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Abstract

In this paper, we define twinnings for affine R-buildings. We thus extend the theory
of simplicial twin buildings of affine type to the non-simplicial case. We show how
classical results can be extended to the non-discrete case, and, as an application, we
prove that the buildings at infinity of a Moufang twin R-building have the induced
structure of a Moufang building. The latter is not true for ordinary “Moufang”
R-buildings.
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1 Introduction

Spherical buildings were introduced by Jacques Tits in the 1960s as a geometric tool
to investigate groups of Lie type, Chevalley groups, groups of mixed type and classical
groups. The main result here is the classification of all spherical buildings of rank at least
3 (by J. Tits [12]), and of all so-called Moufang spherical buildings of rank 2 (by J. Tits
and R. Weiss [15]). This theory was extended by F. Bruhat and J. Tits [5] on the one
hand to affine buildings when N. Iwahori and H. Matsumoto [6,7] considered the above
groups over p-adic fields, thus constructing affine BN-pairs in algebraic groups over local
fields. Here the main result is the classification of all affine buildings of rank at least 4 (by
J. Tits [13]). Also, J. Tits considered in [13] not only pure simplicial affine buildings, but
“non-discrete” analogues of these, called “systems of apartments” in [13], and nowadays
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simply referred to as “non-discrete affine buildings”, or briefly (affine) R-buildings. These
relate to groups of Lie type over fields with a non-discrete real valuation.

On the other hand, M. Ronan and J. Tits extended the notion of a spherical building to the
one of a twin building, thus creating a natural geometric framework for the Kac-Moody
groups (unpublished, but see [14]). However, when a Kac-Moody group is of affine type,
then the interplay of the spherical building defined by the group, the affine building defined
by the valuation, the spherical building defined by the group over the residue field, and the
twinning defined by the Kac-Moody group has proved very fruitful in investigating these
groups. As an example we mention various finiteness properties of arithmetic groups,
due to groundbreaking work of H. Abels [1] and P. Abramenko [2], see also [3] for an
introduction and an overview.

In this paper, we join the two above branches of extensions of spherical building theory by
defining (affine) twin R-buildings. These objects must be the primary tools to investigate
groups of Lie type over most non-discrete function fields. Our intention is to lay the
foundation for such a study by establishing the basic theory. It is by no means either
a slight rewriting of the discrete case, nor a simple adaptation of the ordinary affine
R-building theory. The arguments are very different and do indeed provide alternative
proofs for the discrete case. However, note that the type of buildings is restricted to the
affine type, hence it is not surprising that the arguments strongly depend on the affine
structure of the apartments. As such, our results and proofs, read in the discrete case,
give a revision of the basics of the theory of twin buildings of affine type, rewritten in
such a way that the affine structure is prominently used.

Our main result is a generalisation of a result of the second author and K. Van Steen
[11]. Namely, we show that any Moufang affine twin R-building induces the structure of a
Moufang building at infinity. This joins the new world of Moufang twin R-buildings with
the older world of Moufang spherical buildings. At the same time, it feeds the conjecture
that affine twin R-buildings should be classifiable. Note that the main result is not true for
ordinary Moufang R-buildings. It is precisely the twin structure that allows the conclusion.
Also, work of M. A. Ronan [10] on the discrete case already showed that the buildings at
infinity of an affine twin building are rather restricted.

As already mentioned, the theory of simplicial twin affine buildings is included in this
extended theory. However, one must be careful since certain notions known in simplical
building theory are different when formulated in an R-building environment. For instance,
the convex closure of two points in a discrete affine building is, though defined in com-
pletely the same way as the intersection of all roots containing the two points, different
when we view the building as a simplicial complex, than when we view the building as
an R-building (see below for the explanation; basically there are more roots when the
building is conceived as an R-building).

Finally, we remark that, although this theory is highly non-discrete, our methods use
the combinatorics of the Coxeter groups involved, and in particular the discrete spherical
buildings that arise as residues. As such, we can regard this work as an approach of a
non-discrete structure by discrete methods.
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2 Definitions

2.1 R-buildings

Let (W,S) be a finite irreducible Coxeter system. So W is presented by the set S of
involutions subject to the relations which specify the order of the products of every pair
of involutions. This group has a natural action on a real vector space V of dimension |S|
(see for instance [3, Section 2.5]). Let A be the affine space associated to V . Let T be
the group of translations of A. We define the affine reflection group W to be the group
generated by T and W .

Let H0 be the set of hyperplanes of V corresponding to the axes of the reflections in S
and their conjugates. Let H be the orbit of all elements of H0 under W . The elements
of H are called walls and the (closed) half spaces they bound are called half-apartments
or roots. A vector sector is the intersection of all roots that (1) are bounded by elements
of H0, and (2) contain a given point x that does not belong to any element of H0. The
bounding walls of these roots will be referred to as the side-walls of the vector sector. A
vector sector can also be defined as the closure of a connected component of V \ (∪H0).
Any translate under T of a vector sector is a sector, with corresponding translated side-
walls. A sector-facet is an infinite intersection of a given sector with a finite number of
its side-walls. This number can be zero, in which case the sector-facet is the sector itself;
if this number is one, then we call the sector-facet a sector-panel. The intersection of a
sector with all its side-walls is a point which is called the base point of the sector, and of
every sector-facet defined from it.

An affine R-building (also called an affine apartment system, or shortly an R-building)
of type (W,S) (introduced by J. Tits in [13]) is an object (Λ,F) consisting of a set Λ
together with a collection F of injections of A into Λ obeying the five conditions below.
The image of A under an f ∈ F will be called an apartment, and the image of a wall,
sector, half-apartment, . . . of A under a certain f ∈ F will be called a wall, sector,
half-apartment, . . . of Λ.

(A1) If w ∈ W and f ∈ F , then f ◦ w ∈ F .
(A2) If f, f ′ ∈ F , then X := f−1(f ′(A)) is closed and convex in A, and f |X = f ′ ◦ w|X for

some w ∈ W .
(A3) Any two points of Λ lie in a common apartment.

The last two axioms allow us to define a function d : Λ × Λ → R+ such that for any
a, b ∈ A and f ∈ F , d(f(a), f(b)) is equal to the Euclidean distance between a and b in
A.

(A4) Any two sectors contain subsectors lying in a common apartment.
(A5′) Given f ∈ F and a point α ∈ Λ, there is a retraction ρ : Λ → f(A) such that the

preimage of α is {α} and which does not increase d.

We call |S|, which is also equal to dim A, the dimension of (Λ,F). We will usually denote
(Λ,F) briefly by Λ, with slight abuse of notation.
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One can associate spherical buildings of type (W,S) to these R-buildings in two ways.
The first way to do so is to construct the building at infinity. Two sector-facets of Λ will
be called asymptotic if the Hausdorff distance between them is finite. One can show that
d is a metric (i.e. it satisfies the triangle inequality, see for instance [8]), and so this is an
equivalence relation. The equivalence classes (named facets at infinity) form a spherical
building Λ∞ of type (W,S) called the building at infinity of (Λ,F). The chambers of Λ∞
are the equivalence classes of asymptotic sectors. An apartment Σ of Λ corresponds to an
apartment Σ∞ of Λ∞ in a bijective relation. The direction of a sector-facet will be the
facet at infinity it belongs to.

A second way to construct a spherical building is to look at the “local” structure instead
of the asymptotic one. Let α be a point of Λ, and F, F ′ two sector-facets with base point
α. Then these two facets will locally coincide if their intersection is a neighbourhood of α
in both F and F ′. This relation forms an equivalence relation defining germs of facets as
equivalence classes (notation [F ]α). These germs of facet form a (possibly weak) spherical
building [Λ]α of type (W,S), called the residue at α. We will use the notion germ on itself
exclusively for germs of sectors.

There exist various equivalent definitions of R-buildings which can be found in [8] by
A. Parreau. One of these definitions demands that (A1), (A2), (A4) and the following
stronger version of (A3) hold:

(A3’) Any two germs of sectors lie in a common apartment.

If for a germ of facet there is a corresponding sector-facet and a neighbourhood of the
base point of that sector-facet completely lying in a certain set, then we say that this
germ of facet is in that set. The notion of interior point is the one in a topological sense.

The collection F of injections is not determined by the metric space (Λ, d). However the
union of all the possible collections producing the same metric space is again a viable
collection of injections, giving us a maximal set of apartments. We will always consider
that we are in this case. It has the advantage that a subset of Λ isometric to A will be
an apartment (see [8]).

The conditions (A2) and (A3) imply the existence of unique geodesics between any two
points, these will be line segments in apartments. There is also another form of convex-
ity: the Weyl convex hull of two points in an apartment is the intersection of all half-
apartments of this apartment containing both points (this is independent of the choice of
apartment, again see [8]). For a general set X the Weyl convex hull will be the minimal
subset Y of Λ containing X, such that for each p, q ∈ Y , the Weyl convex hull of p and q
is contained in Y .

The metric realisation of an affine building will be an R-building, this case is called the
discrete case.
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2.2 A Weyl distance between germs

In the discrete case each two chambers have a Coxeter group valued distance function
(the Weyl distance). Here we will define a W -distance function on the germs, which we
will also call the Weyl distance. Fix a sector Ψ of A. Now consider two germs C and D
in (Λ,F), then according to (A3’) there exists an f ∈ F and a unique w ∈ W such that
the germ of f(Ψ) is C and the germ of (f ◦w)(Ψ) is D. We set the Weyl distance δ(C,D)
between C and D to be w. Note that this is independent of the choice of Ψ or f .

One can also define a partial order relation on W : for v, w ∈ W we say that v ≤ w if
the Weyl convex hull of any two neighbourhoods in Ψ and w−1(Ψ) of the respective base
points of these sectors contains a neighbourhood of the base point of v−1(Ψ) in v−1(Ψ).

When restricting this partial order relation to W , if w, v ∈ W , then v ≤ w if and only if
there is a v′ ∈ W such that w = v′v and l(w) = l(v′) + l(v) with l the word length of an
element in W defined by its set of generators S. For more information see [3].

2.3 Twinnings

Let (Λ+,F+) and (Λ−,F−) be two R-buildings of type (W,S), and Weyl distances δ+ and
δ− on their respective sets of germs C+ and C−. A codistance function δ∗ : (C+ × C−) ∪
(C− × C+) → W forms a twinning if for each ε ∈ {+,−}, any C ∈ Cε and any D ∈ C−ε,
where w = δ∗(C,D):

(Tw1) δ∗(C,D) = δ∗(D,C)−1,
(Tw2) if C ′ ∈ Cε satisfies δε(C

′, C) = v with vw ≤ w, then δ∗(C ′, D) = vw,
(Tw3) for any v ∈ W , there exists a germ C ′ ∈ Cε with δε(C

′, C) = v and δ∗(C ′, D) = vw.

The collection (Λ+,F+,Λ−,F−, δ∗) will be called a twin R-building of type (W,S). The
buildings (Λ+,F+) and (Λ−,F−) are the components of the twin building. If two germs
C,D have the neutral element e of W as codistance, then we say that C and D are
opposite, or C opD.

3 Properties of Weyl distance in R-buildings

In this section, we list some properties of the Weyl distance in R-buildings for future
reference. Let (Λ,F) be an R-building, C the set of germs of it, and δ the corresponding
Weyl distance. The proofs of the following lemmas are direct or can be derived from [8]
easily.

Lemma 1 If v, w ∈ W and vw ≥ w, then also vw ≥ v−1. 2

Lemma 2 • If C,D ∈ C, then δ(C,D)−1 = δ(D,C).
• If C,D,E are germs in the same apartment, then δ(C,E) = δ(C,D)δ(D,E). 2
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Lemma 3 If C,D,E ∈ C, such that δ(C,D) = v, δ(D,E) = w and vw ≥ w, then
δ(C,E) = vw. 2

Lemma 4 If C,D ∈ C, such that δ(C,D) = v and w ∈ W such that vw ≤ w, then there
is a unique germ E such that δ(D,E) = w and δ(C,E) = vw. 2

Lemma 5 If C,D ∈ C, then δ(C,D) ∈ W if and only if C and D have the same base
point. 2

Lemma 6 Let C,D ∈ C be germs in an apartment Σ with Weyl distance s ∈ S, then
there is a unique root containing D but not C, formed by the base points of all the germs
E with δ(C,E) > δ(D,E). 2

4 Properties of twin R-buildings

We study some properties of twin R-buildings in analogy with the discrete case. In partic-
ular we show the existence of twin apartments, and study the local behaviour in opposite
points and coconvexity. Let (Λ+,F+,Λ−,F−, δ∗) be a twin R-building of type (W,S) and
C+, C− the sets of germs of its components. The symbol ε designates −1 or 1.

4.1 Direct consequences of the definition

Lemma 7 If C ∈ Cε, D ∈ C−ε and δ∗(C,D) = w, then if C ′ ∈ Cε and δε(C,C
′) = w, then

C ′ opD.

Proof. It is trivial that e = w−1w ≤ w, so using (Tw2) and Lemma 2, it follows that
δ∗(C ′, D) = e and C ′ opD. 2

Corollary 8 If C ∈ Cε and Σ−ε is an apartment of (Λ−ε,F−ε), then Σ−ε contains at least
one germ opposite C.

Proof. Choose a germ D in Σ−ε, and let w = δ∗(D,C). There exists a germ D′ in Σ−ε
such that δ−ε(D,D

′) = w. The above lemma now implies that D′ opC. 2

4.2 Local behaviour in opposite points

We say that two points α+ ∈ Λ+ and α− ∈ Λ− are opposite if they are the base points of
opposite germs.

To these two opposite points there are two (possibly non-thick) spherical buildings asso-
ciated: the residues [Λ+]α+ and [Λ−]α− . As chambers of these buildings are germs of the
R-buildings, they have a codistance δ∗ associated. Denote the chamber sets of these two
spherical buildings as Cα+ and Cα− .

Lemma 9 The codistance of two germs C ∈ C+ and D ∈ C− lies in W if and only if their
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base points are opposite points.

Proof. First let C ∈ C+ and D ∈ C− with δ∗(C,D) = w ∈ W . Choose a germ C ′ ∈ C+ such
that δ+(C,C ′) = w. The germs C and C ′ have the same base point because of Lemma 5.
According to Lemma 7, C ′ and D are opposite, so the base points of C and D are opposite
points.

Conversely, let α+ and α− be two opposite points. Suppose that two germs E ∈ Cαε and
F ∈ Cα−ε have as codistance δ∗(E,F ) = w ∈ W . Choose an s ∈ S, and E ′ ∈ Cαε such
that δε(E,E

′) = s with s ∈ S.

• If l(sw) < l(w) (or equivalently sw < w), then due to (Tw2) δ∗(E ′, F ) = sw ∈ W .
• If l(sw) > l(w) (or equivalently sw > w), then due to (Tw3) there is an E ′′ such that
δε(E,E

′′) = s and δ∗(E ′′, F ) = sw ∈ W . If E ′ 6= E ′′, then δε(E
′, E ′′) = s and (Tw2)

gives us that δ∗(E ′, F ) = s(sw) = w ∈ W .

So we can conclude that δ∗(E ′, F ) ∈ W . Repeating the above argument starting from the
opposite germs that two opposite points need to have yields the desired result. 2

This lemma allows us to consider [Λ+]α+ and [Λ−]α− and the W -valued codistance between
their chambers as a spherical twin building.

Corollary 10 (1) If α+ and α− are opposite points then the residues [Λ+]α+ and [Λ−]α−
are isomorphic.

(2) If C ∈ Cε and D ∈ C−ε are opposite germs and w ∈ W , then there is a unique germ
C ′ ∈ Cε such that δε(C

′, C) = δ∗(C ′, D).

Proof. This follows directly from known properties about (discrete) twin buildings, see for
example [3, Section 5.8]. 2

4.3 Twin apartments

A twin apartment of a twin R-building is a pair Σ = (Σ+,Σ−) such that Σ+ is an apartment
of (Λ+,F+), Σ− an apartment of (Λ−,F−), such that each germ of Σε has at most one
(and so exactly one by Corollary 8) opposite germ in Σ−ε.

Let opΣ be the function that maps each germ of Σ to its unique opposite.

Lemma 11 Let Σ = (Σ+,Σ−) be a twin apartment and C,D germs of Σε, then δε(C,D) =
δ∗(C, opΣD).

Proof. Let w = δε(C,D), and v = δ∗(C, opΣD). There is a unique germ D′ in Σε such
that δε(C,D

′) = v. This germ is opposite opΣD because of Lemma 7. According to the
definition of twin apartment, D is equal to D′ and v = w. 2

Corollary 12 Let Σ = (Σ+,Σ−) be a twin apartment and C,D ∈ Cε germs in Σε, then
δε(C,D) = δ−ε(opΣC, opΣD).

Obtained by applying the above lemma twice. 2
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This also implies that the induced map of opΣ on the base points of the germs, is an
isometry between both apartments.

Lemma 13 If C ∈ Cε, D ∈ C−ε, δ∗(C,D) = w and v ∈ W such that vw ≥ w then there is
a unique germ C ′ ∈ Cε such that δε(C

′, C) = v, δ∗(C ′, D) = vw.

Proof. Due to (Tw3) we only have to prove uniqueness here, not existence. A first obser-
vation is that one can suppose that w is the identity element e of W . This is true, because
if one chooses E ∈ Cε such that δε(C,E) = w, then Lemma 7 implies that δ∗(E,D) = e,
and then for a germ C ′ with the properties mentioned in the statement of this lemma,
δε(C

′, E) will be vw according to Lemma 3. So we can suppose w = e without loss of
generality.

Such a germ C ′ exists by (Tw3), and suppose there is different germ C ′′ also satisfying
these conditions.

A second assumption one can make without loss of generality is that the geodesic between
the base points of C and C ′ is disjunct from the boundary of the Weyl convex hull of
these base points, except from the base points themselves. The reason of this is because
if v′v ≥ v for a certain v′ ∈ W , then a germ F ′ and F ′′ will exist by (Tw3) such that
δε(F

′, C ′) = δε(F
′′, C ′′) = v′ and δ∗(F ′, D) = δ∗(F ′′, D) = v′v. Because of Lemma 3, we

have that δε(F
′, C) = δε(F

′′, C) = v′v. Notice that F ′ 6= F ′′ because of Lemma 4. Using a
suitable v′ reduces the problem to the desired situation. So from now on we assume this
extra condition.

Choose an apartment Σ′ containing both C and C ′ (possible by (A3’)) and Σ′′ an apart-
ment containing C and C ′′. Let Ξ′ be the Weyl convex hull of the base points of C and
C ′ and Ξ′′ the Weyl convex hull of the base points of C and C ′′.

Consider the geodesic from the base point of C to the base point of C ′, and another
geodesic to the base point of C ′′. These geodesics start at the same point, but split at a
certain point (possibly an endpoint), denote this point by α.

Suppose that α is not an endpoint of these geodesics. Consider the germ E ′′ of the sector in
Σ′′ with base point α containing C ′′. Using (A3’) one obtains an apartment Σ containing C ′

and this germ. Let f, f ′, f ′′ ∈ F be three injections with images Σ, Σ′ and Σ′′ respectively,
such that f ′′((f ′)−1(C)) = C, f((f ′)−1(C ′)) = C ′ and f ′′((f ′)−1(C ′)) = C ′′ (this is possible
because of (A1) and (A2)). Let Ξ be the image of (f ′)−1(Ξ′) under f . Note that α is an
interior point of Ξ, so E ′′ is contained in both Ξ and Ξ′′. Using f ′ ◦ (f ′′)−1 on Ξ′′ we can
map the germ E ′′ to a germ E ′ in Ξ′, and using the map f ′ ◦ f−1 one obtains another
germ E in Ξ′. Condition (Tw2) applied to both C ′ and C ′′ now implies that E, E ′ and E ′′

all have the same codistance with D. As E and E ′ both lie in Ξ they have to be identical,
but E ′ lies in the convex hull of α and the base point of C ′ and hence in the intersection
of Σ and Σ′, implying that E ′ equals E ′′, which is a contradiction.

Now suppose that α is an endpoint. If α is the base point of both C ′ and C ′′, then we
can similar to the reasoning after the second extra assumption, find two other germs such
that we are back in the previous case.
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If α is the base point of C, then we can use Corollary 10 and the two germs of the sectors
with base point α and containing C ′ and C ′′ to derive a contradiction. 2

Proposition 14 Two opposite germs lie in exactly one common twin apartment.

Proof. Let C ∈ C+ and D ∈ C− be opposite germs. For every w ∈ W let Cw be the unique
germ in C+ such that δ+(Cw, C) = δ∗(Cw, D) = w. We now claim that the collection of
germs {Cw|w ∈ W} is exactly the set of germs in a certain apartment Σ+ of (Λ+,F+).

Consider v and w in W such that vw ≥ w. The unique germ E such that δ+(E,Cw) = v
and δ∗(E,D) = vw (uniqueness follows from the above lemma and vw ≥ w), satisfies
δ+(E,C) = vw due to Lemma 3. Because of the uniqueness of construction of Cvw, E
equals this germ. So we have the following property:

vw ≥ w ⇒ δ+(Cvw, Cw) = v.

This implies that Cw lies in the Weyl convex hull of C and Cvw. An argument similar to
the one used by A. Parreau in [8, Prop. 2.17] now shows that the germs Cw with w in a
certain sector, are exactly the germs in a certain sector with the same base point as C.
Because Cv = Cw implies v = w, all these sectors only have their borders in common with
each other and hence form an apartment.

Similarly, one can define germs Dw (w ∈ W ) and show that they are the germs of an
apartment Σ− of (Λ+,F+).

The next step is to show that Σ := (Σ+,Σ−) is indeed a twin apartment. The property
we need to prove is satisfied trivially for the opposite germs C and D. Choose a w ∈ W ,
then Lemma 7 implies Cw opDw. Set C ′ = Cw and D′ = Dw and construct germs C ′v,
D′v for v ∈ W and apartments Σ′+ and Σ′− similarly as above. If vw > w, then (Tw2)
yields δ∗(Cvw, Dw) = v, implying C ′v = Cvw in this case. So Σ+ and Σ′+ share asymptotic
sectors. Trivially C ′w−1 = C holds, so we can re-apply the same argument with the roles of
C and C ′ switched, which leads to Σ+ and Σ′+ sharing two pairs of asymptotic sectors with
an opposite direction at infinity, and hence equality. Analogously for Σ− = Σ′−. So the
property we need to show for twin apartments is also satisfied for C ′ = Cw and D′ = Dw,
and hence we obtain that Σ is a twin apartment.

Uniqueness follows from the two lemmas above. 2

Corollary 15 Any two germs C and D lie in a twin apartment.

Proof. If C and D lie in a different component of the twin building (C ∈ Cε, D ∈ C−ε) and
δ∗(C,D) = w, let C ′ be a germ in Cε such that δε(C,C

′) = w. Applying the construction
of the above lemma on C ′ and D (which are opposite due to Lemma 7) produces a twin
apartment containing both C and D.

If C and D lie in the same component of the twin building (C,D ∈ Cε), then one can
easily construct a germ E ∈ C−ε with codistance w from C using (Tw3). Then E and D
are opposite and the unique twin apartment that contains both, will also contain C. 2
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4.4 Coconvexity

In (R-)buildings the following property is well known: if two points lie in a certain apart-
ment, then their Weyl convex hull also does. For twin apartments a similar property is
true.

Lemma 16 Let C,C ′ ∈ Cε and D ∈ C−ε with w = δ∗(C,D), v = δε(C
′, C) such that

vw ≥ w and δ∗(C ′, D) = vw, then every twin apartment containing both C and D will
contain C ′.

Let Σ be a twin apartment containing C and D, and let E be the unique germ opposite
D in Σ. Then δε(C,E) equals w and Lemma 3 implies that δε(C

′, E) = vw, which on its
turn implies that C ′ lies in the unique twin apartment through E and D, which is Σ. 2

A twin root α is a pair of roots (α+, α−) of the two components of a twin apartment Σ
such that the roots opΣα+ and α− only have their wall in common while covering Σ− (the
dual condition is then also fulfilled). The properties of these twin roots will be discussed
in more detail in the next section.

Let C ∈ C+ andD ∈ C− be two germs lying in a certain twin apartment Σ. The intersection
of all twin roots in Σ containing both germs will be called the coconvex hull of C and D
(if there are no such twin roots then the intersection is considered to be Σ, which will
be the unique twin apartment containing C and D due to Lemma 14). The next lemma
shows that this is independent of the choice of Σ and so one has that each twin apartment
containing both C and D also contains this coconvex hull.

Lemma 17 The coconvex hull of two germs C ∈ C+ and D ∈ C− is independent of the
apartment in which it is determined.

Proof. Expressing that the base point of a certain germ C ′ lies in the coconvex hull of C
and D is equal to the condition on C ′ in the previous lemma, proving the independency.

2

Similarly one can also define the coconvex hull of two points α ∈ Λ+ and β ∈ Λ−, and for
those an analogous result follows directly.

Corollary 18 The coconvex hull of two points α ∈ Λ+ and β ∈ Λ− is independent of the
apartment in which it is determined.

Proof. By applying the above lemma to all the germs with base point α or β. 2

A subset Ξ of Λ+ ∪ Λ− is said to be coconvex if the intersections of Ξ with the two
components of the twinning are convex and for any two points α ∈ Λ+ and β ∈ Λ− the
coconvex hull of these two points is contained in Ξ.

Corollary 19 The intersection of a set of twin apartments is coconvex.

Proof. Directly from the previous corollary. 2

An interesting thing to note is that two germs are opposite if and only if their coconvex
hull is a twin apartment, while two points are opposite if and only if their coconvex hull
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consists only of these two points.

4.5 Twin roots

In this section we take a closer look at twin roots.

Lemma 20 Let C ∈ C+ and D ∈ C− with δ∗(C,D) ∈ S, then there is a unique twin root
containing both.

Proof. Let s ∈ S be the codistance between C and D. Let Σ be a twin apartment contain-
ing both, and let α be a twin root in Σ containing C and D. As α− has to contain D, but
cannot contain the germ opΣC, and these two germs are at distance s (by Lemma 11),
α− has to be the unique root of Σ− containing C but not opΣC. By Lemma 6, 11 and
the proof of Lemma 14, the germs in that root are exactly the germs E in C− such that if
w = δ−(D,E), then sw > w and δ∗(C,E) = sw. As this condition on E is not dependent
of Σ, all twin apartments containing C and D share this root α− (and also the twin root
α by duality). This also implies uniqueness. 2

Corollary 21 Twin roots are the coconvex hulls of pairs of germs with C ∈ C+ and
D ∈ C− with δ∗(C,D) ∈ S. 2

5 An alternative definition

One can also define twinnings of R-buildings in terms of twin apartments similar to a
definition for (discrete) twin buildings by P. Abramenko and M. Ronan ([4]). We just
cite this equivalent definition, the equivalence in one direction is obvious by the results
obtained above, the proof of the other direction is analogous as in the discrete case and
will be omitted here.

Let (Λ+,F+) and (Λ−,F−) be two R-buildings of type (W,S), with an opposition relation
op ⊂ (Λ+×Λ−)∪(Λ−×Λ+) and subsetA of the pairs {(Σ+,Σ−)|Σε is an apartment of Λε}
called the twin apartments, then there is a twinning if the following 4 conditions are
fulfilled:

(TA1) For every Σ = (Σ+,Σ−) ∈ A, the opposition relation induces an isometry opΣ between
affine real spaces.

(TA2) For all germs C ∈ C+ and D ∈ C− there is a twin apartment containing both.
(TA3) For all Σ,Σ′ ∈ A containing C ∈ C+ and D ∈ C−, there exists an isometry α : Σ→ Σ′

preserving the opposition relation and mapping C and D to themselves.
(TA4) The intersection of two twin apartments is coconvex.

(Coconvexity in the last statement is considered only within both of the two twin apart-
ments, as for a general notion of coconvexity one would need the independency of the
coconvex hull).

Corollary 22 The metric realisation of discrete affine twin buildings form twin R-buildings.
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Proof. The above alternative definition for twin R-buildings is satisfied by the alternative
definition for (discrete) twin buildings by P. Abramenko and M. Ronan ([4]). 2

6 Twinnings and the Moufang property

An automorphism of a twin R-building is a pair of automorphisms of the two components
preserving codistance.

We say that a series of automorphisms gn (n ∈ N) of an R-building induces an automor-
phism of the R-building, if for a point p (and hence each point) of the R-building and
each real number d, there exists an n0 ∈ N so that gn (n ≥ n0) coincides with gn0 for
points at distance less than d from p. One can then define a limit map g of this series.
The definition then implies that g will be an automorphism of the R-building.

Given a twin root α of the twin R-building, the root group Uα is defined to be the set of
automorphisms of the twin R-building such that the germs having a germ of sector-panel
in α, but not completely on the wall of α, are fixed. The elements of the root group Uα
are referred to as the root elations of α.

Lemma 23 If pε and p−ε are opposite points such that p−ε and the germs with base point
pε are fixed by some automorphism g of the twin R-building, then the germs with base
point p−ε are also fixed.

Proof. This follows from the fact that [Λ+]p+ and [Λ−]p− can be considered to be a spherical
twin building. 2

Lemma 24 If a twin apartment Σ containing the twin root α is fixed by some g ∈ Uα,
then g is the identity.

Proof. Each germ with base point in Σ will be fixed due to the previous lemma and basic
properties of spherical buildings. If some point pε of Λε would be fixed, then the germs
based at this point are fixed by Lemma 8 and the previous one. This implies that the
fixed structure of g is open in both components. The fixed structure of an automorphism
is however also closed, so connectedness implies that g is the identity. 2

If the group Uα acts transitively (and hence regularly by the above lemma) on the twin
apartments containing α, we say that α is a Moufang twin root. If every twin root of the
twin R-building is Moufang, then we say that the twin R building is Moufang.

If an affine twin building is Moufang, one can show that the components of it are Moufang
in a classical sense for affine buildings, for a definition see for instance [11]. In this paper
one also proves that the root elations of the affine building of dimension ≥ 2 induce root
elations of the building at infinity of the affine building.

For the non-discrete case, not every root elation at infinity is induced by a given set
of root elations (for a suitable generalisation of the definition of root elation as in [11])
of the R-building. An example of such behaviour is given by R-buildings defined over
certain Hahn-Mal’cev-Neumann series. (Let K be a field, then the formal power series
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f =
∑
i∈R aif

i, where ai ∈ K for each i, and the support ({i ∈ R|ai 6= 0}) is well-ordered
(each subset has a least element), form a field (using ordinary polynomial-like addition
and multiplication).) One can define a set of root elations using monomials, but a series
can not be approached by combining monomials if the support of this series has more than
one limit point. However if we start with the root elations arising from a twin R-building,
we will prove this is still true.

Theorem 25 The building at infinity of a component of a Moufang twin R-building of
dimension ≥ 2 is Moufang, and the root elations are induced by the group generated by
the root elations of the twin R-building.

Proof. Choose a twin apartment Σ = (Σ+,Σ−). Let α be any twin root in Σ and Σ′+ an
apartment containing α+. Let B be some germ in α+.

The first step is to show that there is a series of automorphisms of the twin R-building
inducing an automorphism that fixes α+ and maps Σ+ to Σ′+. Let α1

+ be the root defined
by the intersection Σ+ and Σ′+. As it lies in the twin apartment Σ it can be considered
part of a twin root α1. Using Proposition 14 and applying Lemma 20, one can find a
twin apartment Σ1 containing the root α1 such that the intersection of Σ1

+ with Σ′+ is
more than just α1

+. Because the twin R-building is Moufang, there exists a root elation g1

mapping Σ to Σ1. We now can repeat this procedure, finding a root elation g2 mapping
Σ1 to Σ2, etc.

We claim that h1 := g1, h2 := g1g2, . . . is the desired series. The second step of the proof is
to show that it is impossible that there exist points of Σ+ which cannot be mapped to Σ′+
by any element of this series. So suppose this is the case. Let γ+ be the supremum of the
roots in Σ+ containing α+ that can be mapped to Σ′+ by an element of the series (ordered
by containment). This root is part of a twin root γ of Σ. Let ζ+ be the corresponding root
of Σ′+ (using the canonical isometry from Σ+ to Σ′+ preserving the intersection). Let C
be a germ in γ+, with base point on the wall of γ+. Let D be the image of C under the
opposition isometry of Σ, and E the image of C under the canonical isometry from Σ+

to Σ′+ preserving the intersection.

Note that δ∗(B,D) = δ+(B,C) = δ+(B,E) (by Lemma 11 and construction of the germ
E). Lemma 7 now implies that the germs D and E are opposite. The unique twin apart-
ment Σ′′ containing both also contains B by the proof of Proposition 14. Because B was
chosen freely in α+, it follows that Σ′′ contains this root. Convexity then implies that this
twin apartment contains ζ+.

Let β be the complementary twin root of γ in Σ. As Σ′′ and β− both contain the germ
D, the intersection also has to contain a germ F of which the base point does not lie on
the wall of β−. Let G be the opposite germ of F in Σ′′.

As γ+ was defined as a supremum, there is a minimal n ∈ N such that Σn contains
the germ G. By minimality of n and the definition of root elations it follows that Σn also
contains the opposite germ F . Since also the twin apartment Σ′′ contains both, uniqueness
implies that Σ′′ = Σn. We now have contradiction to γ+ being the supremum of the roots
in Σ+ containing α+ that can be mapped into Σ′+ by an element of the series. This because
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Σn+1
+ has a larger intersection with Σ′+. This finishes the second step of the proof.

In what follows we denote the object at infinity, if it exists, of a given object O by O∞.

The third step is to study the fixed structure of the automorphism hi. It will suffice
however to only consider h1 = g1. Recall that α1

+ is the root defined by the intersection of
Σ+ and Σg1

+ , and that this root defines a twin root α1 of Σ. We denote the wall defined by
α1

+ as M+. Let S∞+ be a chamber at infinity having only an interior panel P∞+ in common
with the root at infinity (α1

+)∞. We want to show that S∞+ is fixed by g1. Choose a point
p+ on the wall M+. Let S+ be the sector with base point p+ and direction S∞+ . Let T+ be
the unique sector-facet of S+ with direction the rank one facet of S∞+ not in P∞+ . So T+

is a half-line starting in p+. If this sector-facet is fixed by g1 then S+ will also be fixed.
Suppose this is not the case.

Let q+ be the last point on this half-line T+ which is fixed (starting from p+). Let C be
the germ of the sector with base point q+ and direction S∞+ . If we can show that this
germ is fixed, then we have found a contradiction. Similar to the way we constructed the
series hi one can now construct an automorphism fj using another twin root of the twin
apartment Σ fixing the intersection of S+ with α1

+ and mapping q+ to a point of α1
+ (we

take the least j such that these conditions are fulfilled). The apartment Σ+ and the facet

P∞+ define a parallel set walls in Σ+. Take the unique such wall N+ containing q
fj
+ . Let

N− be the corresponding wall of Σ− (using the opposition isometry).

Let r+ be a point in the intersection of the walls M+ and N+, and r− the corresponding
opposite point in Σ−. Denote the germ of the sector with base point r+ and containing
Cfj , as D. Let E be the corresponding germ based at r− using the isomorphism between
the spherical residues of r+ and r− (see Corollary 10).

Because of the way we constructed fj and choose the least j such that the conditions were
fulfilled, r− will be fixed by both g1 and fj. The germs E and Efj are fixed by g1, and so
also by the commutator [g1, fj]. The point r+ is also fixed by this commutator, implying
that D, and finally also C is fixed, contradicting the definition of q+.

The last step is to verify that for each point x of the R-building and positive real number
d, there exists an n0 ∈ N, such that if n ∈ N is larger than n0 then gn fixes each point at
distance less that d. This follows from the previous step. 2

7 An example using direct limits

We end this paper by constructing an easy example of a twin R-building which is not
discrete.

Consider any affine irreducible Coxeter system (W,S). Given a field K, there exists a
natural affine (discrete) twin building of type (W,S) over the ring Laurent polynomials
K[t, t−1]. Replacing the dummy variable t by t1/n, one obtains affine twin buildings over
the rings K[t1/n, t−1/n] with n ∈ N\{0}. The metric realisation of the affine twin building
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over K[t1/n, t−1/n] with n ∈ N\{0} can be embedded naturally in the metric realisation
of the affine twin building over K[t1/m, t−1/m] with m ∈ N\{0} when n divides m (with
appropriate normalisation of the distance functions). By taking the direct limit of a tower
of such embeddings one obtains a twin R-building.
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