we compare our algorithms with the
three existing algorithms outlined above.

2. EXPERIMENTAL SECTION

2.1. Data Sets

Two publicly available data sets were used in this study. The
first data set is a study of the NCI funded CPTAC (Clinical
Proteomic Technology Assessment for Cancer) Network.
CPTAC benchmarks and develops standardized technologies
and methodologies to enable researchers to conduct and com-
pare protein research.®’ In the sixth study of the CPTAC
network, identical samples were analyzed by different labora-
tories on different instruments to benchmark and analyze the
interlaboratory variation and to enable proteomic quality
assessment.”” Here, only raw data results from one laboratory
(LTQ-Orbitrap@86, CPTAC experiment identification number
104, Tranche download hash: NGX3cBUAZXSWvc+6XF-
NIdVhpLPJTO871zZAxUQmwwR2KHUwWDrdFwV1dso3bvx{-
7HeXZ4C/juqwEUIz4boCOH3HcLrxEAAAAAAAAMDw==
were used to do the analyses.” In this study, five yeast lysates
were spiked with different concentrations of the Sigma UPS-1
mixture of 48 human proteins. These samples were analyzed in
triplicate on an LT Q-Orbitrap XL generating three data sets for
each spiked-in concentration of the Sigma UPS-1 mixture. Only
the two highest spiked-in UPS-1 mixture concentrations (yeast
digests (60 ng/uL) spiked in with either 6.7 fmol/uL or 20 fmol/uL
of the Sigma UPS-1 mixture) were used here as these generated
the most UPS-1 protein identifications yielding nine binary
comparisons between the two triplicates. Detailed information
concerning the yeast lysate, digestion and mass spectrometric
analysis can be found in.®” Mgf files were generated from the raw
Thermo results files with DtaSuperCharger.®

Identification of the mgf spectra was performed according to
the original protocol as described in% using a local installation of
Mascot (Version 2.2.04) and the yeast UniprotKB/Swiss-Prot
protein database (version 15.14), supplemented with the 48
protein sequences of the UPS-1 mixture. Only doubly and triply
charged tryptic peptides with at most one allowed missed
cleavage were considered for identification. Precursor mass
tolerance was set to 10 ppm and fragment ion mass tolerance
to 0.5 Da. The identification confidence was set to 0.05 and
variable modifications were set to: acetylation of the protein
N-terminus, oxidation of methionine, pyro-glutamate formation
for N-terminal glutamine, carbamidomethyl cysteine formation
and pyro-carbamidomethyl cysteine formation for N-terminal
cysteine. No fixed modifications were set.

The second data set is one generated by The Proteome
Informatics Research Group (iPRG) of the Association of
Biomolecular Resource Facilities (ABRF) for their 2009 study.
The goal of this study was to compare and benchmark the
reproducibility of the observed differences between two complex
samples. Here, an E. coli lysate (spiked in with bovine serum albumin)

was separated in two sets of multiple lanes on a 1D SDS-PAGE
gel and from each set of lanes a different part of the gel was
excised. Following protein band excision, pooling and in-gel
trypsin digestion, five technical replicates were analyzed on a
LTQ-Orbitrap XL mass spectrometer for both sets. Twenty-five
pair wise comparisons can therefore be calculated by making use
of the five replicates of the two different samples. Detailed
information concerning this study and the protocol can be found
on http://www.abrf.org/index.cfm/group.show/Proteomicsin-
formaticsResearchGroup.53.htm. The mgf files were down-
loaded via Tranche (download hash: m680i/1/ SlvignH2tMib+
3jUsCzV+hrXBcTKp400Qsh0Y5G21a+2zvzRpWh9BDz9no
80Ff/YaDz5xbEcg3/ yFnLNAeskAAAAAAAAKKg::). Identi-
fication was performed using a local installation of Mascot
(Version 2.2.04) and the protein database provided by the iPRG
containing UniProtKB/Swiss-Prot E. coli proteins, common con-
taminants and bovine serum albumin, along with the concate-
nated decoy database consisting of the reversed sequences.
Precursor mass tolerance was set to 10 ppm and fragment ion
mass tolerance to 0.8 Da. Only doubly and triply charged tryptic
peptides with one allowed missed cleavage were considered for
identification. The identification confidence was set to 0.05 and
carbamidomethyl cysteine formation was set as the fixed mod-
ification, while the allowed variable modifications were oxidation
of methionine and pyro-glutamate formation for N-terminal
glutamine.

2.2. Protein Quantification

Three existing MS/MS-based label-free methods were used to
calculate protein ratios for the two data sets. These methods were
originally designed for absolute protein abundance estimation,
but relative protein abundance differences were estimated by
calculating the ratio of the absolute estimations between samples.
The Exponentially Modified Protein Abundance Index (emPAI)
is a peptide counting method, based on the Protein Abundance
Index (PAI) that is calculated by dividing the number of different
observed modified peptides by the number of theoretically
observable unmodified peptides. A modified peptide is a peptide
that carries an amino acid modification (e.g., methionine oxida-
tion, N-terminal acetylation). Peptides with the same peptide
sequence but with a different modification status are seen as two
different modified peptides. An observable peptide is then de-
fined as any unmodified tryptic peptide with a mass between the
smallest and largest mass among the identified peptides. The PAI
value is then exponentially modified (10°*" ~ ') to obtain the
emPAlI value. The protein content (mol %) is calculated by nor-
malizing the emPAI by the sum of the emPAI values for all pro-
teins in the set.* The normalized spectral abundance factor
(NSAF) is a spectrum counting method. The spectral abundance
is calculated by counting the number of identified spectra and
then normalizing this count by the protein length in residues.
This abundance is then further normalized by the sum of all the
protein abundances in the set.*> The spectral index normalized
(SIn), finally, uses fragment ion intensity count, along with
spectral counting. A spectral index is calculated per protein by
taking the sum of the summed intensities of the matched
fragment ions across all spectra assigned to that protein. This
spectral index is then divided by the sum of all protein spectral
indexes.’

In addition to the three existing methods, two new methods
were used to calculate protein ratios for the two data sets. The
RIBAR method (see further) relies only on peptides found in
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Figure 1. Data used in this plot represents one of the twenty-five pairwise comparisons obtained from the iPRG data set, here replicate one from set one
and replicate one of set two are used. Identical plots for the other 24 comparisons are given in Supporting Information. (A) Protein ratios calculated by
the different quantification methods as a density plot. The protein ratio standard deviation is indicated in the legend. (B, C and D) Protein ratio
estimations are divided in two groups with different number of identified peptides. The first group consists of ratios from proteins with only one or two
distinct identified peptide sequences, and the second group from proteins with three or more distinct identified peptide sequences. The
Kolmogorov—Smirnov distance between these two distributions is indicated at the top of each chart. (E, F and G) Distributions of ratios divided in
seven groups based on different percentages of overlapping peptides. This percentage is calculated by dividing the number of shared unique modified
peptides (found in both sets) by the sum of the total number of unique modified peptides in the first and second set. The average pairwise
Kolmogorov—Smirnov (multiKS) distances of the different protein ratio distributions are indicated above the chart.

both samples. For each sample, the MS2 intensities of all peaks of
each unique modified peptide for all of its peptide-to-spectrum
matches are summed. A peptide ratio for each unique modified
peptide is then calculated by using these abundance estimations.
By averaging the calculated log2 modified peptide ratios for a
protein, a log2 ratio for that protein is obtained. In the xRIBAR
method (see further) an extra ratio for each protein is obtained
by calculating the ratio of the average summed MS2 intensities in
all spectra linked to the protein. This extra ratio is either added to
the list of modified peptide ratios obtained from overlapping
peptides, or it is used as the sole metric for proteins that have no
overlapping peptides between samples.

3. RESULTS

We evaluate the operational characteristics of three common
MS/MS-based relative label-free method by comparing three

simple metrics of their performance as applied to the iPRG data
sets. These metrics are summarized in Figure 1 and explained
below. The first metric shows the variation of protein ratios
within one result set. Since only a small fraction of proteins are
typically regulated in quantitative proteomic experiments, most
proteins are unchanged and will have ratios similar to one. The
standard deviation of the protein ratios distribution within an
experiment therefore can be used to indicate the precision of the
method. Obviously, this method relies on the assumption that
the majority of proteins are detected at a fixed ratio (e.g., 1/1).
The protein ratio distribution and standard deviation for the
three methods are given in Figure 1A for one of the 25 iPRG
comparisons (the additional 24 plots are given in Supporting
Information). A density plot and a box plot for the 25 standard
deviations can be found in Figure 2A,B. For this metric, SIn
shows a larger standard deviation than the other two methods,
indicating lower overall precision.
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Figure 2. Protein ratio standard deviations calculated for the twenty-five pairwise comparisons for the iPRG data set are plotted as a (A) density
distribution and (B) box plot. The 25 Kolmogorov—Smirnov distances between the two groups with different numbers of identified peptides are plotted
as a (C) density distribution and (D) box plotD. The 25 averaged pairwise Kolmogorov—Smirnov distances calculated for the 7 ratio groups with
different protein overlapping percentages are plotted as a (E) density plot and (F) box plot. See main text for details.

The second metric tries to estimate the effect of working with a
small set of discrete values in protein abundance estimation. This
is important since spectral or peptide counting methods tend to
work with a small number of discrete integer values (ranging
from 1 to 2 spectra to a few tens of spectra). These discrete values
are commonly normalized either by the length of the proteins or
by the number of possible identifiable peptides. A second
normalization procedure normalizes across the data set, usually
by dividing the individual normalized protein values by the sum
of all normalized protein values in the data set. The end result of
these steps is typically a discontinuous protein ratio distribution
(e.g,0.5,1.0,1.5,2.0, ...). To test the effects of this idiosyncrasy of
the ratio distribution, the protein ratios calculated for the iPRG
study were divided in two groups based on the number of distinct
matching peptides. One group consisted of ratios coming from
proteins with one or two distinct identified peptides, while the
second group consisted of ratios coming from proteins with three
or more distinct identified peptides. The emPAI, NSAF and SIn
protein ratio distributions for 1 of the 25 iPRG comparisons are
given in Figure 1B, C and D, respectively (the additional 24 plots

3186

are given in Supporting Information). The spectrum and peptide
counting methods (NSAF and emPAI) clearly have discontin-
uous ratio distributions for the group of proteins with only one
or two distinct identified peptides. In order to quantify the
difference between the two protein ratio distributions for each
method, a Kolmogorov—Smirnov distance is calculated (indi-
cated as the KS metric in Figure 1B, C and D). A density plot and
a box plot for the 25 KS distances can be found in Figure 2C,D.
Interestingly, the protein ratio distribution of the SIn method is
continuous because it uses the fragment ion intensities within the
MS2 spectra rather than their count, yielding a quasi-continuous
distribution of protein ratios. By comparing the KS distance for
the NSAF and emPAI data with the SIn data, it is clear that
protein ratios calculated by NSAF and emPAI are differently
affected when compared to SIn because of their reliance on
discrete values derived from the number of matching spectra or
peptides.

The third and last metric investigates the effect of identifying a
protein with different sets of peptides in each sample. The
protein abundance in each of the compared samples is then

dx.doi.org/10.1021/pr200219x |J. Proteome Res. 2011, 10, 3183-3189
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derived from different peptides that can all possess different MS
properties. In such a situation, the basic assumption that the
protein quantification method is independent of the sample
studied can be violated. Indeed, if different peptide sequences
are used to identify a protein in different samples, a different
number of MS/MS spectra can be recorded for that protein in
each sample even though the protein is present in equal amounts,
for instance because the peptides identified in one sample tend to
ionize better than the ones identified in the other sample. Of
course, the same logic applies to summed fragment ion inten-
sities for the various peptides. To investigate the impact of this
unwanted variation, the protein ratios calculated for the iPRG
study were divided in seven different groups based on how
strongly their identifying peptides overlap between samples. A
percentage is calculated by dividing the number of shared unique
modified peptides (identifying the protein in both samples) by
the sum of the total number of unique modified peptides in the
first and second set. A high percentage overlap thus represents a
larger degree of similarity between the protein abundance
estimation in each sample. Seven different groups are obtained
by splitting the data in decreasing steps of 20% overlap, and
maintaining 100% and 0% as separate categories. The protein
ratio distributions for these seven groups are plotted for NSAF,
emPAI and SIn in Figure 1E, F and G, respectively for one of the
25 iPRG comparisons (the other 24 are provided in Supporting
Information). The average pairwise Kolmogorov—Smirnov
(multiKS) distance between the different protein ratio distribu-
tions is indicated in Figure 1E, F and G. A density plot and a box
plot for the 25 multiKS distances can be found in Figure 2E,F.
Taken together, the plots and metrics indicate that proteins with
a different percentage of overlap between the two samples have
different protein ratio distributions. Indeed, the plots show
broader distributions for proteins with less overlap. On the basis
of the multiKS distance, however, it can be seen that the SIn
method has a more consistent performance than NSAF and
emPAL

The three metrics taken together indicate that no single
method clearly outperforms the others. SIn is affected by a large
protein ratio variation whereas NSAF and emPAI are influenced
by discrete protein abundance values and show a decreased
performance for proteins with low overlap.

To optimize the performance of label-free proteomics across
these three metrics, we propose two new relative label-free
protein quantification methods that robustly combine the var-
ious strengths of the existing algorithms.

The first method, called robust intensity based averaged ratio
(RIBAR), only relies on peptides found in both samples to
calculate a protein ratio. First, the abundance of each unique
modified peptide is calculated for each sample by adding up the
summed MS2 intensities of all peaks in all of its peptide-to-
spectrum matches. These abundances then allow a peptide ratio
to be calculated for each modified peptide. By subsequently
averaging the calculated log2 modified peptide ratios for a
protein, a log2 ratio for that protein is obtained. Since this
method will rely exclusively on peptides found in both samples, it
cannot calculate ratios for proteins without overlapping peptides.
To compensate for this loss of quantifiable proteins, a second,
derived method was developed, called extended robust intensity
based averaged ratio (xRIBAR). Here, an extra ratio for each
protein is obtained by simply calculating the ratio of the average
summed MS?2 intensities in all spectra matching to the protein.
This extra ratio is either added to the list of modified peptide

ratios obtained from overlapping peptides, or it is used as the sole
metric for proteins that have no overlapping peptides between
samples. As such, this derived method ensures that a protein ratio
can be calculated for every protein that can be identified in both
samples, even if there is no peptide overlap. For proteins with at
least some overlapping peptides, we can correlate the RIBAR
with the xRIBAR result. As shown in Supplementary Figure 25
(Supporting Information), this correlation is nearly perfect
(Pearson correlation of 0.99).

The three metrics previously used to benchmark the robust-
ness of the existing methods have also been used to test the
robustness of our two proposed methods. The iPRG data set is
again used for benchmarking, but the results across the twenty-
five possible pairwise comparisons are now summarized in a
single plot rather than presented individually. Figures 2A and B
plot the protein ratio standard deviations calculated by the three
existing and two new methods for the twenty-five comparisons.
Both the RIBAR and xRIBAR methods outperform the other
methods, displaying overall much smaller standard deviations.
Figures 2C and D plot the Kolmogorov—Smirnov distance
between the distribution of ratios of proteins with only one or
two distinct modified peptides, and the distribution of proteins
with three or more distinct modified peptides. RIBAR has the
lowest Kolmogorov—Smirnov distances and thus outperforms
existing methods for this metric as well. xRIBAR is slightly worse
than RIBAR, but it still outperforms SIn, that in turn leaves NSAF
and emPAI behind. Figures 2E and F then show the average
pairwise Kolmogorov—Smirnov (multiKS) distance of the ratio
distributions of the seven different groups with different peptide
overlapping percentage (see above for grouping details). RIBAR
and xRIBAR again outperform the existing methods.

The two methods proposed here thus demonstrate their
overall robustness by scoring consistently better than the existing
methods. The crucial innovations in these two methods are the
removal of effects derived from low peptide overlap between
samples, and the use of the practically continuous distribution of
abundance values offered by the total MS2 spectral intensity. The
standard deviations for the individual protein ratios (Figure 2A
and B) are not negatively affected by making these methods
robust; rather the contrary: the standard deviation is lower for the
new methods. The RIBAR method consistently scores better on
the three metrics than its sibling XRIBAR, but is hampered by its
inability to calculate a protein ratio for those proteins that do not
have overlapping peptides across the samples. Overall however,
the performance difference between RIBAR and xRIBAR is much
smaller than the difference in performance between these two
methods and the existing approaches. The slightly reduced perfor-
mance of the xRIBAR method is thus compensated by its ability to
provide a robust protein ratio for every protein that was identified
across the samples, regardless of its peptide-level overlap.

The robustness of existing and new methods was analyzed,
clearly indicating that NSAF and emPAI are the least robust
methods. SIn outperformed the two existing methods when the
robustness is analyzed; however, the standard deviations for
the protein ratios were larger for SIn than for NSAF and emPAL
The new methods presented here show a clear improvement for
the three analyzed metrics, indicating that both RIBAR and
xRIBAR perform better than the existing methods. RIBAR
performs slightly better than xRIBAR but the RIBAR method
is unable to calculate a protein ratio for 7.8% of the proteins on
average for the iPRG data set when compared to xRIBAR and the
existing methods.

3187 dx.doi.org/10.1021/pr200219x |J. Proteome Res. 2011, 10, 3183-3189
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Figure 3. (A and B) Plot standard deviations for the 380 protein ratios that were found in all 25 pairwise comparisons from the iPRG study as a density
plot and a box plot, respectively. (C) Three-hundred forty-seven protein ratios (from nine pairwise comparisons) of the UPS-1 proteins with an expected log2
ratio of —1.577 in the CPTAC study as a density plot. (D) Standard deviation of the UPS-1 protein ratios and the difference from the expected and observed
mean of these proteins for the 9 pairwise comparisons are plotted as a scatter plot. The bigger dot represents the average of the standard deviation and the mean
for the 9 comparisons. The distance of this average to the origin is indicated in the legend. (E) Squared difference of the expected and observed UPS-1 protein

ratios as a box plot.

4. DISCUSSION

Labelfree methods provide an efficient approach to relative
quantitative proteomics, as they base their calculations on readily
available MS/MS data. The most commonly used methods are
emPAI (exponentially modified protein abundance index),* NSAF
(normalized spectral abundance factor)® and SIn (spectral index
normalized),” building on algorithms for peptide counting, spectral
counting and a mix of peptide, spectral and ion counting, respec-
tively. We have here analyzed these existing methods using three
distinct and complementary metrics to uncover their relatively
strengths and shortcomings. The results indicate that NSAF and
emPAI are the least robust methods, but while SIn outperformed
these two methods overall, the standard deviations for the protein
ratios were larger for SIn than for NSAF and emPAI, thus showing
no clear optimal algorithm overall. We therefore proposed two
related new methods, RIBAR and xRIBAR, that calculate protein
ratios based on peptide spectral intensities from peptides identified
across the compared samples. These methods show a clear im-
provement for the three key metrics analyzed here.

In a recent study, we compared the quantification quality of
the three existing methods.” Four different metrics were pro-
posed and tested in that study to allow the benchmarking of
algorithm performance. We have also tested these 4 metrics for
the new methods and compare the results against the existing
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methods. First of all, the reproducibility across different experi-
ments was evaluated for the S methods. A standard deviation was
calculated for each protein that had been quantified in all 25
pairwise iPRG comparisons. This standard deviation is a mea-
surement for the (technical) reproducibility of the protein ratio
calculation. Indeed, a lower standard deviation indicates that
repeated protein ratio estimations are more reproducible. The
standard deviations from the 380 proteins that were quantified
across all 25 pairwise comparisons in the iPRG data set are
plotted in Figure 3A and B. Both the RIBAR and the xRIBAR
methods estimate the protein ratios more consistently than the
existing methods, as indicated by the smaller standard deviations.

Second, the accuracy of the protein ratio estimations was
tested. This was done by looking at the protein ratios for the
spiked in Sigma UPS-1 proteins in the CPTAC data set. Nine
pairwise comparisons can be made between the two triplicate
analyses of a yeast digest with either 6.7 fmol/uL or 20 fmol/uL
of spiked in Sigma UPS-1. The Sigma UPS-1 proteins should
have a protein ratio of 0.335 (6.7/20), translating into a log2
protein ratio of —1.58. The distributions of the UPS-1 protein
ratios for all nine comparisons are plotted in Figure 3 C. On
average, SIn seems to perform best here, since the mean of the
Sigma UPS-1 protein ratios is centered on the expected protein
ratio (indicated by a black vertical line in the plot). However, this
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second metric only reflects the overall accuracy of the experi-
ment, and therefore ignores the accuracy of individual protein
quantification. This accuracy of individual proteins is reflected by
a third metric: the standard deviation across the estimated ratios
for the Sigma UPS-1 proteins. A low standard deviation implies a
consistent ratio for each Sigma UPS-1 protein, whereas a large
standard deviation indicates large differences in estimated ratio for
each protein. Obviously, the Sigma UPS-1 spike is constant, and the
standard deviation across the proteins should correspondingly be
small. Figure 3D plots the nine standard deviations (one for each
pairwise comparison) versus the difference between the mean of the
protein ratios and the known spike-in value in a scatter plot. Note
that we are thus plotting within-experiment precision against within-
experiment accuracy. A bigger dot is furthermore plotted to indicate
the average for each cluster of nine different comparisons. The
distance from this dot to the origin (smaller is better) is given in the
legend. The scatter plot clearly shows that although SIn has very
good accuracy, it has very poor precision when compared to the
other methods. The RIBAR and xRIBAR methods outperform SIn
in terms of precision, and are nearly indistinguishable from emPAI
and NSAF in terms of accuracy and precision.

Lastly, the accuracy on the protein level can be studied by
looking at the squared difference between the expected ratio
value and the estimated protein ratio. The squared differences are
plotted for the Sigma UPS-1 proteins as a box plot in Figure 3E.
The five methods all perform similarly, but RIBAR and xRIBAR
have slightly narrower (and thus more precise) distributions.

In this paper, we outline some issues with the robustness of
protein quantification by MS2-based label-free relative protein
quantification methods, and we proposed two new methods that
are not affected by these issues. We show that our methods are
indeed more robust than existing methods, and that their overall
quantification precision and accuracy is identical to, or better
than existing methods on both the individual protein as well as
the whole experiment-level. Furthermore, our methods achieve
better reproducibility across multiple experiments the RIBAR
and xRIBAR methods presented here thus provide the most
robust, yet accurate and precise protein ratio estimations, while
ensuring optimal across-experiment reproducibility. RIBAR and
xRIBAR are implemented as freely available open source soft-
ware under the permissive Apache2 license and can be down-
loaded from http://code.google.com/p/compomics-ribar/.
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