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The 2-D inplane displacement and strain calculation problem through digital

image processing methods has been studied extensively in the last three decades.

Out of the various algorithms developed, the Newton-Raphson partial differential

correction method is the best performing quality-wise and most widely used in

practical applications despite its higher computational cost. The work presented

in this paper improves the original algorithm by including adaptive spatial reg-

ularization in the minimization process used to obtain the motion data. Results

indicate improvements in the strain accuracy for both small and large strains. The

improvements become even more significant when employing small displacement

and strain window sizes making the new method highly suitable for situations

where the underlying strain data presents both slow and fast spatial variations or

contains highly localized discontinuities. c© 2010 Optical Society of America

OCIS codes: 100.2000, 100.4999, 110.4153, 110.6150

1. Introduction

Digital image correlation (DIC) methods gained wide acceptance in the field of experimental me-

chanics as a reliable tool for the full-field measurement of displacements and strains. Since their

introduction [1–4] various classes of algorithms were developed, the most prominent of these in-

volving the Newton-Raphson method of partial differential correction [5–7]. When compared to

the other methods [8, 9] it shows higher sub-pixel accuracy and allows the reliable use of the more

complex linear and quadratic local motion models at the cost of increased computational complex-

ity and sensitivity to the interpolation method used in the minimization process. The adoption

of the method has grown due to its quality advantages despite the higher computational require-

ments. The latter are becoming less problematic because of the continuous evolution of computing

hardware performances and the fact that DIC methods are usually employed offline. The use of
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interpolants such as high order splines [10] largely diminishes the negative impact of interpolation

in the final motion and strain estimates.

A fundamental limitation common to all DIC methods is the difficulty to accurately capture

both high and low spatial frequency variations of the underlying displacement and strain fields.

This is strictly correlated with the basic operating principle of all DIC algorithms: two images of

the analyzed material specimen, taken before and after the deformation process are each divided

into blocks and motion is calculated by matching the corresponding blocks from the two images.

Regardless of the correlation criteria that can be used [11] in the registration process, accuracy

is influenced by the size of the blocks into which the image is partitioned. If large blocks are

used, slow spatial variations in the motion fields are accurately captured however, faster ones are

smoothed. Smaller blocks can capture fast spatial variations as long as the assumed motion model

inside the block fits locally the real displacements but the accuracy for low frequency displacement

variations is negatively affected since less data is used. This paper addresses these shortcomings

by extending the original Newton-Raphson method through adaptive regularization in the form of

robust spatial estimators associated with each displacement component. Compared to the original

method, this allows neighbouring motion information to contribute to the motion estimates in

an adaptive way set by the robust estimator. As a consequence, in smooth areas of the motion

field most of the neighbouring information is processed while when presented with fast variations,

the algorithm selects only relevant data resulting in increased motion and strain accuracy. The

theoretical aspects of the new method are presented in Section 2 with the results and conclusions

in Sections 3 and 4 respectively.

2. Newton-Raphson with robust spatial regularization

Regularization methods have been extensively used in motion estimation problems [12–19] as a

way of solving ill-posed problems by including additional spatially neighbouring data into the

minimization process of a certain given energy functional. The new regularization energy functional

measures the fit of a “reference” block f(x, y) in the image that contains the analyzed material

specimen before deformation to a “deformed” block g(x′, y′) in the image showing the specimen

after deformation. Both blocks are of size M ×M pixels and x′ = x+u(x, y), y′ = y+ v(x, y) with:

u(x, y) = P1 + P3(x− x0) + P5(y − y0) (1)

v(x, y) = P2 + P4(x− x0) + P6(y − y0) (2)

where u(x, y), v(x, y) are the horizontal and vertical displacements of the pixel located at (x, y)

inside the reference block of center coordinates (x0, y0) and P = (Pi)i=1···6 is the first order dis-

placement component vector. Using these notations, the new functional becomes:

E(P) = ED(P) + λES(P) (3)
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where λ is a parameter that adjusts the strength of the regularization, ED is the image data fit

term implemented on the sum of square differences (SSD):

ED(P) =

M∑

x=1

M∑

y=1

(f(x, y)− g(x, y,P))2 (4)

and ES is the newly added regularization constraint term:

ES(P) =
6∑

i=1

∑

j∈N 8
i

ρ (rij , σi(rij)) (5)

The regularization term from Eq. 5 is based on the Geman-McClure robust function ρ(r, σ) =

r2/(r2 + σ) and adaptively regulates how each displacement component Pi is influenced by the

values found in its 8-connected neighbourhood N 8
i through the outlier rejection parameter σi. The

six σi parameters associated with the displacement components are calculated as a multiple of the

standard deviation σ̃i of the smoothness residuals rij = {Pi − Pj |i = 1 . . . 6, j ∈ N 8
i } and updated

at each iteration in the minimization process. For each displacement component, the influence of

its neighbours is proportional to the first derivative ∂ρ(r, σ)/∂r of the robust function seen in Fig.

1 which decreases towards zero when |rij | > |σi|. Furthermore, small σi values, equivalent to a large

degree of smoothness in the area around the displacement component currently estimated, lead

to strong regularization using the closest neighbouring values. Alternatively, larger values reflect

strong changes in the displacement component’s neighbourhood, the influence that the neighbours

exert on the component being limited and more evenly distributed. In the current implementation

σi =

⎧
⎨

⎩
7σ̃i, if i < 3

3σ̃i, if i ≥ 3
(6)

uses a higher multiplication factor of the local standard deviation for the translational components

P1 and P2 because in most cases they represent the largest component of the displacement vector

and hence differences between neighbours are larger necessitating a more relaxed or flat robust

influence function.

The minimization of Eq. 3 through the Newton-Raphson iterative method has the solution at

the k-th iteration of the form:

P(k) −P(k−1) = − ∇E(P(k−1))

∇∇E(P(k−1))
(7)

where

∇E(P) =

[(
∂ED

∂P1
+ λ

∂ES

∂P1

)
· · ·

(
∂ED

∂P6
+ λ

∂ES

∂P6

)]
(8)
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and

∇∇E(P) =

⎡

⎢⎢⎢⎣

(
∂2ED

∂P 2
1

+ λ∂2ES

∂P 2
1

)
· · ·

(
∂2ED
∂P1∂P6

)

...
. . .

...(
∂2ED
∂P6∂P1

)
· · ·

(
∂2ED

∂P 2
6

+ λ∂2ES

∂P 2
6

)

⎤

⎥⎥⎥⎦ (9)

are the Jacobian and Hessian matrices of the energy functional with the regularization term partial

derivatives:
∂ES

∂Pi
=

∑

j∈N 8
i

2σi(Pi − Pj)

(σi + (Pi − Pj)2)
2 (10)

and
∂2ES

∂P 2
i

=
∑

j∈N 8
i

2σ2
i − 6σi(Pi − Pj)

2

(σi + (Pi − Pj)2)
3 (11)

respectively. Note that ∂2ES/∂P
2
i is only present on the first diagonal of the Hessian since the

second partial derivatives of ES with respect to two different displacement components are zero.

The method starts by dividing the reference image into blocks and finding the best match for

each block in the deformed image through cross-correlation coefficient minimization. The resulting

integer pixel displacements will represent the initial solution for the Newton-Raphson minimization

step of the method. The latter updates at each iteration the entire motion vector field excluding

the locations where convergence has already been reached. As convergence criterion, a difference

smaller than 10−5 between consecutive iterations for all displacement components has been chosen.

Once a motion vector reached convergence its six components will stop being updated however they

will be used in subsequent iterations in calculating the regularization terms of their neighbours. If

in three successive iterations the total number of motion vectors that reached convergence does not

change, the algorithm stops. To increase the stability of the method, the first three iterations are

executed without taking into consideration the regularization terms.

3. Tests and results

The evaluation of the new method consists of calculating the displacements and strains in four

experimental scenarios: two numerical simulations and two real mechanical experiments. Each sce-

nario contains an image pair composed of a “reference” and a “deformed” image. The first two

scenarios correspond to a “plate with hole under biaxial stress” model [20] with their deformed

images numerically obtained by warping a common reference speckle image using known displace-

ments and radial basis function image interpolation [9]. In third and fourth experimental scenarios

which represent real experiments, a plastic film specimen 25.3 mm in width, 250 mm in length and

0.1 mm in thickness with a lateral slit into its right edge and an aluminum specimen 25.25 mm in

width, 280 mm in length and 2.95 mm in thickness with two lateral slits on both edges undergo

uniaxial load in a vertical upward direction. All speckle images were captured using a Pixelink

PL-A782 camera at the maximum resolution of 2208×3000 pixels out of which regions 1024×1024
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pixels in size were actively used in the tests. Through the experimental setup one pixel corresponds

to 8.33 μm in the object plane for the first two experiments, 11.92 μm in the third experiment and

17 μm in the fourth experiment. The camera was aligned perpendicular to the specimen surface

with a laser to eliminate out of plane displacement effects and calibrated through the proprietary

software to compensate for fixed-pattern noise, photo response non-uniformities and lighting vari-

ations across the specimen’s surface. The machine used to deform the specimens in the last two

experiments was a Instron 8801 servo-hydraulic system. In Fig. 2 the two reference images used in

the first three scenarios are shown. The full camera frame as well as the reference and deformed

images for the fourth scenario are shown in Fig. 12.

The deformed image in the first experimental scenario presents only subpixel underlying displace-

ments as can be observed in Fig. 3 with small (Cauchy) strains between 1.2×10−3 and −6.86×10−4

for εxx, 2.8× 10−3 and −2.8× 10−3 for εxy and 4.7× 10−3 and 1.73× 10−5 for εyy. This simulates a

steel plate with a horizontally applied load of 50 MPa and a vertically applied load of 350 MPa. The

set of images associated with the second scenario simulates a rubber plate under 2 MPa horizontally

and 4 MPa vertically applied loads. Displacement and strain spatial variations are similar to the

ones present in the first pair of images with amplitudes varying between 4 and -4 pixels for the

horizontal displacements and 21.8 and -21.8 pixels for the vertical displacements. The associated

large (Green-Lagrange) strain values vary between 4.47× 10−2 and −2× 10−2 for εxx, 3.84× 10−2

to −3.84 × 10−2 for εxy and 9.07 × 10−2 to −1.02 × 10−2 for εyy. For the last two experiments

the exact strain values are unknown since they relate to real experimental data and do not rep-

resent numerical simulations. Several observations can be however made: in the third experiment,

rigid body translation in excess of 50 pixels for the vertical displacement component and 8 pixels

for the horizontal component are present due to small slips of the plastic film in the grips of the

servo-hydraulic machine. The strain concentrations in this case are assumed to be present at the

tip of the lateral slit and to decrease rapidly with the distance from it. Due to the calibration of

the camera the random noise levels across the image are considered to be very low. In the last

experiment rigid body translations due to slipping in the mechanical grips are virtually eliminated

through better gripping of the aluminum specimen in the machine. Noise levels are further reduced

respect to the third experiment by automatic averaging of three camera frames before and after

deformation to obtain the reference and deformed images respectively.

3.A. Quality analysis

In the evaluation process of the first two - numerical - experiments, blocks 15 × 15, 21 × 21 and

27 × 27 pixels with a 7 pixel step size have been employed. For each block size, four values of the

parameter λ were examined: 0, corresponding to the regular Newton-Raphson approach without

regularization, 50, 100 and 200. Strain calculations were done according to [21] using strain windows

3×3, 5×5, 7×7, 9×9 and 11×11 motion vectors in size. This has the double purpose of assessing

the combined impact of the image block size and strain window size in the overall strain accuracy

and to evaluate how the new method performs under these variations compared to the classical

method.
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The mean of the absolute horizontal, shear and vertical strain errors for the first experimental

scenario using blocks 15× 15, 21× 21 and 27× 27 pixels in size are presented in Fig. 4, Fig. 5 and

Fig. 6 respectively. The results indicate large improvements in the average strain error ranging from

approximately 25% to more than 50% for the smaller strain window sizes. This is to be expected

as the estimates obtained using regularization include neighbouring spatial information and thus

are more reliable than the non-regularized estimates. The proposed method produces the minimum

errors regardless of strain windows and block sizes for the horizontal and vertical strains. In the

case of the shear strains, it performs better when using strain windows smaller than 11× 11. It is

clearly noticeable that increases of the strain window size, image block size or both have a lesser

impact in the accuracy of the method when using regularization. This suggests increased practical

applicability of the proposed method in situations where these smaller sizes are required like low

resolution images or localized stress concentrations. The lower limit of the mean errors remains

approximately the same for all block sizes in the range of 150 to 200 με.

The results from the second experiment synthesized in Fig. 7, Fig. 8 and Fig. 9 indicate that also

for larger strains the introduction of spatial regularization improves the accuracy of the Newton-

Raphson DIC method. The proposed method outperforms the classical one at all strain window and

image block sizes providing also the absolute minimum errors. It is however interesting to notice

that the minimum errors for all three strains were obtained using the smallest image block size of

15× 15 pixels and strain windows sizes either 7× 7 or 9× 9 motion vectors. The negative effect of

larger strain windows is becoming more evident as the image block size increases: for block sizes of

21× 21 pixels and 27× 27 pixels using a strain window 7× 7 motion vectors produces consistently

better results than a 11 × 11 strain window. In the case of the vertical strains in Fig. 9, strain

windows sized 5 × 5 produce smaller errors than the ones sized 9 × 9 and 11 × 11. Besides the

improvements brought by the proposed method, the results from the second experiment indicate

that unless the underlying strains that are to be calculated present smooth variations which in

turn require solid prior knowledge about the experimental behavior of the analyzed mechanical

specimen, increasing the strain window sizes and image block sizes can lead to deterioration of the

measured strain accuracy. It is thus preferable to use smaller block sizes and strain window sizes

to avoid over-smoothing the strain estimates with any additional neighbouring information pooled

in an adaptive manner.

The last two practical experiments are meant to be a only visual evaluation of the observations

made for first two experimental scenarios since no numerical verification is possible. In the third

experiment two tests were done where the regularization strength parameter λ had the values

of 0 and 1000. The value of λ is larger than in the previous tests so that the stronger adaptive

smoothing would compensate for any possible effects of camera noise present in the images on the

motion estimates. The block size was fixed at 27× 27 pixels with a 7 pixel step. Large strains are

expected to be present at the tip of the crack and its immediate vicinity with smaller and smoothly

varying strains in the rest of the material’s surface. In Fig. 10 the vertical strains εyy calculated

with a strain window 5 × 5 motion vectors for the two tests are shown. The benefits of adaptive

regularization are evident: the high strain concentration values located at the tip of the slit are
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maintained similar to those obtained without regularization while in the rest of the specimen, the

smaller peaks which are erroneous are significantly reduced. Using larger strain windows reduces

further the erroneous discontinuities across the strain fields at the cost of also lowering or smoothing

the slit tip strain values: using a 9× 9 strain window the amplitudes are reduced by 35% to 50%.

Comparing the shear strains from Fig. 11 leads to similar conclusions: the large strains around

the crack tip do not undergo significant modification with respect to the non-regularized algorithm

while the rest of the strain field presents smoother variations.

For the fourth and last experimental scenario, the parameter λ took the values of 0 and 200.

The strains were calculated using image block sizes of 27 × 27 pixels and strain windows of 5 × 5

and 9 × 9 motion vectors. The vertical strains obtained using the two strain windows sizes can

be seen in Fig. 13 and Fig. 14 with the shear strains in Fig. 15 and Fig. 16 respectively. It can

be observed that the influence of the adaptive regularization term is stronger in the areas where

the strain field values present spatial similarity producing smoother variations while preserving

larger strain gradient areas. This can be interpreted as an elimination of the calculus noise in the

areas where there is little variational uncertainty regarding the data. Using a larger strain window

has a smoothing effect of the entire strain field, effect most noticeable at the peak strain values.

Although it is hard to determine which strain window produces a higher overall accuracy it is easily

foreseeable that increasing the strain window over a certain limit can have detrimental effects on

the accuracy as seen in the results from the second experiment. Through the increases in accuracy

brought, the proposed extension not only improves results in common usage scenarios but also

extends the practical applicability of the method for small image resolutions and highly localized

strains.

3.B. Computational performance analysis

The methods presented in this paper have been implemented in Matlab and executed on a Intel

Core 2 Duo 2GHz processor with 4 GB of Ram running the Linux operating system. Rather than

concentrate on the actual execution times which can vary depending on the machine used, the

performance analysis takes into consideration the total number of iterations performed and the

rate with which the number of motion vectors that did not converge yet decreases at each iteration.

The performance graphs related to the first image set are shown in Fig. 17. Increasing values of the

regularization strength parameter λ have a negative impact on the total number of iterations needed

to reach convergence. The influence is more evident for 15 × 15 pixel blocks: the method without

regularization requires 25 iterations to converge while for λ = 50 the number of needed iterations is

64. Using larger block sizes leads to a decrease in the number of iterations needed for convergence

with 18 iterations needed to converge when regularization is not used, 34 iterations for λ = 50

and 45 iterations for λ = 200. The right graph in the figure shows the number of motion vectors

that did not yet reach convergence given a certain iteration using a fixed block size of 27 × 27

pixels. The graphs start from a common point which represents the end of the third iteration

(when the regularization process starts) and subsequently diverge indicating different convergence

speeds. The relationship between the number of non-converging motion vectors and the number of
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iterations effectuated seems to be linear regardless of the regularization with a stronger decline in

the number of converging blocks / iteration once the number of blocks remaining approaches 2000 or

approximately 10% of the total number of 20449 blocks. A possible explanation is that the image

information for those blocks is not entirely adequate or the displacement components are large,

the method necessitating more iterations to converge. Another way of assessing the performance

impact of regularization is to consider the processing that needs to be done for one block during one

iteration as an elementary operation. In this way, considering again the block size fixed at 27× 27

pixels, the total number of operations needed to reach convergence for λ = 0 is 90092, for λ = 50 is

193141, for λ = 100 is 234378 and for λ = 200 is 281746. A clear conclusion is that the speed does

not decrease linearly with λ but rather tends to saturate. The performance observations remain

overall unchanged for the second set of images where larger strains are present, the only difference

being an increased overhead needed to calculate the larger integer displacements.

4. Conclusion

In this paper an extension of the Newton-Raphson partial differential correction DIC method

through the addition of adaptive spatial regularization has been presented and its accuracy and

performance impact investigated. The regularization terms based on the Geman-McClure robust

function adaptively integrate neighbouring information motion into the motion estimates and are re-

calculated at each iteration to adjust the neighbour influence according to the local spatial smooth-

ness in each displacement component field. Results indicate accuracy improvements consisting in

mean errors up to 50% smaller compared to the non-regularized method for both small and large

strains. The quality advantages of the regularized method for smaller image blocks and strain win-

dows are strongly desired since their smaller sizes increase the locality of the available deformation

information. The inclusion of the regularization term increases computational cost of method which

in turn is influenced by the strength of the regularization and sizes of the image blocks used in the

motion estimation process. Despite the computational costs, the quality advantages brought by the

proposed method make it a viable alternative to existing DIC methods.
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List of Figure Captions

Fig. 1 The Geman-McClure robust function (left) and its first derivative (right) for the shape

parameter values σ = 0.01, 0.1, 1.

Fig. 2 The reference images used the first two (left) and third (right) experimental scenarios.

Fig. 3 Contours of the horizontal (left) and vertical (right) displacement components for the first

experimental scenario.

Fig. 4 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right) small

(Cauchy) strains as functions of the strength regularization parameter λ and strain window size

W using block sizes of 15× 15 pixels.

Fig. 5 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right) small

(Cauchy) strains as functions of the strength regularization parameter λ and strain window size

W using block sizes of 21× 21 pixels.

Fig. 6 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right) small

(Cauchy) strains as functions of the strength regularization parameter λ and strain window size

W using block sizes of 27× 27 pixels.

Fig. 7 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right)

large (Green-Lagrange) strains as functions of the strength regularization parameter λ and strain

window size W using block sizes of 15× 15 pixels.

Fig. 8 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right)

large (Green-Lagrange) strains as functions of the strength regularization parameter λ and strain

window size W using block sizes of 21× 21 pixels.

Fig. 9 Mean absolute strain errors for the horizontal (left), shear (center) and vertical (right)

large (Green-Lagrange) strains as functions of the strength regularization parameter λ and strain

window size W using block sizes of 27× 27 pixels.

Fig. 10 Vertical strains corresponding to the third experiment. The results were obtained using

λ = 0 (left) and λ = 1000 (right), block sizes of 27× 27 pixels and a strain window of 5× 5 motion

vectors.

Fig. 11 Shear strains corresponding to the third experiment. The results were obtained using λ = 0

(left) and λ = 1000 (right), block sizes of 27 × 27 pixels and a strain window of 5 × 5 motion

vectors.

Fig. 12 The full frame captured by the camera (left), reference (center) and deformed (right)

images used in the last experiment.

Fig. 13 Vertical strains corresponding to the fourth experiment. The results were obtained using

λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a strain window of 5× 5 motion

vectors.

Fig. 14 Vertical strains corresponding to the fourth experiment. The results were obtained using

λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a strain window of 9× 9 motion

vectors.

Fig. 15 Shear strains corresponding to the fourth experiment. The results were obtained using
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λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a strain window of 5× 5 motion

vectors.

Fig. 16 Shear strains corresponding to the fourth experiment. The results were obtained using

λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a strain window of 9× 9 motion

vectors.

Fig. 17 Number of iterations as a function of the strength regularization parameter λ for different

block sizes (left) and the number of motion vectors that did not yet converge for a fixed block size

of 27× 27 pixels for different λ values (right).
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Reference image of the first two image pairs Reference image of the third image pair

Fig. 2. The reference images used the first two (left) and third (right) experimental
scenarios. F2.EPS
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Fig. 3. Contours of the horizontal (left) and vertical (right) displacement components
for the first experimental scenario. F3.EPS
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Fig. 4. Mean absolute strain errors for the horizontal (left), shear (center) and ver-
tical (right) small (Cauchy) strains as functions of the strength regularization pa-
rameter λ and strain window size W using block sizes of 15× 15 pixels. F4.EPS
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Fig. 5. Mean absolute strain errors for the horizontal (left), shear (center) and ver-
tical (right) small (Cauchy) strains as functions of the strength regularization pa-
rameter λ and strain window size W using block sizes of 21× 21 pixels. F5.EPS
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Fig. 6. Mean absolute strain errors for the horizontal (left), shear (center) and ver-
tical (right) small (Cauchy) strains as functions of the strength regularization pa-
rameter λ and strain window size W using block sizes of 27× 27 pixels. F6.EPS
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Fig. 7. Mean absolute strain errors for the horizontal (left), shear (center) and verti-
cal (right) large (Green-Lagrange) strains as functions of the strength regularization
parameter λ and strain window size W using block sizes of 15× 15 pixels. F7.EPS
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Fig. 8. Mean absolute strain errors for the horizontal (left), shear (center) and verti-
cal (right) large (Green-Lagrange) strains as functions of the strength regularization
parameter λ and strain window size W using block sizes of 21× 21 pixels. F8.EPS
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Fig. 9. Mean absolute strain errors for the horizontal (left), shear (center) and verti-
cal (right) large (Green-Lagrange) strains as functions of the strength regularization
parameter λ and strain window size W using block sizes of 27× 27 pixels. F9.EPS
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Fig. 10. Vertical strains corresponding to the third experiment. The results were
obtained using λ = 0 (left) and λ = 1000 (right), block sizes of 27× 27 pixels and a
strain window of 5× 5 motion vectors. F10.EPS
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Fig. 11. Shear strains corresponding to the third experiment. The results were ob-
tained using λ = 0 (left) and λ = 1000 (right), block sizes of 27 × 27 pixels and a
strain window of 5× 5 motion vectors. F11.EPS

Fig. 12. The full frame captured by the camera (left), reference (center) and deformed
(right) images used in the last experiment. F12.EPS
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Fig. 13. Vertical strains corresponding to the fourth experiment. The results were
obtained using λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a
strain window of 5× 5 motion vectors. F13.EPS
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Fig. 14. Vertical strains corresponding to the fourth experiment. The results were
obtained using λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a
strain window of 9× 9 motion vectors. F14.EPS
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Fig. 15. Shear strains corresponding to the fourth experiment. The results were
obtained using λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a
strain window of 5× 5 motion vectors. F15.EPS
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Fig. 16. Shear strains corresponding to the fourth experiment. The results were
obtained using λ = 0 (left) and λ = 200 (right), block sizes of 27× 27 pixels and a
strain window of 9× 9 motion vectors. F16.EPS
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Fig. 17. Number of iterations as a function of the strength regularization parameter
λ for different block sizes (left) and the number of motion vectors that did not yet
converge for a fixed block size of 27×27 pixels for different λ values (right). F17.EPS
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