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Abstract

The formation of several clusters, arising from attracting forces between non-identical
entities or agents, is a phenomenon observed in diverse fields. Think of people gath-
ered through a mutual interest, swarm behavior of animals or clustering of oscillators
in brain cells.

We introduce a dynamical model of mutually attracting agents for which we
prove that the long term behavior consists of agents organized into several groups
or clusters. We have completely characterized the cluster structure (i.e. the number
of clusters and their composition) by means of a set of inequalities in the parameters
of the model and have identified the intensity of the attraction as a key parameter
governing the transition between different cluster structures.

The versatility of the model will be illustrated by discussing its relation to the
Kuramoto model and by describing how it applies to a system of interconnected
water basins.
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1 Introduction and motivation

The clustering phenomenon is observed in fields ranging from the exact sci-
ences to social and life sciences; consider e.g. swarm behavior of animals or
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social insects [24], dynamics of opinion formation [12], or the clusters in the
phase space for synchronized coupled oscillators [26] as a model for brain or
heart cells. Swarming models mostly focus on the behavior and the cohesion of
a single cluster [4, 19, 11], and models for opinion formation often consider the
coexistence of only two opposite opinions [27, 29, 3], although the emergence
of multiple opinions has also been investigated [9]. For clustering in systems of
coupled oscillators one distinguishes between phase clustering and frequency
clustering. The first form (see e.g. [21, 10, 30]) is observed in a network of
oscillators with identical natural frequencies. The clusters consist of oscilla-
tors with equal phases, while oscillators from different clusters have different
phases. If the natural frequencies are not identical but their differences are
sufficiently small then it may still be possible to distinguish different phase
clusters [28]; this phenomenon is also related to multibranch entrainment [5].
Larger differences between the natural frequencies may induce oscillators hav-
ing different long term average frequencies, resulting in frequency clustering
[20]: each cluster is characterized by the long term average frequency of its
members. This will be illustrated later on in this paper when we discuss the
Kuramoto model. For more details on both phenomena and for examples of
clustering in chaotic systems we refer to [18].

Due to the complexity and richness of some of these models, analytical results
are often restricted to the existence and local stability properties of some of
their solutions [10, 28, 2], and exploration of the parameter space is usually
done by simulations [11, 17]. The model we present in this paper (see also
[1]) can be considered as a simplification of the Kuramoto model of coupled
oscillators that retains its (frequency) clustering behavior. (A formal defini-
tion of clustering behavior is given later on.) Some other features typical for
coupled oscillator models have disappeared; however, the potential for analyt-
ical results is greatly increased: for any choice of the parameters the emerging
cluster structure can be characterized analytically. The model itself cannot be
interpreted as a model for coupled oscillators (the interaction is not periodic),
but it describes other applications, as we show in this paper.

In the next section we introduce the basic model. We also introduce an ex-
tended version of the model; see the forthcoming paper [7] which contains
a detailed analysis and a generalization of the problem on compartmental
systems, discussed in section 5. In section 3 we describe the dynamical be-
havior of the solutions of the basic model. Section 4 contains a comparison
with the Kuramoto model of coupled oscillators. We show that the behavior
of our model is qualitatively similar to the behavior of the Kuramoto model.
In section 5 we investigate a configuration of connected basins as a specific
example of a compartmental system. Compartmental systems consist of in-
terconnected compartments, each with a certain production or consumption
rate. Multiple clusters may appear when the interconnections constrain the
transport of a net production from one part of the network to another part
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with a net consumption. The substance involved may range from water to
cars and from electrical energy to computer data. We will consider a system
of interconnected water tanks, which is naturally modeled by the proposed
model. Sections 6 to 9 contain details and proofs of the results.

2 The dynamics

In general interacting agents are bound to generate unpredictable unstruc-
tured behavior. We propose a mathematical model with a particular type of
interaction such that through self-organization a structure emerges where sets
of clustered agents find themselves in balance. The focus of this paper is on the
dynamical behavior of this clustering phenomenon and on a characterization
of the emerging cluster structure in terms of the parameters of the system.

We present a simple version admitting a succinct formulation of the conditions
governing the cluster configuration at which the system settles. The differential
equations for the model consisting of N agents (N > 1) are

ẋi(t) = bi +
1

N

N∑
j=1

f(xj(t) − xi(t)), ∀ t ∈ R, ∀ i ∈ {1, . . . , N}, (1)

with xi(t), bi ∈ R; bi represents the autonomous component in each agent’s
behavior. The summation term represents the attraction exerted by the other
agents on each agent, and depends on their mutual distances. The interaction
function f : R → R is odd and non-decreasing. This implies a symmetric
attraction between any two agents. We assume that the interaction intensifies
with separation up to a certain saturation level:

∃ d > 0 : f(x) = F, ∀x ≥ d.

In this paper we restrict our attention to this particular type of saturation;
the general case will be discussed elsewhere [7]. A Lipschitz condition on f is
introduced to guarantee a unique solution to the differential equations with
respect to a set of initial conditions.

The system equations are similar to those of the Kuramoto model, described
by

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t) − θi(t)), ∀ t ∈ R, ∀ i ∈ {1, . . . , N}, (2)

where θi(t) denotes the phase of oscillator i and ωi its natural frequency. The
behavior observed in simulations (see e.g. section 4, Figs. 1(a) and 1(c), or

3



[6]) suggests that on a large time scale (i.e. averaged over a large time win-
dow) the interaction between the oscillators can be interpreted as a constant
attraction, which explains the choice of the class of interaction functions f in
(1). Although with this simplification of the interaction function the model (1)
cannot be interpreted as a model for coupled oscillators, a type of frequency
clustering behavior remains true while a thorough analysis of the system be-
comes possible. The behavior of the Kuramoto model and its relation to the
model (1) are discussed in section 4.

In a different physical context, the value xi(t) in (1) may also be interpreted
as the concentration or quantity of a given substance at position i, with the
interaction term 1

N
f(xj(t) − xi(t)) equal to the flow from j to i, limited to a

maximum value of F
N

. The flow may result from nonlinear diffusion (in the case
of concentrations — with the flow being a nonlinear function of the concen-
tration gradient, which is proportional to xj(t)− xi(t)), or from (hydrostatic)
pressure differences as in the application in section 5, but other mechanisms
are possible. The value bi then represents the inflow at position i from an
external source, which is redistributed over the different compartments. More
details are given in section 5.

For convenience the results we present in this paper concern the model (1),
but an extension to the following generalization is possible [7]:

ẋi(t) = bi + Ai

N∑
j=1

Kijγjf (xj(t) − xi(t)) , ∀ t ∈ R, ∀ i ∈ {1, . . . , N}. (3)

The function f has the same characteristics as before. The interpretation of bi

remains unaltered. The parameters Ai and γi are all positive. The matrix K is
symmetric and irreducible with Kij ≥ 0. The elements of matrix K represent
levels of attraction between agent pairs; the extent to which each individual
agent j tends to attract other agents is denoted by γj. The parameter Ai

reflects the sensitivity of agent i to interactions with other agents.

The interaction structure in (3) is not necessarily all-to-all and may be repre-
sented in graph theoretical terms: Kij corresponds to the weight of the edge of
the associated graph with vertices i and j representing agents i and j. If edges
corresponding to Kij = 0 are omitted, then the irreducibility of the matrix K
is equivalent to the connectedness of this graph. The parameters γj correspond
to weights attached to the vertices. We refer to [7] for more details.
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3 Analysis and results

Assume that, for a particular solution of (1), the behavior of the agents can be
characterized as follows by an ordered set of clusters (G1, . . . , GM) representing
a partition of {1, . . . , N}:

(1) The distances between agents in the same cluster remain bounded (i.e.
|xi(t) − xj(t)| is bounded for all i, j ∈ Gk, for any k ∈ {1, . . . ,M}, for
t ≥ 0).

(2) After some positive time T , the distances between agents in different
clusters are at least d and grow unbounded with time.

(3) The agents are ordered by their membership to a cluster: k < l ⇒ xi(t) <
xj(t), ∀ i ∈ Gk, ∀ j ∈ Gl, ∀ t ≥ T .

We will refer to this behavior as clustering behavior.

For any set G0 ⊂ {1, . . . , N}, with the number of elements denoted by |G0|,
we introduce the notation 〈b〉G0 for the average value of bi over G0:

〈b〉G0 =
1

|G0|
∑
i∈G0

bi.

In sections 6 and 7 we show that the following conditions are necessary and
sufficient for clustering behavior of all solutions to the system (1), with the
cluster structure (G1, . . . , GM) independent of the initial condition:

〈b〉Gk+1
− 〈b〉Gk

>
F

N
(|Gk+1| + |Gk|) , ∀ k ∈ {1, . . . ,M − 1}, if M > 1,

(4a)

〈b〉Gk,2
− 〈b〉Gk,1

≤ F

N
|Gk|, ∀Gk,1, Gk,2 � Gk, with Gk,2 = Gk \ Gk,1,

∀ k ∈ {1, . . . ,M}.
(4b)

The conditions (4) state that the difference between the average natural ve-
locities of subsequent clusters should be larger than the mutual attraction
between the two clusters for these clusters to remain separated (condition
(4a)). The difference in average natural velocities between any pair of sub-
sets, partitioning a cluster, should not exceed the mutual attraction between
these two subsets for a cluster to remain bounded (condition (4b)). Notice
that these conditions only depend on the saturation value F , and not on the
exact shape of the function f . Due to the characteristics of the interaction,
each separate condition from (4) only contains the parameters of the clusters
involved. However, the entire set of conditions (4) is necessary and sufficient
for clustering behavior with respect to the entire cluster structure: the re-

5



striction of the conditions to a limited number of clusters does not guarantee
clustering behavior with respect to these clusters.

For a solution satisfying clustering behavior with clusters G1, . . . , GM , it is easy
to verify that the average velocity 〈ẋ(t)〉Gk

over cluster Gk will be constant
after some time T :

〈ẋ(t)〉Gk
= 〈b〉Gk

+
F

N


 ∑

k′>k

|Gk′| − ∑
k′<k

|Gk′|

 , ∀ t ≥ T,

which is explicitly shown in section 6. Denote the right hand side by vk. The
velocity vk is equal to the sum of the average natural velocity of the agents in
Gk, a positive term resulting from the attraction of the agents in the leading
clusters, and a negative term resulting from the agents in the clusters be-
hind. (Internal interactions — i.e. interactions between agents from the same
cluster — cancel, since f is odd.) From the boundedness of the distances be-
tween agents from the same cluster we can derive that clustering behavior of
a solution x with respect to (G1, . . . , GM) is equivalent with:

∃ l > 0 : |xi(t) − vkt| ≤ l, ∀ i ∈ Gk,∀ k ∈ {1, . . . ,M},∀ t ≥ 0. (5)

Furthermore, from the analysis in section 9, where we investigate the in-
ternal behavior of the clusters, it will follow that for any i ∈ Gk, with
k ∈ {1, . . . ,M}, xi(t) tends asymptotically to vkt plus a constant, or equiva-
lently: limt→∞(xi(t) − vkt) exists. In other words: each agent asymptotically
moves at a constant velocity. This behavior is similar to the behavior observed
in simulations of the Kuramoto model, where the oscillators seem to exhibit
a behavior governed by equations similar to (5).

In section 8 we show that for every given set of parameters bi and F there
exists a unique ordered partition (G1, . . . , GM) of clusters satisfying (4a) and
(4b). This implies that for any choice of the parameters, the model (1) will
exhibit clustering behavior with respect to some cluster structure. In general
there exist N−1 bifurcation values for the intensity of attraction F , defining N
intervals for F ; each interval corresponds to a particular cluster configuration,
and transitions to new cluster configurations take place at these bifurcation
points. In the generic case each transition (with decreasing F ) corresponds to
splitting one of the clusters into two.

As explained in section 9 it is useful to introduce a moving frame at the
velocity of a cluster and consider the subsystem associated with the agents
in this cluster. Under some mild assumptions this leads to a unique (up to a
translation of all agents in the cluster over the same distance) asymptotically
stable equilibrium point that will disappear with decreasing F when the cluster
splits into two. This motivates our use of the term ‘bifurcation value’ for those
values of the coupling strength where a cluster splits.
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Given the model (1) and faced with the question of describing the cluster
structure which eventually emerges, our analysis offers two options: either one
checks the inequalities (4a) and (4b) or one simply runs a simulation of the
model: our analysis guarantees convergence to a cluster structure, independent
of the initial condition.

Remark 1 An important remark has to be made concerning the possible clus-
ters that can arise from (1). Since there is all-to-all coupling it turns out that
the order of the parameters bi determines the order of xi(t) in the long run,
and therefore also the order of the asymptotic velocities vk. This restricts the
possible cluster configurations: a cluster containing agents i1 and i2 will then
also contain agent i3 whenever bi1 ≤ bi3 ≤ bi2. As a consequence in (4b) Gk,1

(resp. Gk,2) can be restricted to contain only the agents of Gk with the |Gk,1|
lowest (resp. |Gk,2| highest) bi-values. In the more general case described by
(3) this remark is not necessarily true.

In a forthcoming paper [7] we will extend the results in this paper to the more
general system (3).

We now discuss the relation to the Kuramoto model and we describe an appli-
cation on compartmental systems. The final sections contain the mathematical
details of the results stated above.

4 The Kuramoto model

The Kuramoto model [14] is a mathematical model describing systems of cou-
pled oscillators; one is referred to [26] for its relation to flashing fireflies, pace-
maker cells, Josephson junctions. The differential equations corresponding to
a system of N oscillators with phases θi are given by (2). The natural fre-
quencies ωi are drawn randomly from some distribution g. In [14] it is shown
that in the limit N → ∞ and with g unimodal and even about a value Ω,
there is a critical value for the coupling strength K above which a solution
exists exhibiting partial synchronization: this solution is characterized by a
group of oscillators (with ωi-values close to Ω) moving at the same (constant)
frequency Ω, while the remaining oscillators are moving with different (long
term average) frequencies. Details can be found in [25].

For finite N , simulations indicate the following. For a fixed K > 0 the oscillator
population can be partitioned into different subsets of which the members
have bounded phase differences: the system exhibits partial entrainment. It
immediately follows that oscillators belonging to the same entrained subset
have the same long term average frequency. The partition and the associated
average frequencies are independent of the initial condition for most (but

7



not all — see e.g. [17]) choices of the natural frequencies and the coupling
strength. For small values of K and all ωi different, the entrained subsets are
singletons and the associated average frequencies are close to the ωi-values.
For increasing coupling strength K the characteristic frequencies move towards
each other and when a critical value for K is passed and two characteristic
frequencies coincide, the union of the corresponding entrained subsets also
becomes entrained. In the most common scenario this phenomenon is self-
repeating and after N − 1 transitions there is full entrainment, i.e. all phase
differences are bounded. For more information on the stability properties of
this latter solution, see [2].
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Fig. 1. Comparison of the Kuramoto model (left column) with the model (1) (right
column): The first row shows the time evolution of the oscillators/agents. The second
row shows the evolution of the long term average frequencies/velocities for varying
coupling strength. The parameters are: b = ω = (−0.149, −0.126, −0.099, −0.091,
0.109, 0.150, 0.206), K = 0.2 (Fig. (a)) and F = 0.15 (Fig. (b)).

This behavior is very similar to that of the model (1), where the clusters are
independent of the initial condition and the transitions between the different
clusters for varying F are similar. For comparison, Fig. 1 shows the time
evolution for a particular configuration for the Kuramoto model (Fig. 1(a))
and the analogue for the model (1) (Fig. 1(b)), as well as the evolution of the
characteristic frequencies/velocities for both models in terms of the coupling
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strength (Fig. 1(c) and 1(d)). The qualitative correspondence between both
models is remarkable.

Besides clustering behavior, the Kuramoto model also exhibits some phenom-
ena such as frequency locking [17] or induction of clusters by resonances [8],
which are not present in the model (1). However, this richer behavior of the
Kuramoto model has its price: in spite of the simplicity of its formulation, the
model is complicated and hard to analyze. The model (1) allows us to focus
on clustering behavior, while admitting a full analysis.

5 Compartmental systems: interconnected water basins

To illustrate the relation of our clustering model with compartmental systems
we will focus on a system of interconnected water basins.

We consider N identical basins connected by horizontal identical pipes, each
basin connected to all other basins and furthermore subject to either a con-
stant external inflow or outflow of water. For laminar flow through a pipe
connecting two basins, the fluid velocity is proportional to the pressure differ-
ence (Hagen-Poiseuille law). For larger velocities the flow becomes turbulent
and the relation between velocity and pressure difference is described by the
Darcy-Weisbach equation [23]:

∆p = λ
L

D

ρv2

2
,

with ∆p the pressure difference, L and D length and diameter of the pipe, ρ the
fluid density, v the mean fluid velocity (i.e. the ratio of the volume flow rate
and the cross-section area), and λ the friction factor. Although the friction
factor depends on the Reynolds number (which is proportional to the fluid
velocity) its variation is small for large values of the Reynolds number. We will

approximate the resulting relation (v(∆p) ∼ ±
√
|∆p|) by an odd saturating

function, keeping in mind that the flow rate cannot grow unbounded (because
of the finite basin heights and finite resulting pressures). In other words, we
assume that the pipes have a maximal throughput, which is independent of the
direction of the flow, and denoted by T . Representing the water height of basin
i by xi, the pressure difference between basins i and j will be proportional to
xj − xi, and thus the volume flow rate through the connecting pipe can be
represented by S

N
f(xj − xi), with S denoting the surface area of the basins —

which we assume to be water level independent — and the saturation value
F of f equal to NT

S
.
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Denoting the inflow for basin i by Qi, one derives

ẋi(t) =
Qi

S
+

1

N

N∑
j=1

f(xj(t) − xi(t)), ∀ t ∈ R, ∀ i ∈ {1, . . . , N},

which is the model (1) with bi = Qi

S
for all i. With the extended model (3)

more general network structures and non-identical basins can be taken into
account (see [7]).

The dynamics will exhibit clustering behavior as predicted by our analysis, in
the sense that the water level heights of some of the basins will (asymptoti-
cally) increase/decrease with the same velocity. The velocity associated with
cluster Gk is denoted by vk.

It is clear that the model is valid as long as the basins do not overflow and
all pipes remain below the water level of the basins they connect. We assume
that the basins and initial water level heights are such that these conditions
are satisfied during the transient behavior. As explained in the next para-
graph, this implies that we can derive the behavior of the physical system (i.e.
overflowing basins, or basins running empty) from the cluster structure of the
mathematical model and the corresponding long term velocities vk.

The problem we are interested in is to check whether a network of basins is
prone to flooding, i.e. one requires vk ≤ 0 for all clusters Gk. Assume from now
on that the total external inflow equals the total external outflow. When for
this case the dynamical behavior of the model reveals the existence of more
than one cluster, there would be at least one cluster Gk corresponding to flood-
ing, with a positive value for vk. Basins will overflow and after some time the
model will no longer represent the physical situation. However, the model (1)
continues to be useful for investigating compartmental systems and revealing
problematic situations with respect to flooding. Indeed, a simulation of the
mathematical model, although only valid in a finite time interval, may reveal
in its long term behavior the existence of multiple clusters: the overflowing
basins in the real world system correspond to the clusters with a positive vk.

For a solution with two clusters G1 and G2 (with v1 negative and v2 positive),
the interpretation of the corresponding inequality (4a) is that the production
in the basins belonging to G2 cannot be transported to the basins belonging
to G1 by their interconnections.

Under the assumption of balanced in- and outflow, a solution with a single
cluster G1 = {1, . . . , N}, has a corresponding velocity equal to v1 = 0. This is
a case where no flooding will occur, no basins will run empty, and the model
will remain valid for all positive time, with each xi approaching a constant
value.
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As an illustration, consider a configuration of N = 5 basins with surface area
S = 1, implying that bi = Qi. (For simplicity we will omit units.) The vector
b containing the bi-values is given by

b =
[
−5 2 1 −2 4

]T

.

In order to find the lowest possible throughput T = S
N

F = F
5

for which
flooding is avoided, we can consider the inequalities (4b), taking into account
remark 1:

5

4
− (−5) ≤ F

7

3
−

(
−7

2

)
≤ F

3 − (−2) ≤ F

4 − (−1) ≤ F,

resulting in F ≥ 25
4
, or T ≥ 5

4
. This can be checked in the bifurcation diagram

in Fig. 2.
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Fig. 2. Asymptotic velocities in terms of the coupling strength F .

For smaller values of T and F some of the basins will overflow. Given a partic-
ular value of F smaller than 25

4
, the overflowing basins can be identified from

Fig. 2 (since the intersection with the vertical axis yields the corresponding
value of bi). It may be intuitively obvious that these basins will correspond
to the highest bi-values, as can also be inferred from remark 1. For general
network structures described by (3) this may no longer be true (see [7]).
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6 The conditions (4) are necessary for the existence of clustering
behavior

We show that the existence of a solution of the system (1) exhibiting clustering
behavior with clusters G1, . . . , GM implies the conditions (4).

Let G0 ⊂ {1, . . . , N} and consider 〈ẋ(t)〉G0 ; since f is odd, all internal interac-
tions (i.e. interactions between agents in G0) will cancel in the expression for
〈ẋ(t)〉G0 . Assume that, at some time instance t0, the agents in G0 are separated
by at least a distance d from all other agents (i.e. |xi(t0)−xj(t0)| ≥ d whenever
i ∈ G0 and j /∈ G0). Then the interactions of agents in G0 with agents not in
G0 are all saturated. Assume furthermore that at t0 each agent not belonging
to G0 has a x(t0)-value either smaller or larger than all x(t0)-values of agents
in G0. Denote by G− (resp. G+) the set of agents with x(t0)-values smaller
(resp. larger) than the x(t0)-values of the agents in G0. Then

〈ẋ(t0)〉G0 = 〈b〉G0 +
1

|G0|N
∑
i∈G0

N∑
j=1

f(xj(t0) − xi(t0))

= 〈b〉G0 +
1

|G0|N
∑
i∈G0


 ∑

j∈G−

f(xj(t0) − xi(t0)) +
∑

j∈G+

f(xj(t0) − xi(t0))




= 〈b〉G0 −
1

|G0|N |G0||G−|F +
1

|G0|N |G0||G+|F,

and thus

〈ẋ(t0)〉G0 = 〈b〉G0 +
F

N
(|G+| − |G−|) . (6)

Assume now that the solution x exhibits clustering behavior with cluster struc-
ture (G1, . . . , GM). Then d-separation of agents belonging to different clusters
implies that we can apply the formula (6), for t ≥ T , to each of the clusters
Gk (k ∈ {1, . . . , M}), and thus 〈x〉Gk

will be an affine function of time. Fur-
thermore, the ordering of agents belonging to different clusters and distances
growing unbounded with positive time for agents in different clusters imply
that for successive clusters Gk and Gk+1, 〈ẋ〉Gk

< 〈ẋ〉Gk+1
. But

〈ẋ(t)〉Gk+1
− 〈ẋ(t)〉Gk

= 〈b〉Gk+1
+

F

N


 ∑

k′>k+1

|Gk′| − ∑
k′<k+1

|Gk′|



− 〈b〉Gk
− F

N


 ∑

k′>k

|Gk′| − ∑
k′<k

|Gk′|



= 〈b〉Gk+1
− 〈b〉Gk

− F

N
(|Gk+1| + |Gk|) ,
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for t ≥ T , by application of (6). Therefore 〈ẋ〉Gk
< 〈ẋ〉Gk+1

can be written as
(4a).

Under the assumption of clustering behavior the distances within one cluster
are bounded, which implies that for any nonempty proper subset Gk,1 of Gk,
|〈x(t)〉Gk,2

− 〈x(t)〉Gk,1
| (with Gk,2 = Gk \ Gk,1) is bounded for t ≥ 0. Fur-

thermore, because of the d-separation (after some time T ) with agents not
belonging to Gk and because of the properties of f there is a lower bound to
〈ẋ(t)〉Gk,2

− 〈ẋ(t)〉Gk,1
corresponding to the situation where all agents of Gk,2

have x-values that are at least d larger than the x-values of the agents in Gk,1.
Again invoking (6) we calculate this lower bound as

〈b〉Gk,2
− 〈b〉Gk,1

− F

N
|Gk|.

This value cannot be positive, otherwise 〈x(t)〉Gk,2
− 〈x(t)〉Gk,1

would grow
unbounded, contradicting the assumption that Gk is bounded. The assumption
of clustering behavior therefore implies the condition (4b). We conclude that
the inequalities (4a) and (4b) are necessary conditions for the existence of a
solution of (1) satisfying clustering behavior with respect to (G1, . . . , GM).
They also turn out to be sufficient, as is shown next.

7 The conditions (4) are sufficient for the existence of clustering
behavior

7.1 A particular initial condition

We show that, under the conditions (4) for some ordered set partition G =
(G1, . . . , GM), there is an initial condition such that the corresponding solution
of the system (1) exhibits clustering behavior with respect to G.

When agents from different sets Gk are separated over a distance of at least
d, their interaction is saturated; if the order of the agents is also determined
by the order of the sets Gk, then the total interaction of agents outside Gk

with an agent from Gk equals F
N

(
∑

k′>k |Gk′| − ∑
k′<k |Gk′|). To investigate the

behavior of (1) under the assumption of saturated attraction between agents
belonging to different sets Gk, consider the following auxiliary system:

ẋ∗
i (t) = bi +

F

N


 ∑

k′>k

|Gk′| − ∑
k′<k

|Gk′|

 +

1

N

∑
j∈Gk

f(x∗
j(t) − x∗

i (t)),

∀ t ≥ 0,∀ i ∈ Gk,

∀ k ∈ {1, . . . ,M}. (7)

13



Let x, resp. x∗, be the solution of the system (1), resp. (7), corresponding
to the initial condition x(0) = x∗(0), with xi(0) = xj(0) whenever i and j
belong to the same set Gk. Further specification of xi(0) and xj(0) with i and
j belonging to different sets Gk will be imposed according to (12).

We first show that (4b) implies that |x∗
i (t)−x∗

j(t)| (i, j ∈ Gk, k ∈ {1, . . . ,M})
is bounded. Consider the region R ⊂ RN defined by

y ∈ R ⇔ 〈y〉Gk,2
− 〈y〉Gk,1

≤ |Gk|d
2
,

∀Gk,1, Gk,2 � Gk with Gk,2 = Gk \ Gk,1,

∀ k ∈ {1, . . . ,M}. (8)

Clearly x(0) = x∗(0) ∈ R. Assume that, for some t̃ ≥ 0, x∗(t̃) ∈ R is at the
boundary of R: there exist k̃ ∈ {1, . . . ,M}, Gk̃,1 = G̃1, Gk̃,2 = G̃2 such that

〈x∗(t̃)〉G̃2
− 〈x∗(t̃)〉G̃1

= |Gk̃|
d

2
. (9)

Application of the inequalities in (8) to x∗(t̃) for Gk̃,1 = G̃1 \ {i} resp. Gk̃,1 =

G̃1 ∪ {j} (i ∈ G̃1, j ∈ G̃2) leads to

〈x∗(t̃)〉G̃2∪{i} − 〈x∗(t̃)〉G̃1\{i} ≤ |Gk̃|
d

2
, (10a)

〈x∗(t̃)〉G̃2\{j} − 〈x∗(t̃)〉G̃1∪{j} ≤ |Gk̃|
d

2
. (10b)

Multiplication of (10a) with (|G̃2|+1)(|G̃1|−1), (10b) with (|G̃2|−1)(|G̃1|+1),
(9) with −2|G̃2||G̃1|, and addition eventually results in

x∗
i (t̃) ≤ x∗

j(t̃) − d, ∀ i ∈ G̃1,∀ j ∈ G̃2.

It follows that the interactions between agents from G̃1 and agents from G̃2

are saturated and

〈ẋ∗(t̃)〉G̃2
− 〈ẋ∗(t̃)〉G̃1

= 〈b〉G̃2
− 〈b〉G̃1

− F

N
|Gk̃|, by (7),

≤ 0, by (4b),

and thus 〈x∗〉G̃2
−〈x∗〉G̃1

cannot increase at time t̃. This implies that if x∗(t0) ∈
R for some t0 ≥ 0, then x∗(t) will remain in R for t ≥ t0: R is a trapping
region for system (7).

Since x∗(0) ∈ R, it then follows that x∗(t) ∈ R, ∀ t ≥ 0. From (8) with
Gk,1 = {i} resp. Gk,2 = {i} it follows that

|x∗
i (t) − 〈x∗(t)〉Gk\{i}| ≤ |Gk|d

2
, ∀ t ≥ 0,∀ i ∈ Gk,∀ k ∈ {1, . . . ,M},
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which is equivalent to

|x∗
i (t) − 〈x∗(t)〉Gk

| ≤ (|Gk| − 1)
d

2
, ∀ t ≥ 0,∀ i ∈ Gk,∀ k ∈ {1, . . . ,M},

and thus, setting C � (N − 1)d,

|x∗
i (t) − x∗

j(t)| ≤ C, ∀ i, j ∈ Gk,∀ k ∈ {1, . . . ,M}, (11)

for all t ≥ 0, by the triangle inequality.

Consider now the system (1). Pick ε > 0 and further specify the initial condi-
tion x(0) by imposing that

〈x(t)〉Gk
+ C ≤ 〈x(t)〉Gk+1

− C − d − ε, ∀ k ∈ {1, . . . , M − 1}, (12)

for t = 0. This implies that, at t = 0,

xi(t) ≤ xj(t) − d − ε, ∀ i ∈ Gk, j ∈ Gk+1,∀ k ∈ {1, . . . ,M − 1}, (13a)

since x(0) = x∗(0) and because of (11). From (1) it follows that all |ẋi| are
bounded (for instance by the value maxi |bi|+F ) and thus there exists a ∆t > 0
such that for t ∈ [0, ∆t]

xi(t) ≤ xj(t) − d, ∀ i ∈ Gk, j ∈ Gk+1,∀ k ∈ {1, . . . ,M − 1}. (13b)

We have shown that in the time interval [0, ∆t], the agents follow the ordering
of the sets Gk, with agents from different sets Gk separated over a distance of
at least d (as required by the definition of clustering behavior).

Whenever (13b) holds, the differential equations (1) and (7) are equivalent.
Consequently, for all t ∈ [0, ∆t], x(t) and x∗(t) are equal, implying

|xi(t) − xj(t)| ≤ C, ∀ i, j ∈ Gk,∀ k ∈ {1, . . . ,M}. (14)

Notice that because of (13b), expression (6) can be applied to each set Gk and
as a consequence the condition (4a) implies that 〈ẋ(t)〉Gk+1

− 〈ẋ(t)〉Gk
> 0 for

t ∈ [0, ∆t], and thus (12) will also hold for t ∈ [0, ∆t]. For all t ∈ [0, ∆t], (12)
and (14) hold and thus also (13a). Since we can repeat this argument starting
from time n∆t (n = 1, 2, . . .), it follows that (13b) and (14) hold for all t ∈ R+;
this accounts for the boundedness and the ordering of the agents according to
the sets Gk. Furthermore, from the application of (6) to the sets Gk together
with (4a) and (14) for all t ≥ 0, it follows that the distances between agents
of different Gk will be unbounded in time. This leads us to conclude that the
solution corresponding to the specified initial condition will indeed exhibit
clustering behavior with T = 0 and with the clusters corresponding to the
sets Gk.
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7.2 Independence of the initial condition

Let x denote the particular solution from the previous section and let x̂ denote
any other solution of (1). The square of the distance in the state space between
x(t) and x̂(t) is

V (t) �
N∑

i=1

(xi(t) − x̂i(t))
2 .

Taking the time derivative of the function V gives

V̇ (t) = 2
N∑

i=1

(xi(t) − x̂i(t))


 1

N

N∑
j=1

f(xj(t) − xi(t)) − 1

N

N∑
j=1

f(x̂j(t) − x̂i(t))




= 2
1

N

N∑
i=1

N∑
j=1

(xi(t) − x̂i(t))
(
f(xj(t) − xi(t)) − f(x̂j(t) − x̂i(t))

)

=
1

N

N∑
i=1

N∑
j=1

(
(xi(t) − x̂i(t))

(
f(xj(t) − xi(t)) − f(x̂j(t) − x̂i(t))

)

+ (xj(t) − x̂j(t))
(
f(xi(t) − xj(t)) − f(x̂i(t) − x̂j(t))

))

= − 1

N

N∑
i=1

N∑
j=1

(
(xj(t) − xi(t)) − (x̂j(t) − x̂i(t))

)

×
(
f(xj(t) − xi(t)) − f(x̂j(t) − x̂i(t))

)
, since f is odd,

≤ 0,

because both factors always have the same sign, since f is non-decreasing.

Therefore V (t) ≤ V (0), and thus |xi(t) − x̂i(t)| ≤
√

V (0), ∀ t ≥ 0, ∀ i ∈
{1, . . . , N}, which, together with the clustering behavior for x, implies that x̂
also exhibits clustering behavior. We conclude that conditions (4) characterize
clustering behavior of all solutions, independent of the initial conditions.

Remark 2 As V (t) equals the square of the distance between x(t) and x̂(t),
the implication that V̇ ≤ 0 leads to a unique clustering behavior for all initial
conditions is strongly related to the notions of ‘convergent systems’ [22] and
‘contracting systems’ [16]. However, the system (1) exhibits a weaker property
than uniform contraction (which is imposed in [22, 16] and related literature),
and consequently the function V does not necessarily approach zero.
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8 Existence and uniqueness of the cluster partition with respect
to b and F

We will prove that, given b and F ≥ 0, there corresponds a unique ordered
partition G = (G1, . . . , GM) for which (4) holds. For large values of F (4) is
satisfied for G = ({1, . . . , N}) (corresponding to only one cluster). As will be
shown in lemma 4, whenever for a given cluster structure — satisfying (4) —
one of the conditions (4b) ceases to hold with decreasing F (obviously (4a)
will remain satisfied), there is always another unique ordered set partition
for which (4) will hold again. This will be a key element in the proof of the
following theorem.

Theorem 3 For each b ∈ RN and each F ≥ 0, there exists a unique ordered
set partition G of {1, . . . , N}, such that (4) holds.

First we consider the following lemma, which is proven in section A of the
appendix.

Lemma 4 For any ordered set partition G = (G1, . . . , GM) satisfying

〈b〉Gk+1
− 〈b〉Gk

≥ F

N
(|Gk+1| + |Gk|) , ∀ k ∈ {1, . . . ,M − 1}, (15a)

〈b〉Gk,2
− 〈b〉Gk,1

≤ F

N
|Gk|, ∀Gk,1, Gk,2 � Gk, with Gk,2 = Gk \ Gk,1,

∀ k ∈ {1, . . . ,M},
(15b)

it is true that if for some k′ ∈ {1, . . . ,M} and some Gk′,1, Gk′,2 � Gk′ , with
Gk′,2 = Gk′ \ Gk′,1,

〈b〉Gk′,2 − 〈b〉Gk′,1 =
F

N
|Gk′|, (16)

then the cluster structure G′ � (G′
1, . . . , G

′
k′−1, G

′
k′ , G′

k′+1, G
′
k′+2, . . . , G

′
M+1) �

(G1, . . . , Gk′−1, Gk′,1, Gk′,2, Gk′+1, . . . , GM) satisfies

〈b〉G′
k+1

− 〈b〉G′
k
≥

(
|G′

k+1| + |G′
k|

) F

N
, ∀ k ∈ {1, . . . , M} \ {k′}, (17a)

〈b〉G′
k′+1

− 〈b〉G′
k′

=
(
|G′

k′+1| + |G′
k′|

) F

N
, (17b)

〈b〉G′
k,2

− 〈b〉G′
k,1

≤ F

N
|G′

k|,
∀G′

k,1, G
′
k,2 � G′

k, with G′
k,2 = G′

k \ G′
k,1,

∀ k ∈ {1, . . . ,M + 1}.
(17c)

For a cluster structure satisfying (4) the conditions (15) are satisfied. The
lemma implies that if one of the inequalities of (15b) becomes an equality
when F is decreased continuously to F̃ , then a cluster structure satisfying
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(17) can be identified by splitting one of the original clusters and leaving the
other clusters unaltered.

If only one inequality of (15b) changes into an equality at F = F̃ , then one
can check that (17c) holds with strict inequality (see also the proof in the
appendix the cases k ∈ {k′, k′ + 1}). Since (17a) and (17b) change into strict
inequalities for F -values slightly less than F̃ , the resulting cluster structure
satisfies (4) for these values of F .

If more than one inequality changes into an equality at F = F̃ , then (17c) still
contains one or more equalities; the lemma can be applied several times until
(17c) only consists of strict inequalities, again leading to a cluster structure
that will satisfy (4) for values of F slightly lower than F̃ .

Proof of theorem 3. Pick an arbitrary b and let F be large enough, such that
(4) holds for G = ({1, . . . , N}), i.e. there is only one cluster. Let F decrease
and let F ′ denote the (largest) value of F for which one of the inequalities
of (4b) becomes an equality. Application of the previous lemma (one or more
times) leads to a new ordered set partition G′ satisfying (4) for F ∈ [F ′′, F ′),
for some F ′′ < F ′. This argument can be repeated to obtain a partition of
the positive real axis in intervals for F ; each interval corresponds to a cluster
structure satisfying (4).

We have therefore shown that, given b and F we can construct an ordered set
partition G satisfying (4). Since (4) implies clustering behavior characterized
by G, irrespective of the initial condition, and since a solution of (1) cannot
exhibit clustering behavior with respect to different cluster structures, there
exists a unique ordered set partition G for every b and F ≥ 0, such that (4)
holds. �

Remark 5 From the proof of theorem 3 it follows that, when decreasing F
from a sufficiently large value, a tree structure relating F with asymptotic
cluster velocities can be identified; see Fig. 1(d) for a system of 7 agents. In the
generic case there will be N − 1 bifurcation values for F , each corresponding
to a separation of a cluster into two new clusters. The tree structure can
also be interpreted as a dendrogram, indicating that this model may lead to
a hierarchical procedure for data clustering (see e.g. [13, 31, 15] for more
information on this subject).

9 Behavior within the clusters

We consider a solution of the system (1) exhibiting clustering behavior char-
acterized by the clusters G1, . . . , GM and the time T . We assume that F > 0.
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Fix k; for t > T , the interaction between agents in Gk and agents in other
clusters can be replaced by the corresponding saturation value ±F . We will
show that, under some mild assumptions, the distances between x-values in
the cluster Gk will approach constant values that are independent of the initial
condition. Let σ be a bijection from Ik � {1, . . . , |Gk|} to Gk and set

x′
i � xσ(i) − 〈x〉Gk

,

b′i � bσ(i) − 〈b〉Gk
,

for all i in Ik. Then for t > T we obtain

ẋ′
i(t) = bσ(i) +

1

N

N∑
j=1

f(xj(t) − xσ(i)(t)) − 〈b〉Gk
− F

N


 ∑

k′>k

|Gk′| − ∑
k′<k

|Gk′|



= b′i +
1

N

∑
j∈Ik

f(xσ(j)(t) − xσ(i)(t)),

for all i in Ik, or

ẋ′
i(t) = b′i +

1

N

∑
j∈Ik

f(x′
j(t) − x′

i(t)), ∀ i ∈ Ik, (18)

which describes the dynamics of the agents belonging to Gk. The definition
of x′ implies that (18) is to be considered on L0 � {x′ ∈ R|Gk| : 〈x′〉Ik

= 0}.
Consider the function

Wk : R|Gk| → R : x′ �→ Wk(x
′) =

∑
i∈Ik

−b′ix
′
i +

1

2N

∑
i,j∈Ik

∫ x′
i−x′

j

0
f(τ)dτ.

Then, ∀ i ∈ Ik,
∂Wk

∂x′
i

(x′(t)) = −ẋ′
i(t),

and Wk is a gradient function for the system (18). Since each x′
i(t) is bounded

because of the clustering behavior, it follows that x′(t) will approach the set
containing all equilibrium points of (18), which are the solutions of

b′i +
1

N

∑
j∈Ik

f(x′
j − x′

i) = 0, ∀ i ∈ Ik, (19a)

〈x′〉Ik
= 0. (19b)

We will prove that, under a mild assumption, (19) has only one solution.
Assume that x′e,1 and x′e,2 are two solutions of (19), thus corresponding to
two equilibrium solutions of (18). Consider the function

Vk : R|Gk| × R|Gk| : (x′1, x′2) �→ Vk(x
′1, x′2) � 1

2

∑
i∈Ik

(x′1
i − x′2

i )2.
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For any two solutions x′1 and x′2 of the system (18) we can write

d

dt

(
Vk(x

′1(t), x′2(t))
)

= − 1

N

∑
i∈Ik

∑
j∈Ik

(
f(x′1

j (t) − x′1
i (t)) − f(x′2

j (t) − x′2
i (t))

)

×
(
(x′1

j (t) − x′1
i (t)) − (x′2

j (t) − x′2
i (t))

)
,

for all t in R, in a similar way as the expression for V̇ was derived in section 7.2.
For x′1 and x′2 equal to the equilibrium solutions x′e,1 and x′e,2, this expression
must be zero. Since each separate term is non-negative (f is non-decreasing),
it follows that

(
f(x′e,1

j −x′e,1
i )−f(x′e,2

j −x′e,2
i )

)(
(x′e,1

j −x′e,1
i )−(x′e,2

j −x′e,2
i )

)
= 0, ∀ i, j ∈ Ik,

and thus

f(x′e,1
j − x′e,1

i ) = f(x′e,2
j − x′e,2

i ), ∀ i, j ∈ Ik. (20)

For the remainder of this section we assume that the inequalities in (4b)
corresponding to Gk are strict:

〈b〉Gk,2
−〈b〉Gk,1

<
F

N
|Gk|, ∀Gk,1, Gk,2 � Gk, with Gk,2 = Gk \Gk,1, (21)

and that f is strictly increasing in the interval (−d, d). We will show that
under these conditions the solution to (19) is unique; this is accomplished by
showing that (20), together with (19b) considered for x′e,1 and x′e,2, implies
that x′e,2 = x′e,1. Since Wk is a gradient function for (18), it follows that x′e,1

is the only point of L0 where the gradient of Wk equals zero. The convexity
of Wk (Wk is convex as it is a sum of convex functions) then implies that the
restriction of Wk to L0 attains an absolute minimum in x′e,1, and therefore
x′e,1 is an asymptotically stable equilibrium point of (18) with respect to the
state space L0.

First we will prove that the undirected graph G(x′e,1), defined by connecting
i and j if and only if |x′e,1

i − x′e,1
j | < d, is connected. If this were not the case

then we would be able to find a nonempty set G′
k,2 ⊂ Ik with G′

k,1 = Ik \G′
k,2

also nonempty, and such that

x′e,1
i − x′e,1

j ≥ d, ∀ (i, j) ∈ G′
k,2 × G′

k,1,

implying that the interactions between agents of G′
k,2 and agents of G′

k,1 would
be saturated. Then from (19a) it would follow that (by averaging over G′

k,2

20



resp. G′
k,1)

〈b′〉G′
k,2

− F

N
|G′

k,1| = 0,

〈b′〉G′
k,1

+
F

N
|G′

k,2| = 0,

implying that

〈b′〉G′
k,2

− 〈b′〉G′
k,1

= |Gk|F
N

,

and since 〈b′〉G′
k,2

− 〈b′〉G′
k,1

= 〈b〉Gk,2
− 〈b〉Gk,1

, with Gk,1 = σ(G′
k,1) and

Gk,2 = σ(G′
k,2), this contradicts (21). It follows that the graph G(x′e,1) must

be connected.

Since f is strictly increasing in (−d, d), the equation f(x′e,1
j −x′e,1

i ) = f(x′e,2
j −

x′e,2
i ) implies x′e,2

j −x′e,2
i = x′e,1

j −x′e,1
i if x′e,1

j −x′e,1
i ∈ (−d, d). The connectedness

of G(x′e,1) implies that for any i and j in Ik (i �= j) we can find agents
l0 = i, l1, . . . , lP−1, lP = j (where P denotes the corresponding path length)
such that subsequent agents lm−1 and lm have an edge of G(x′e,1) in common
and thus x′e,2

lm
− x′e,2

lm−1
= x′e,1

lm
− x′e,1

lm−1
. Consequently

x′e,2
j − x′e,2

i =
P∑

m=1

x′e,2
lm

− x′e,2
lm−1

=
P∑

m=1

x′e,1
lm

− x′e,1
lm−1

= x′e,1
j − x′e,1

i .

This implies x′e,2
i − 〈x′e,2〉Ik

= x′e,1
i − 〈x′e,1〉Ik

, ∀ i ∈ Ik, and since 〈x′e,2〉Ik
=

〈x′e,1〉Ik
= 0, it follows that x′e,2 = x′e,1.

Remark 6 Notice that from the connectedness of G(x′e,1) it follows that

|x′e,1
j − x′e,1

i | < (|Gk| − 1)d, ∀ (i, j) ∈ I2
k ,

providing an upper bound for the extent (in differences of xi-values) of the
cluster Gk for large values of t.

10 Conclusion

We have introduced a dynamical model of non-identical agents, which, due
to mutual attraction, organize themselves into clusters. Each agent has a nat-
ural velocity, and is attracted to all other agents according to a saturating
interaction function.
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For any choice of the parameters a cluster structure emerges, characterized
by a set of inequalities in the model parameters: the offset in average nat-
ural velocity between different clusters should outweigh their overall mutual
attraction, while within a cluster, any partition into two subsets should result
in a difference in average natural velocity that does not exceed their mutual
attraction. In the long run the agents behave linearly in time (up to a con-
stant) with a common asymptotic velocity for agents belonging to the same
cluster. Moreover, the cluster structure is independent of initial conditions.

For varying coupling strength different cluster structures are obtained, rang-
ing from a single cluster containing all agents to (in the generic case) trivial
clusters, each containing one agent. We refer to some values of the coupling
strength as bifurcation values: decreasing the coupling strength below such
a transition value results in a new cluster structure which is a refinement of
the previous cluster structure, i.e. generically the transition corresponds to
splitting one cluster into two clusters.

The clustering behavior of our model, and the variation of the cluster structure
with varying coupling strength is similar to the behavior of the Kuramoto
model, while admitting a full mathematical analysis.

Furthermore the system equations naturally arise in diffusion/transportation
problems, as has been illustrated by deriving the model equations from the
physical laws governing a network of interconnected water basins.

Acknowledgments

We thank the referees for their constructive comments.

This paper presents research results of the Belgian Programme on Interuniver-
sity Attraction Poles, initiated by the Belgian Federal Science Policy Office.
The scientific responsibility rests with its authors.

During this research Filip De Smet was supported by a Ph.D. fellowship of
the Research Foundation - Flanders (FWO).

A Proof of lemma 4

The inequalities (17a) are identical to inequalities from (15a), except for k ∈
{k′−1, k′, k′+1}. Equation (17b) is identical to (16) (and also implies (17a) for
k = k′). The inequalities (17c) are identical to inequalities from (15b), except
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for k ∈ {k′, k′+1}. Therefore, we only need to prove (17a) for k ∈ {k′−1, k′+1}
and (17c) for k ∈ {k′, k′ +1}. The proofs consist of writing the left hand sides
of (17) as linear combinations of the left hand sides of (15).

From

〈b〉Gk′,2 − 〈b〉Gk′,1 =
F

N
|Gk′|,

〈b〉Gk′ =
|Gk′,2|〈b〉Gk′,2 + |Gk′,1|〈b〉Gk′,1

|Gk′| ,

it follows that

〈b〉Gk′,2 = 〈b〉Gk′ +
F

N
|Gk′,1|, (A.1a)

〈b〉Gk′,1 = 〈b〉Gk′ −
F

N
|Gk′,2|, (A.1b)

and thus

〈b〉G′
k′+2

− 〈b〉G′
k′+1

= 〈b〉Gk′+1
− 〈b〉Gk′,2

= 〈b〉Gk′+1
− 〈b〉Gk′ − |Gk′,1|F

N

≥ (|Gk′+1| + |Gk′|)F

N
− |Gk′,1|F

N
, because of (15a),

= (|Gk′+1| + |Gk′,2|)F

N

= (|G′
k′+2| + |G′

k′+1|)
F

N
,

and

〈b〉G′
k′
− 〈b〉G′

k′−1
= 〈b〉Gk′,1 − 〈b〉Gk′−1

= 〈b〉Gk′ − 〈b〉Gk′−1
− |Gk′,2|F

N

≥ (|Gk′| + |Gk′−1|)F

N
− |Gk′,2|F

N
, because of (15a),

= (|Gk′−1| + |Gk′| − |Gk′,2|)F

N

= (|G′
k′−1| + |G′

k′|)F

N
,

proving (17a).

Regarding (17c) for k = k′+1, choose an arbitrary nonempty subset G′
k′+1,2 �
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G′
k′+1 = Gk′,2 and set G′

k′+1,1 = G′
k′+1 \ G′

k′+1,2. From

〈b〉G′
k′+1

− 〈b〉G′
k′

=
|G′

k′+1,1|〈b〉G′
k′+1,1

+ |G′
k′+1,2|〈b〉G′

k′+1,2

|G′
k′+1|

− 〈b〉G′
k′
,

〈b〉G′
k′+1,2

− 〈b〉G′
k′∪G′

k′+1,1
= 〈b〉G′

k′+1,2
−

|G′
k′|〈b〉G′

k′
+ |G′

k′+1,1|〈b〉G′
k′+1,1

|G′
k′| + |G′

k′+1,1|
,

one can easily verify that

〈b〉G′
k′+1,2

− 〈b〉G′
k′+1,1

=
|G′

k′+1|(
|G′

k′| + |G′
k′+1|

)
|G′

k′+1,1|
×

((
|G′

k′| + |G′
k′+1,1|

) (
〈b〉G′

k′+1,2
− 〈b〉G′

k′∪G′
k′+1,1

)
− |G′

k′|
(
〈b〉G′

k′+1
− 〈b〉G′

k′

))
,

which can be bounded by using (15b) with k = k′, Gk,2 = G′
k′+1,2, Gk,1 =

G′
k′ ∪ G′

k′+1,1 and (17b) which is the same as (16):

〈b〉G′
k′+1,2

− 〈b〉G′
k′+1,1

≤ |G′
k′+1|(

|G′
k′| + |G′

k′+1|
)
|G′

k′+1,1|
×

((
|G′

k′| + |G′
k′+1,1|

)
− |G′

k′|
) F

N

(
|G′

k′| + |G′
k′+1|

)

=
F

N
|G′

k′+1|.

The inequalities (17c) for k = k′ are proven analogously.
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