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Abstract—We present a parameterized model order reduction
method based on singular values and matrix interpolation. First
a fast technique using grammians is utilized to estimate the
reduced order and then common projection matrices are used to
build parameterized reduced order models. The design space is
divided into cells and a Krylov subspace is computed for each
cell vertex model. The truncation of the singular values of the
merged Krylov subspaces from the models located at the vertices
of each cell yields a common projection matrix per design space
cell. Finally, the reduced system matrices are interpolated using
positive interpolation schemes to obtain a guaranteed passive
parameterized reduced order model. Pertinent numerical results
validate the proposed technique.

Index Terms—Parameterized Model Order Reduction, Gram-
mians, Singular Values, Projection Matrix, Interpolation, Passiv-
ity.

I. INTRODUCTION

ELECTROMAGNETIC (EM) methods [1]–[3], have be-
come indispensable analysis and design tools for a variety

of complex high-speed systems. However, a major drawback
of EM methods is that they usually generate very large systems
of equations. The optimization and simulation of these large
scale models is therefore computationally expensive, not to
say unfeasible.

Therefore, model order reduction (MOR) techniques are
crucial to reduce the complexity of large scale models and
the computational cost of the simulations, while retaining
the important physical features of the original system [4]–
[9]. Over the past two decades active research has been
focused on model reduction in the field of EM methods.
Two main classes of MOR methods can be distinguished:
1) moment matching methods, and 2) balanced and Hankel
norm methods. The moment matching methods for large-scale
problems have led to the use of Krylov and rational Krylov
subspace projection methods. The importance of producing
passive (a.k.a. positive-real) reduced order models (ROMs)
resulted in several algorithms that preserve passivity of RLC
circuits [8], [9]. As Krylov techniques fail to generate models
with provable error bounds [10], the balanced and Hankel
norm approaches have gained attention in the MOR research
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area. Balanced and Hankel norm reduction methods, already
well-developed in the control literature [11], have a very
close connection to the singular value decomposition (svd)
and have been receiving renewed attention in the electronic
design automation (EDA) community. These methods preserve
asymptotic stability and allow for global error bounds. As they
rely upon dense matrix computations they do not scale well
in terms of computational efficiency and numerical stability.
A strong current trend aims at combining these two classes of
methods and their corresponding advantages.

MOR techniques perform model order reduction only with
respect to frequency. However, during the circuit design syn-
thesis of large-scale applications, it is also essential to analyze
the response of a circuit as a function of design parameters,
such as geometrical and other characteristics. A typical design
procedure includes optimization and design space exploration,
and thus requires repeated simulations for different design pa-
rameter values. Parameterized model order reduction (PMOR)
methods can reduce large systems of equations with respect to
frequency and also other design parameters of the circuit and
are therefore well suited to efficiently perform these design
activities.

A number of PMOR methods have been developed in
recent years. The multiparameter moment-matching methods
presented in [12], [13] use a subspace projection approach.
However, the resulting ROMs usually suffer from oversize
when the number of moments to match is high, either because
high accuracy is required or because the number of parameters
is large. The parameterized interconnect macromodeling via
a two-directional Arnoldi process (PIMTAP) algorithm pre-
sented in [14], preserves the passivity of parameterized RLC
networks, but as all multiparameter moment-matching-based
PMOR techniques, it is suitable only for a low-dimensional
design space. The selection of the multidimensional expansion
points and the number of multiparameter moments needs to be
addressed in these methods. The technique presented in [15]
combines traditional passivity-preserving MOR methods and
interpolation schemes based on a class of positive interpolation
operators. A PMOR method based on EM matrix parameter-
ization and projection subspaces is proposed in [16]. Overall
passivity of parameterized ROMs is guaranteed over the design
space of interest in [15], [16]. A matrix interpolation-based
technique [17], computes a set of reduced system matrices
in a common subspace and interpolates them to generate
a parameterized ROM. This technique avoids the oversize
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problem of multiparameter moment matching algorithms, but
the reduced system matrices needed for interpolation must
have the same reduced order and must be postprocessed
for reprojection onto a common subspace. The passivity of
parameterized ROM is not guaranteed with this approach.

This paper proposes a novel PMOR technique that reme-
diates the shortcomings of the method in [17] by using a-
priori reduced order estimation, common projection matrices
(locally (cell by cell) or globally), design space decomposition
and passivity-preserving parameterization schemes. A fast
technique using grammians is first utilized to estimate the
reduced order, after which projection matrices are used to build
parameterized models. The design space is divided into cells
and a Krylov subspace is computed for each cell and each
cell vertex model. The truncation of the singular values of the
merged Krylov subspaces computed from the models at the
vertices of each cell generates a common projection matrix per
cell for local approach. For global approach the whole design
space is considered as a cell and a common projection matrix
is computed globally. Next, the reduced system matrices are
interpolated using positive interpolation schemes to obtain a
passive parameterized ROM. The Krylov subspaces can be
found using Krylov-based MOR methods. In this paper we
use the Laguerre-SVD technique [9].

The paper is organized as follows. Section II describes the
fast reduced order estimation algorithm. Section III describes
the generation of the common projection matrices and pro-
poses a flowchart with the logical steps of the novel tech-
nique. Next, multivariate interpolation schemes and passivity-
preservation are described in Section IV. Finally some perti-
nent examples validate the proposed technique in Section V.

II. ESTIMATION OF THE REDUCED ORDER BASED ON
GRAMMIANS

An a-priori reduced order estimation makes the construction
of parameterized ROMs much more efficient. The reduced or-
der can be estimated by studying the so-called Hankel singular
values which are based on the system grammians. The system
grammians are positive-semidefinite matrices that express the
controllability and observability properties of systems.

The reduced order is computed at the corner points of the
design space.The design space is sampled as described in [16].
It contains all parameters except frequency. Two data grids
are used in the modeling process: an estimation grid and a
validation grid as shown in Fig. 1. Parametrized ROMs are
estimated locally (cell by cell) or globally using the estimation
grid and are validated over the validation grid. First, we
estimate the reduced order as follows.

Let us consider a parameterized dynamical system with N
design parameters g = (g(1), ...,g(N)) in descriptor state-space
form :

C(g)
dx(t,g)

dt
= −G(g)x(t,g)+Bu(t)

y(t,g) = L′x(t,g)+Du(t) (1)

The fast and efficient modified Smith technique [18], [19]
enables to find the controllability grammian (Wc) and the

Fig. 1. Example of an uniformly sampled estimation and validation design
space grids.

observability grammian (Wo) of a large system. For the state-
space model described in (1), the generalized grammians are
defined as the unique solutions of the linear equations

−C(g)WcG(g)′−G(g)WcC(g)′+BB′ = 0 (2)

−C(g)′WoG(g)−G(g)′WoC(g)+LL′ = 0 (3)

For every real scalar p < 0, the Stein equation [20] can be
written for (2) as shown:

ApWcA′
p −Wc +BpB′

p = 0 (4)

where Ap = (pC(g) − G(g))−1(pC(g) + G(g)), and
Bp =

√
(−2p)(pC(g) − G(g))−1B. It follows that

Wc = ∑∞
j=0 A j

pBpB′
p(A′

p)
j [20]–[22]. In practice the spectral

radius of Ap should be minimized so that the power terms
decay quickly and the infinite summation can be well
approximated by finite terms.

Wc ≈
k−1

∑
j=0

A j
pBpB′

p(A
′
p)

j = Kk(Ap,Bp)Kk(Ap,Bp)
T (5)

where Kk(Ap,Bp) = [BpApBp...Ak−1
p Bp] is called the kth

order Krylov matrix and serves as a Cholesky factor of Wc.
Similarly, taking Ãp = (pC(g) + G(g))(pC(g)− G(g))−1,

and Lp =
√
(−2p)L(pC(g) − G(g))−1 , the observability

grammian Wo can be computed.
The value of k in (5) can be found from the convergence

criterion:

∥ Wk−1
c −Wk

c∥2

∥ Wk−1
c ∥2

≤ threshold (6)

The Smith method is similar to the alternating direction
implicit (ADI) method [11], [23], [24]. The Smith method
is chosen because of its ease of exposition and also because it
requires only one large-scale matrix inversion (in finding Ap).

Next, the Hankel singular values σi, which quantifies the
reachability and observability of a system, are defined as the
square root of the eigenvalues of the product of the grammians
as shown: √

eig(WcWo) = σi (7)
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Here we define the reduced order q, based on the first q
significant singular values, by setting a threshold for the ratio
of the Hankel singular values and the largest singular value.

σi

σmax
≥ thresholdσ , i = 1,2, ........,q (8)

There are no a priori rules for setting the threshold, it can
be adjusted to achieve the desired level of accuracy and
compactness for the parameterized ROM.

Two strategies are proposed for the order estimation. First
the reduced order is estimated at the corner points of the design
space. Two strategies can be followed:

1) worst-case reduced order: the highest estimated reduced
order at the corner points is extended to the entire design
space. This approach can guarantee an accurate reduction
over the design space.

2) best-case reduced order: the lowest estimated reduced
order is extended to the design space. This approach
can guarantee more compact models with respect to the
worst-case, but the reduced order may be increased for
some design space regions by a bottom-up approach to
guarantee the desired accuracy.

III. COMMON PROJECTION MATRIX COMPUTATION

For each point in the estimation design space grid as
described in Section II, a Krylov-based MOR method is
applied to the corresponding system and a set of projection
matrices is obtained. In this paper, the Laguerre-SVD method
[9] is used for this aim.

All the projection matrices will have the same dimension
in the worst-case reduced order scenario, while it may have
different dimensions for the best-case reduced order scenario.
We propose two approaches for the construction of common
projection matrices, namely local and global.

In the local approach, each design space cell has M vertices
and for each cell an union of the vertex projection matrices is
performed by column stacking

Punion = [P1,P2, .....PM] (9)

In the global approach, the whole design space is considered
as one cell and the projection matrices are computed for
the estimation grid. All the projection matrices are merged
by column stacking similarly as in (9). The dimension of
Punion is n × w where n is the order of the system and
w = (q1 + q2...+ qM) with qi the reduced order of the i− th
vertex of the cell. Then, the economy-size svd is computed
for the union of the projection matrices

UΣV′ = svd(Punion) (10)

A common reduced order r for a cell is defined based on the
first r significant singular values, by setting a threshold to the
ratio of the singular values with respect to the largest singular
value As in the case of the previous threshold value (8), there
are no a priori rules for setting the threshold, it can be adjusted
to achieve the desired level of accuracy and compactness for

the parameterized ROM. Thus a common projection matrix
Qcomm is obtained by the QR orthonormalization of Pcomm.

Pcomm = UrΣrVr
′

[Qcomm,R] = qr(Pcomm) (11)

where Ur, Σr and Vr have a truncated dimension of n× r,
r × r and r × r respectively. The congruence transformation
using Qcomm, the common projection matrix of dimension
n× r, on the original models of the design space gives the
reduced system matrices for the specific cell. Using the global
approach, means that one Qcomm is used over the entire design
space.

Regarding the state-space equations of the system under
study we assume that a topologically fixed discretization mesh
is used and is independent of the specific design parameter
values [16]. It preserves the size of the system matrices as well
as the numbering of the mesh nodes and mesh edges. The mesh
is only locally stretched or shrunk when shape parameters
are modified. The matrices B, L′ are uniquely determined
by the circuit topology and therefore remains constant, while
the matrices C and G are defined as functions of the design
parameters. Starting from a set of models in the estimation
design space (generated with respect to a common space) using
common projection matrices, it is straightforward to prove
that all the reduced system matrices in the estimation grid
are in the same subspace (locally or globally) and hence can
be interpolated.

A flowchart that describes the different steps of the proposed
technique is shown in Fig.2.

Fig. 2. Flowchart of the proposed technique.

From the flowchart one can see that the technique can be a
combination of best-case or worst-case reduced order strategy
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TABLE I
COLUMN SIZE (w) OF THE PROJECTION MATRIX (Punion)

Approach Best-Case Worst-Case

Local 2N(qmin)+∑2N

i=1 qbui 2N(qmax)

Global M(qmin)+∑M
i=1 qbui M(qmax)

with local or global approach. Depending on the scenario
selected, the computation complexity as well as the accuracy
and compactness of the parameterized ROM change. For the
local approach a parameterized ROM is built cell by cell in
the design space. In this paper, a hypercube [15] is considered
as elementary design space cell for the local approach and it
has 2N vertices. The vertices increase exponentially with the
number of dimensions, but this number still remains smaller
than the number of estimation points in the whole design space
that are used in the global approach. From Table I we can
obtain the dimension of the merged projection matrix (9),
for the different approaches before computing the compact
common projection matrix. The following notations are used
in the table:
- qmin the minimum of the reduced order estimated at the
corner points of the design space.
- qmax the maximum of the reduced order estimated at the
corner points of the design space.
- N the number of design parameters.
- M the total number of estimation points and M ≥ 2N .
- qbui the order by which the best-case order is increased at
the i− th design space point using a bottom-up approach.

Concerning the complexity of the proposed technique, it
can be noted that the most expensive step is related to the
Smith’s technique for the order estimation at the corner points
of the design space, where the inverse of Ap (4) is required
and its complexity is O(n3) with n equal to the actual order
of the system. Then the projection matrix can be computed
at each estimation point using any model order reduction
technique that influences the complexity of this step. After
computing the merged projection matrix (9), the svd has to
be performed to obtain the common projection matrix, which
has a complexity of O(4n2w) where w is the column size
of the merged projection matrix. Therefore, depending on
the approach chosen, as stated in Table I, the complexity of
svd varies. When the local approach is chosen, the model
will be quite compact as only 2N points are considered for
each design space cell. It is important to note that each
cell will have its own compact common projection matrix.
While in the case of global approach, the projection matrix
is computed using the projection matrices of all estimation
points. Therefore, it will be less compact than the local
approach. On the other hand, it is computed once for the
entire design space and then only one svd computation must be
performed. When the number of design parameters increases,
it leads to increase the size of the merged projection matrix
and the computational complexity of the related svd operation
(10). In high dimensional design spaces, the local approach
is more feasible since it works cell by cell. After obtaining

the common projection matrix, congruence transformation has
to be performed and its complexity is equivalent to matrix
multiplication. Then, the complexity of the last step depends
on the selected interpolation scheme.

IV. MULTIVARIATE INTERPOLATION

Once the reduced matrices are computed, they are interpo-
lated to build a parameterized ROM. Multivariate interpolation
can be realized by means of tensor product [25] or tessellation
methods [26]. Any interpolation scheme in the class of positive
interpolation operators [15] can be used, e.g., multilinear
and simplicial methods [27], to preserve overall passivity as
described in the sequel.

For example considering multilinear interpolation, each
interpolated matrix T(g(1), ...,g(N)) is

T(g(1), ...,g(N)) = ∑K1
k1=1 · · ·∑

KN
kN=1T

(g(1)k1
,...,g(N)

kN
)

lk1(g
(1)) · · · lkN (g

(N)) (12)

where K1 is the number of estimation points and the
interpolation kernel lki(g

i) satisfies the following constraints

0 ≤ lki(g
(i))≤ 1,

lki(g
(i)) = δki,i

∑K1
k=1 lki(g

(i)) = 1 (13)

It should be noted that the interpolation kernel functions of
these methods only depend on the design space grid points
and their computation does not require the prior solution of
a linear system to impose an interpolatory constraint. Positive
interpolation schemes have already been used in [15], where
a parameterized macromodel is built by interpolating a set of
ROMs treated as input-output systems, while preserving over-
all stability and passivity. Therefore, interpolating systems,
matrices or scalars does not make any difference for these
local interpolation kernel functions.

When performing transient analysis, stability and passivity
must be guaranteed. It is known that, while a passive or
positive-real system is also stable, the reverse is not necessarily
true [28], which is crucial when the macromodel is to be
utilized in a time domain simulator. Passive systems cannot
generate more energy than they absorb through their ports.
When the system is terminated on any arbitrary passive load,
none of them will cause the system to become unstable [29],
[30].

A. Systems with a special state-space form

In the PRIMA and Laguerre-SVD methods, the original
systems are assumed to be in the descriptor state-space form
(1). If the following conditions are satisfied:

C = C′ ≥ 0
G+G′ ≥ 0

B = L (14)

the passivity of the system with transfer function Y(s) =
L′(sC+G)−1B is guaranteed [31]. For this specific format,
PRIMA and Laguerre-SVD methods guarantee the passivity of
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the reduced model built by congruence transformation using
the projection matrix Qcomm

Cr(g) = Qcomm
′C(g)Qcomm ≥ 0

Gr(g) = Qcomm
′G(g)Qcomm ≥ 0

Br(g) = Qcomm
′B(g)

Lr(g) = Qcomm
′L(g) (15)

Since any nonnegative linear combination of positive semi-
definite matrices is a positive semi-definite matrix, stability
and passivity are preserved over the entire design space if
positive interpolation operators are used to interpolate the
reduced matrices.

B. System with a general state-space form

Consider the following state-space form

dx(t,g)
dt

= A(g)x(t,g)+Bu(t)

y(t,g) = L′x(t,g)+Du(t) (16)

To build passive parameterized reduced order models, some
additional steps with respect to the previous case are required.
A MOR technique that preserves passivity of systems in the
form (16) by using the solution of linear matrix inequalities
(LMI) to generate a descriptor state-space format has been
proposed in [32]. The original systems after LMI matrix com-
putations are in a descriptor form satisfying properties (14),
and therefore the passivity-preserving interpolation previously
described can be used to build a passive parameterized ROM.
This method is less expensive than the passivity-preserving
technique described in [33], since only a single LMI equation
has to be solved.

V. NUMERICAL RESULTS

Some pertinent numerical examples are used to demonstrate
the accuracy and efficiency of the proposed PMOR technique.

Let us define the weighted RMS error as

Err(Y1(s),Y2(s)) =

√√√√∑Ks
k=1 ∑

Pin
i=1 ∑Pout

j=1
|Y1,(i j)(sk)−Y2,(i j)(sk)|2

W(i j)(sk)

PinPout Ks

W(i j)(sk) = |Y2,(i j)(sk)|2 (17)

In (17) Ks, Pin and Pout are the number of frequency samples,
input and output ports of the system, respectively.

The worst case RMS error over the validation grid is chosen
to assess the accuracy and the quality of parameterized ROMs

gmax = argmaxErr(g), g ∈ validation grid

Err(g)max = Err(gmax) (18)

and it is used in the numerical examples. The proposed
technique was implemented in MATLAB R2009A [34] and all
experiments were carried out on Windows platform equipped
with Intel(R) Xeon(R) CPU E5504@2.0 GHz and 6GB RAM.

TABLE II
PARAMETERS OF THE EM MODEL

Parameter Min Max

Frequency ( f req) 1 kHz 15 GHz

Horizontal spacing (Sx) 1 mm 2 mm

Vertical spacing (Sy) 2 mm 3 mm

A. EM: EM model

An EM model satisfying (14), of an interconnection com-
posed of six conductors with length L = 2 cm and width
w = 1 mm and thickness t = 0.2 mm has been modeled in this
example. Fig.3 shows its cross section. Sx and Sy represents
the horizontal and vertical spacings between the conductors
and are the two parameters that vary in addition to frequency.
Their corresponding ranges are shown in Table II. The order
of the original models is 702. The design space is sampled

Fig. 3. EM: Cross section of multiconductor system.

uniformly over an estimation grid of 4× 4 (Sx,Sy) samples
and a validation grid of 3×3 (Sx,Sy) samples. The validation
design space points are located in the center of each cell of
the rectangular estimation grid as shown in Fig.1. The reduced
order is estimated at the corners of the design space by the
truncation of the Hankel singular values with a threshold.

This threshold can be set based on the level of accuracy
needed for the PMOR. For example we have set a threshold
of 0.01 for (8), such that the weighted RMS error (17) at
the corner points of the design space is not larger than 0.05.
Depending on the accuracy and compactness required, one
can increase or decrease the threshold. Then, the projection
matrices are computed at the estimation points using Laguerre-
SVD.

For local projection, the projection matrix is constructed cell
by cell. For example, consider the cell with Sy varying from
2 mm to 2.3 mm and Sx varying from 1 mm to 1.3 mm, the local
projection matrix is found by truncating the singular values of
the union of the projection matrices computed at the vertices
of the cell. If the common projection matrix is generated by
the mere union of the projection matrices computed at the
vertices of the cell, then the reduced order is 178, but with the
truncation of the merged projection matrices by a threshold
of 0.01 as described in Section III, the reduced order is 66
as shown in Fig.4. Thus a more useful projection matrix is
obtained locally for the specified cell using the novel PMOR
technique. The parameterized model is obtained by multilinear
interpolation of the reduced system matrices. Fig. 5 shows
the crosstalk term Y16(s,Sx,Sy) for Sx = 1.2 mm . Fig.6 plots
the magnitude of Y16(s,Sx,Sy) at the validation points of this
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Fig. 5. EM: Magnitude of Y16(s,Sx,Sy) for Sx = 1.2 mm.

design space cell. The worst-case RMS error (18) for the local
approach is 0.0416.
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Fig. 6. EM: Magnitude of Y16(s,Sx,Sy) for Sx = 1.2 mm and Sy = 2.1 mm
using a best-case local projection.

The parameterized ROM can be built globally by computing
a global common projection matrix for the entire design space.
The whole design space is considered as one cell and then the
projection matrices are found at the estimation points. The

projection matrices are then merged and its singular values
are truncated by a threshold of 0.01. It can be seen that the
merged projection matrix, that is 708 has been reduced to 92
for the global common projection as shown in Fig.7. Thus
we are able to obtain reduced order models at the estimation
points globally.
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Fig. 7. EM: Singular values of the projection matrix (best-case global
approach).

The Table III below summarizes, the dimension of the
merged and common projection matrix along with the CPU
time for computing the reduced order and the common pro-
jection matrix using the different approaches. In this example,

TABLE III
COLUMN SIZE OF PROJECTION MATRIX WITH COMPUTATION

TIME FOR THE EM MODEL

Approach Column size Column size Computation time

of Punion of Pcomm (sec)

Best-case local 178 66 41.58

Best-case global 708 92 82.71

Worst-case local 184 71 38.13

Worst-case global 736 128 57.64

Table III shows that for a compact model the best-case scenario
can be selected and that for a faster performance the worst-case
scenario can be selected. It should also be noted that the results
of the local approach are related to the cell with Sy varying
from 2 mm to 2.3 mm and Sx varying from 1 mm to 1.3 mm.
We recall that each design space cell has its own common pro-
jection matrix using the local approach. While for the global
approach the common projection matrix can be used for the
whole design space. The parameterized model is obtained by
multilinear interpolation of the reduced system matrices. Fig.
8 compares the actual data and parameterized ROM obtained
by interpolation for the spacing Sy = {2.2,2.5,2.9} mm and
Sx = 1.3 mm. These specific spacing values have not been used
for the estimation grid. The worst case RMS error (18) for the
global approach is 0.0512. It is clear that, the parameterized
ROM captures the behavior of the system very accurately with
passivity guaranteed by construction.
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B. 3MTL: Three coupled microstrip

TABLE IV
PARAMETERS OF THREE COUPLED MICROSTRIP

Parameter Min Max

Frequency ( f req) 1 kHz 4 GHz

Spacing (S) 200 µm 400 µm

Length (L) 2 cm 6 cm

A three coupled microstrip structure can be modeled [9]
starting from per-unit-length parameters. Fig.9 shows its cross

Fig. 9. 3MTL: Cross section of three coupled microstrip line.

section. The conductors have width w = 100 µm and thickness
t = 50 µm. The spacing S between the conductors and the
length L are considered as variable parameters in addition to
frequency. Their corresponding ranges are shown in Table IV.
The C,G,B,L matrices are obtained for 5 values of S and
5 values of L. The original models are represented as in (1)
and have an order of 10203. A 3× 3 (S,L) estimation grid
and a validation grid of 2× 2 (S,L) samples is considered.
The reduced order at the corner points of the design space is
estimated by truncating the Hankel singular values, similar to
the previous example a threshold of 0.01 is chosen.

For the global approach the projection matrices are com-
puted at all the estimation points in the design space to obtain
a common global projection matrix. Similar to the previous
example, it can be seen that the size 298 for the merged
projection matrix can be reduced to 81 by truncating the
singular values as shown in Fig.10. The parameterized ROM
is obtained using multilinear interpolation. Fig.11 plots the
magnitude of Y11(s,S,L) for S = 200 µm. Fig.12 plots the
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Fig. 10. 3MTL: Singular values of the projection matrix (best-case global
approach).

magnitude of Y11(s,S,L) for a S = 200 µm and L = {3,5} cm.
The worst case RMS error (18) for the global approach is
0.057.
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Fig. 11. 3MTL: Magnitude of Y11(s,S,L) for S = 200 µm.
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Fig. 12. 3MTL: Magnitude of Y11(s,S,L) for S = 200 µm and L = {3,5} cm
using a best-case global common projection matrix.

As explained before, for local projection the projection ma-
trix is found cell by cell. For example, the cell with S varying
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from 200 µm to 297.44 µm and L varying from 2 cm to 4 cm,
the local projection matrix is found by truncating the singular
values of the union of the projection matrices computed at the
vertices of the cell. When the common projection matrix is the
union of the projection matrices computed at the vertices of the
cell, then the reduced order will be 162, but with the truncation
of the merged projection matrix by a threshold of 0.01 as
described in Section III, the reduced order is 57 as shown
in Fig.13. Thus a more useful projection matrix is obtained
locally for each specified cell using the novel technique.
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Fig. 13. 3MTL: Singular values of the projection matrix (best-case local
approach).

Similarly to the previous example, Table V below summa-
rizes the dimension of the merged and common projection
matrix along with the CPU time for computing the reduced
order and the common projection matrix using the different
approaches. In this example, the results of the local approach

TABLE V
COLUMN SIZE OF PROJECTION MATRIX WITH COMPUTATION

TIME FOR THREE COUPLED MICROSTRIP

Approach Column size Column size Computation time

of Punion of Pcomm (sec)

Best-case local 162 57 1502.36

Best-case global 298 81 3104.11

Worst-case local 168 62 1456.42

Worst-case global 378 103 3002.75

shown in Table V are related to the cell with S varying from
200 µm to 297.44 µm and L varying from 2 cm to 4 cm.

Fig. 14 shows the magnitude of Y11(s,S,L) for S =
246.15 µm and L = 3 cm. The parameterized ROM with local
approach has worst-case RMS error (18) equal to 0.0415.

As in the previous example, the parameterized ROM is
able to accurately describe the parameterized behavior of the
system with a common projection matrix locally and globally.
The passivity of the system is guaranteed by construction.

VI. CONCLUSION

We have presented a novel PMOR method based on singular
values and matrix interpolation. A fast technique using gram-
mians is first utilized to estimate the reduced order and then
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Fig. 14. 3MTL: Magnitude of Y11(s,S,L) for S = 246.15 µm and L = 3 cm
using a best-case local projection.

projection matrices are used to build parameterized reduced
order models. The design space is divided into cells and a
Krylov subspace is computed for each cell vertex model.
The truncation of the singular values of the merged Krylov
subspaces computed from the models at the vertices of each
cell generates a common projection matrix per design space
cell. The stability and passivity of the parameterized reduced
order models are preserved using classical MOR methods and
positive interpolation schemes. Pertinent numerical examples
show that the proposed technique is able to build accurate and
parameterized reduced order models of dynamic parametric
systems.
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