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Abstract

Let V be a 6-dimensional vector space over a field F equipped with a nondegener-
ate alternating bilinear form f. The group GL(V') has a natural action on the third
exterior power /\3 V of V which defines five families of nonzero trivectors of V. Four
of these families are always orbits regardless of the structure of the underlying field
F. The orbits contained in the fifth family are in one-to-one correspondence with
the quadratic extensions of F that are contained in a fixed algebraic closure of F.
We will divide those orbits corresponding to the nonseparable quadratic extensions
into suborbits for the action of the symplectic group Sp(V, f) = Spe(F) associated
with (V, f) on A*V.
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1 Introduction

Throughout this paper, let V' denote a 6-dimensional vector space over a field F and let
f denote a nondegenerate alternating bilinear form on V. With the pair (V, f), there
is associated a symplectic group Sp(V, f) = Spe(F) which consists of all § € GL(V) for
which f(z°,9°) = f(z,9), VZ,5 € V. The group Sp(V, f) consists of those elements
of GL(V) that map hyperbolic bases of (V, f) to hyperbolic bases of (V, f). With a
hyperbolic basis of (V, f) we mean an ordered basis (&1, f1, €, f2, €3, f3) of V such that
fei,e;) = f(fi, f;) = 0 and f(e;, f;) = 6, for all 4,5 € {1,2,3}. Here, d;; denotes the
Kronecker delta.

The group GL(V') and its subgroup Sp(V, f) have a natural action on the third exterior
power A®V of V. Indeed, for every # € GL(V), there exists a unique \*(8) € GL(A*V)
such that A*(0)(T1 ATy ATs) = 0(5y) AO(Ty) AO(Ts), VT, Ty, T3 € V. The elements of \* V
are called the trivectors of V. Two trivectors x; and y, of V are called G-equivalent,
where G is either GL(V) or Sp(V, f), if there exists a § € G such that A*(0)(x1) = xe.
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Let F be a fixed algebraic closure of F. For every quadratic extension F’ of F contained
in I, there exist pp, Ap € F* := F\ {0} such that pp(X) := upX? — (upAp + e +
Ar)X + Ap is an irreducible quadratic polynomial of F[X] and F' C F is the quadratic
extension of F defined by pp (X). We define xj := pp - 01 A U2 A U3 + A\pr - 04 A U5 A U +
(01 4+ 04) A (U2 + 05) A (U3 + Ug), where {0y, 0a, ..., 06} is some basis of V. Different choices
for pp, \pr and (01, v, . . ., Ug) usually give rise to distinct trivectors, but as shown in De
Bruyn [3], the GL(V')-equivalence class of the trivector x3 only depends on F' and not
on the particular choices of pp, Ap and (vy, Vs, ..., Ug).

A complete classification of all GL(V)-equivalence classes of trivectors of V' was ob-
tained in Revoy [10].

Proposition 1.1 ([10]) Let {v},v5,...,0} be a fized basis of V. Then every nonzero
trivector of V' is GL(V)-equivalent with precisely one of the following trivectors:
(A) 05 A0 N D35
(B) ’l_}f/\i_);/\f)g-i-?_)f/\ﬁz /\?_)g;
(C) vF NUs AN US4+ U5 ANVENTE;
(D) vf N U5 A U; 4 U5 AU A UE+ 05 A O] AT _
(E) X3 for some quadratic extension F' of F contained in F.

Other classification results for GL(V)-equivalence classes of trivectors of V, valid for
certain classes of fields, can also be found in Cohen & Helminck [1] and Reichel [9].
A nonzero trivector of V' is said to be of Type (X) € {(A),(B),(C),(D),(E)} if it is
GL(V)-equivalent with (one of) the trivector(s) described in (X) of Proposition 1.1. The
description of the trivectors of Type (E) given above is different from the ones given in
[1] and [10]. The above description is taken from [3].

With the pair (V, f), there is associated a symplectic dual polar space DW (5,F). This
is the point-line geometry whose points [resp., lines| are the totally isotropic 3-spaces
[resp., totally isotropic 2-spaces| of V' (with respect to f), with incidence being reverse
containment. A hyperplane H of a point-line geometry S is a set of points, distinct from
the whole point set, having the property that every line of § has either precisely one or
all its points in H. The knowledge of the Sp(V, f)-equivalence classes of trivectors of V
is important for the classification and study of the hyperplanes of DW (5, F) arising from
its so-called Grassmann embedding, as well as the study of the relationships between the
hyperplanes of DW (5, F) and the hyperplanes of the plane Grassmannian of PG(V'). The
latter is a certain point-line geometry into which DW (5, F) is fully embeddable.

Popov [8, Section 3| obtained a complete classification of all Sp(V, f)-equivalence classes
of trivectors of V| assuming the underlying field F is algebraically closed and of charac-
teristic distinct from 2. Popov’s method heavily relies on the decomposition of /\3 V asa
direct sum of two subspaces €2; and €25 of respective dimensions 14 and 6 (which are also
submodules for the action of Sp(V, f) on A® V). This decomposition is only valid for fields
of characteristic distinct from 2. Popov’s proof also relies on a result of Igusa [7] regarding
the Sp(V, f)-equivalence classes of trivectors contained in €2;. This classification result of



Igusa also assumes that the underlying field is algebraically closed and of characteristic
distinct from 2. We are interested in the classification of all Sp(V, f)-equivalence classes of
trivectors without imposing any restrictions on the underlying field F. Such classification
results were already obtained in De Bruyn & Kwiatkowski [4] for trivectors of Type (A),
(B), (C), in De Bruyn & Kwiatkowski [6] for trivectors of Type (D) and in De Bruyn
& Kwiatkowski [5] for trivectors of Type (E) under the additional assumption that the
corresponding quadratic field extension is separable. The present paper deals with those
trivectors of Type (E) whose corresponding quadratic field extensions are nonseparable.
More precisely, we will solve the following problem.

Let F/ be a fixed nonseparable quadratic extension of F contained in F. Let
Ep denote the set of all trivectors of V' which are GL(V)-equivalent with x7 .
Then determine the Sp(V, f)-equivalence classes into which &g splits.

Since [’ is a nonseparable quadratic extension of IF, the characteristic of F is 2 and there
exists a nonsquare a in I such that F’ is the extension of F defined by the irreducible

quadratic polynomial X2+a. Let (&5, ff, &5, f3, €5, f5) be a fixed hyperbolic basis of (V, f).

For all hq, hy, hy € F*, we define

a + 1 —% —x —% r* £ £*
Xl(hl,hg,h;g) = a '61/\62/\€3+<a+1)h1h2h3'f1 /\f2 /\f3

+(E7 + hafi) A (€ + hafs) A (& + hsf3).
Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form xi(hq, ho, h3)
for some hy, ho, hy € F* is called a trivector of Type (E1’).

For every k € F* and all hy, hy € F satisfying hihe(a + 1)? # 1, we define the following
trivector of V:

1 r 2 = —
Xo(k, b ha) = =A@+ (e + DE) A f3 k- fi Aes A (hala+1)e5 + f5)
1 ] ]
tar (& +kf) A @+ (a+1)e+ hi(a+1)f35) A (ho(a+ 1)e;

+Ha+1)f5 + f3).
Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form ys(k, hi, hs)
for some k, hy, hy € F satisfying k # 0 and hihy(a + 1) # 1 is called a trivector of Type
(E2’).
For all hy, hy € F with hy # 0, we define
1 _ _ _
X3(hi, ho) = e (et es) A fa + e N fi A (e + haf3)

+

— @B A @G+ ) A ((@+ 1Rt + J 4 ).

Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form y3(hq, hy) for
some hy € F* and some hy € F is called a trivector of Type (ES3’).

The following two theorems are the main results of this paper.
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Theorem 1.2 The trivectors of V' that are GL(V)-equivalent with x3, are precisely the
trivectors of Type (E1'), (E2') and (E3').

Theorem 1.3 (1) Let i,57 € {1,2,3} with i # j. Then no trivector of Type (Ei’) is
Sp(V, f)-equivalent with a trivector of Type (Ej’).

(2) Let hy, ho, hs, By, hly, by € F*. Then the two trivectors x1(hy, he, hs) and x1(h}, by,
hy) of V' are Sp(V, f)-equivalent if and only if there exists a matriv A € SL(3,F') such
that diag(h}, hy, ) = A - diag(hy, ho, h3) - AT.

(3) Let k,hy, ho, k', B}, Wy € F with k # 0 # k' and hiha(a +1)? # 1 # hjhy(a + 1)%
Then the two trivectors x2(k, hy, he) and x2(k', by, hy) of V' are Sp(V, f)-equivalent if and
only if k = k', hyhy = b} 1y and there exist X,Y, Z,U € F such that b = hi(X? +aY?) +
ho(Z? + aU?) + (XU + Y Z).

(4) Let hy, ho, b, hly € F with hy # 0 # h}. Then the two trivectors xs(hi, hs) and
X3 (R, hh) of Voare Sp(V, f)-equivalent if and only if hy = k) and hy + hl is of the form
hi(X?2+aY?) +Y for some X,Y €F.

In Theorem 1.3, diag(hy, ha, hg) denotes the diagonal (3 x 3)-matrix whose entry in the
i-th row and 4-th column (i € {1,2,3}) is equal to h;.

The machinery that we will use to classify all Sp(V, f)-equivalence classes of trivectors
belonging to & will be developed in Section 3. The vector space V' can naturally be
extended to a 6-dimensional vector space V' over F'. We consider two forms f’ and g on
V" which will play an important role in the proof. The first form f” is just the alternating
bilinear form on V' obtained by extending f. The second “form” g is usually not bilinear.
At the end of Section 3 (Corollary 3.18), we will divide the family & of trivectors into
three subfamilies such that trivectors belonging to distinct subfamilies are never Sp(V f)-
equivalent. We will show that these three subfamilies correspond to the three families of
trivectors defined above ((E1’), (E2’) and (E3’)). Sections 4, 5 and 6 are devoted to
the classification of the Sp(V, f)-equivalence classes of trivectors that belong to the three
subfamilies described in Corollary 3.18.

We will see in Corollary 3.6 that the elements of & are trivectors of Type (D) when
regarded as trivectors of V'. All Sp(V’, f')-equivalence classes of trivectors of Type (D)
of V' were determined in De Bruyn & Kwiatkowski [6]. We will recall this classification
in Section 2. In Sections 4, 5 and 6, we will also determine those Sp(V’, f')-equivalence
classes of trivectors of Type (D) to which the elements of & belong.

2 On the trivectors of Type (D)

In this section, we recall the classification of the Sp(V’, f')-equivalence classes of trivectors
of Type (D) as given in De Bruyn & Kwiatkowski [6].

Let V' be a 6-dimensional vector space over the field ' equipped with a nondegenerate
alternating bilinear form f'. Let (&%, f¥, &5, f3, €5, f2) be a fixed hyperbolic basis of (V', f).
We now define a number of trivectors of V.



e We define
Y= eAe A fy+esNfiAes+ [T Ae A S
e For every A € F'\ {0}, we define
B = A-EAGAT+EAFIAG+ AR,
1A = A AGAfy A AN+ ) —esAe NS
e For all A\j, Ay € "\ {0}, we define
YA, A2) = EAEAfi A e AENfE+ A ey ANE N fy,
T(AA2) = EAGAfy+ e AN AT+ f5) A EsAEA S
e If char(IF") # 2, then we define the following additional trivector:
Yo = —€ANesNfs+eNesNfiresne A fs.
o If |/| = 2, then we define the following additional trivector:

Vo= GAGAfITENGAfI ) e A NS

Let i € {1,2,...,7}. Any trivector of V/ which is Sp(V’, f')-equivalent with some ~;-
trivector defined above is called a trivector of Type (Di). The following results were
proved in De Bruyn & Kwiatkowski [6].

Proposition 2.1 ([6, Theorems 1.2, 1.3 and 1.4]) (1) The trivectors of Type (D)
of V' are precisely the trivectors of Type (D1), (D2), (D3), (D4), (D5), (D6) and (D7).
(2) Leti,j € {1,2,...,7} with ¢ # j. Then no trivector of Type (Di) is Sp(V', f')-
equivalent with a trivector of Type (Dj).
(3) If \, N € "\ {0}, then the trivectors vo(\) and y2(X') are Sp(V', f')-equivalent if
and only if A = N.

(4) Let A, Mo, A, Ny € F/\ {0}. Then the trivectors vs(A1, A2) and ~v3(N|, N,) are
L0 0 x 00
Sp(V', f')-equivalent if and only if the matrices | 0 )%2 0 and | 0O %/2 0
0 0 L 0 0 L

A1A2 A AL

are congruent.

(5) Let A, Ao, A, Ny € B\ {0}. Then the trivectors v4( A1, A2) and ~v4(N), N) are
Sp(V', f')-equivalent if and only if \y = N, and there exist X,Y € T such that Y? +
MXY + A X2 =32

(6) Let A\, N € F'\{0}. Ifchar(F') = 2, then vy5(\) and v5(\') are Sp(V', f)-equivalent
if and only if ’\AL)\’,\/ is of the form X? + X for some X € F'. If char(F") # 2, then the
trivectors v5(A) and vs5(N') are always Sp(V', f')-equivalent.
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Remark. If {01, 0, ..., 06} is a basis of V', then y = 01 AUy AUy + Vo AUz ATs+ U3 AUy ATg 18
a trivector of Type (D) of V. By Lemma 3.1 of [6], the 3-space (v, U2, v3) of V' is uniquely
determined by x. We call it the base 3-space of y. In the above list of trivectors of Type
(D), 71 and 72(A) are those trivectors whose base 3-space is not totally isotropic, while
Y3(A1, A2), Ya(A1, A2), ¥5(A), Y6 and 77 are those trivectors whose base 3-space is totally
isotropic.

3 Development of the machinery for the classification

The aim of this section is to develop the machinery that we will use to obtain our desired
classification results.

Let F be a field of characteristic 2, denote by F a fixed algebraic closure of F and
suppose F C F is the nonseparable quadratic extension of F defined by the irreducible
quadratic polynomial X? + a € F[X]. Let § be the unique element of F' \ F such that
5 =a.

Let V' be a 6-dimensional vector space over F’ equipped with a nondegenerate al-
ternating bilinear form f’. Denote by {v], v3, v}, v}, v, 0§} a fixed basis of V' such that
f'(vf,v5) € Ffor all 4,5 € {1,2,...,6} (e.g., take for (v, v, 03,95, 05,0§) an arbitrary
hyperbolic basis of (V’, f’)). Let V denote the set of all F-linear combinations of the
elements of {v],v3,v5, v, 05,05} and let f denote the restriction of f’ to V. Then V' can
be regarded in a natural way as a 6-dimensional vector space over F, and f defines a
nondegenerate alternating bilinear form on V.

The following two lemmas are special cases of a more general result, see e.g. De Bruyn
2, Section 4].

Lemma 3.1 For every hyperbolic basis B = (€1, f1, €2, fa, €3, f3) of (V', f'), let mp denote
the linear map from /\3 V' to V' defined by

7TB(é1 A ég A ég) = 7TB(él AN ég A fg) = 7TB(él A fg A ég) = WB(él A fg A fg) = 5,

me(fiNes Nes) =mp(fine A fs) =np(fi N faNes) =mp(fi A fa A f3)
mpEr N A fo) =mp(er AesA f3) = e mp(fine A fa) =mp(fiNes A fz) = fi,
7
(

Il
Ql

)

(@ AEAfi) =mp(eaNes A f3) = mp(foNer A fi) =ap(fanes A fs) = fo,
p(és Aep A fl) =rmp(es N ey A f2) = é377TB(f3 Nep N f1) mB(f3 Aéx A f2) = fs.

Then 7g is independent of the chosen hyperbolic basis B of (V', f').

Lemma 3.2 For every hyperbolic basis B = (€1, f1, €2, fa, €3, f3) of (V', f'), let wly denote
the linear map from /\4 V' to /\2 V' defined by

T(BL A fiNEy NE3) = o NE3, TR(ELAfiANCAS3) =N fs, TR(ELAFIA faNEs) = foNes,
T AFINFaNf3) = faNfs, T(Ea A faNELNEs) = €1 NEs, Tp(Ea A faAELA f3) = &L fa,
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(e A fa N finEs) = fines, Th(EaAfaNfinf3) = fiAfa, Tp(E3A faNEr NEr) = € Aéy,
T(EsAfsNer A fo) = 1A fa, (s A faAfiles) = fines, mh(EAfsAfinfo) = fiAf,
mg@ AfineaAfy)=e ANfi+eéAfo, @t AfiNes A fs)=el A fi+esN f,
(@2 A faNEs A fs) =@ A fat+es A fa.

Then 7'y is independent of the chosen hyperbolic basis B of (V', f').

Let 7: A*V/UA'V' — VU A? V' be the map which sends o to 75(a) if @ € A*V” and
to mz(a) if o € /\4 V’. Here, B is some arbitrary hyperbolic basis of (V’, f’). Observe
that by Lemmas 3.1 and 3.2, the map 7 is an invariant, that means, is independent of the
considered hyperbolic basis B of (V', f').

Let Sp(V, f) = Sps(F) and Sp(V', f') = Sps(F’) denote the symplectic groups associated
with the respective pairs (V, f) and (V’, f'). Every 6 € GL(V) may be naturally extended
to an element of GL(V') which we will also denote by 6. Following this convention, we
thus have that GL(V) € GL(V') and Sp(V, f) € Sp(V", f'). Recall that if y1,x2 € A* V’
and G is one of the groups GL(V"),GL(V), Sp(V"', f'), Sp(V, f), then x; and x5 are called
G-equivalent if xo = N\*(0)(x1) for some 6 € G.

If we put pp = a+1 and \pr = %1, then I’ C F is the quadratic extension of F defined
by the quadratic polynomial e X2 + (pum Ap + pir + Ae ) X + Ap = (a+1)(X?+2) € F[X].
So, we can put

. a+1
Xp = :

Uy ANU3 AU + (a+1) - 05 AUy Avg + (07 +05) A (03 + 03) A (05 + T5).

We now define a certain map ¢ : /\3 V' — /\3 V. If y e /\3 V', then there exist unique
X1, X2 € /\3 V such that x = x1 + dx2, and we define

1
P(x) = ~x e

With this definition, we have
i o= o (55 + 855) A (85 + 895) A (85 + 675) ).

Lemma 3.3 If0 € GL(V), then N*(6) o 6 = ¢ o \*(6).

@

Proof. Let y = x1 + dx2 be an arbltrary element of /\ V' where x1, x *V. Sinc

9 €
0 € GL(V), N’(0)(x1) € N>V and A*(0)(x2) € A*V. Now, A*(0) o ¢(x >=/\3<>§~
Xi+x2) = LAY 0) (1) + NP (0)(x2) and 60 A*(0)(x) = ¢(/\3< )(x1) +6- A*(0) (x2)
LOAYO) () + AP (0) (x). .

The following observation should be clear.



Lemma 3.4 The trivectors of Type (E) of V' belonging to Ep are precisely the trivectors
of the form qb((f}l + 009) A (U3 + d04) A (U5 + 5176)>, where {0y, Vg, U3, Uy, Vs, U} 1S Some
basis of V.

The proof of the following lemma consists of a straightforward computation.

Lemma 3.5 Ifvy,0s,...,0s are vectors of V., then qzﬁ((@l —|—5172)/\(173—|—5174)/\(175+5@6)> =

(U1 + 602) A (U3 4 604) A (£05 + Ug) + (03 + 604) A (U5 + 006) A (201 + U2) + (U5 + 006) A
(U1 + 602) A (203 + ).

The following is a straightforward corollary of Lemma 3.5.

Corollary 3.6 The trivectors of Type (E) of V' belonging to Ew are trivectors of Type
(D) when regarded as trivectors of V'.

Lemma 3.7 If {vy, 09, U3, Vs, Us, V6 } and {wy, Wy, W3, W4, W5, W} are two bases of V' such
that gb((@l + 6T2) A (T3 + 604) A (05 + 5@6)) - ¢<(w1 + 105) A (103 + 01b4) A (5 + 5@6)),
then (U1 + 002) A (03 4 604) A (U5 + 00g) = (W01 + 0w2) A (W3 + 0wg) A (W5 + O10g).

Proof. If {uy,usy, us, ug, us, ug} and {u}, ul, uy, w}, us, ug} are two bases of V' such that
Uy A lg AUy + Uy A Ug A s + Ug Aty A tg = uy A abh Al + abh Aug Aak + us Aay A g, then
(wy, U, uz) = (uy,uy, uy), see [6, Lemma 3.1]. This fact in combination with Lemma 3.5
yields that (0; + 00g, U3 + 004, U5 + d0) = (W1 + dWe, W3 + dWy, W5 + dWe). So, there exist
Ah Ay € F with ()\1, )\2) 7é (O, O) such that (@1+5@2)A(@3+(5@4)/\(175+5@6) = (/\1%‘/\25)(1171"‘
512 ) A (W3+0104) A (5 +01g). Now, let x; and x, be the unique elements of A® V such that
(W1 +0wq ) A (w3+0w4) A(Ws+0ws) = x1+0x2. Then x; and x5 are linearly independent and
(014002) A(U34+004) A (D5+0T6) = (x1+0x2) (A1+0A2) = (A1 x14+ar2-Xx2)+I(A1- X2+ A2 x1)-
From ¢((w1 + 81Dy) A (1 + S1D4) A (15 + 5@6)) - ¢((f51 +0T) A (03 + 604) A (D5 + 5@6)) ,
we find

At

1
E‘X1+X2=E'X1+)\2'X2+>\1'X2+)\2'X1.

Since x; and Yys are linearly independent, we find % = % + Ao and 1 = Ay + \y. Hence,
A1 =1, Ao = 0 and (01 +902) A (V34 004) A (U5 4 00s) = (w1 +0w2) A (w3~ dwy) A (w05 + dg).

Let © denote the set of all trivectors of V' of the form (0, 4 0v3) A (U5 4 d04) A (U5 + d0s),
where {0y, s, U3, U4, U5, Ug } 18 some basis of V. Then ¢ : Q — /\?’V defines a bijection
between 2 and the set of trivectors of Type (E) of V' belonging to Ep .

Lemma 3.8 Let x1,x2 € Q. Then ¢(x1) and ¢(x2) are Sp(V, f)-equivalent if and only
if x1 and x2 are Sp(V, f)-equivalent.



Proof. The trivectors x; and ys are Sp(V, f)-equivalent if and only if xo = /\3(9)(X1)

for some 0 € Sp(V, f), i.e., if and only if ¢(xs) = ¢< /\3(9)(><1)) — A3(6)(6(x1)) for some
6 € Sp(V, f). The latter condition is equivalent with ¢(x1) and ¢(x2) being Sp(V, f)-
equivalent. "

The determination of the Sp(V, f)-equivalence classes of trivectors of Type (E) contained
in & is thus equivalent with the determination of the Sp(V, f)-orbits on the elements of
Q.

For every vector v € V', we define Re(v) := v and Im(v) := v, where ©; and v, are the
unique vectors of V' for which v = v; + dve. For every n € F', we define Re(n) := n; and
Im(n) := 1, where n; and 7, are the unique elements of F for which n = n; + onp. If
A = (a;j)1<ij<3 1s a (3 x 3)-matrix with entries in ', then Re(A) [resp., Im(A)] denotes
the (3 x 3)-matrix whose (i, 7)-th entry is equal to Re(a;;) [resp., Im(a;;)] (4,5 € {1,2,3}).
If % is a vector of V', an element of F/ or a (3 x 3)-matrix over F’, then Re(x) and Im(x)
are respectively called the real and imaginary part of x.

Let 7 : V' — V' be the following map:
(1_)1 + 51_)2)7— = 1_)2 + (51_}1 (’171, 1_)2 S V)
Clearly, T 00 = 0 o7 for every 6 € GL(V), (1 + Z2)" = 2] + 73 for all Z1,75 € V' and
(AZ)” = Az" for every € V' and every A € F.
Let g : V! x V! — F’ be the following map:
g(z,9) = f(.97) (zgeV’).

In the following lemma, we collect some properties of the map g.
Lemma 3.9 (1) If z,5 € V' and 0 € Sp(V, f), then g(z°,7°) = g(, 7).

(2) If 21, %2, 51,92 € V', then g(T1 + Zo,51) = 9(T1, 1) + 9(Z2,71) and g(T1, 91 + ) =
g('flu gl) + g('flu gQ)

3) If z,y € V' and X\ € F', then g(A\Z,5) = \-g(Z,y) and g(Z, \y) = X~ g(Z,y) + (a+
1) Im(\) - (7, 5).
Proof. (1) We have g(z°,5°) = f'(2°, (3°)7) = f'(2°, (97)") = f'(z.97) = 9(z,9).
(2) This follows from the fact that (y; + ¥2)” = y] + y3 and the fact that f’ is bilinear.
(3) The first equality follows from the fact that f’ is bilinear in its first component. To

prove the second equality, put A := \; + 0y and § := ¥, + 09> where A\, Ay € F and
¥1,Y2 € V. Then we have that

= g(Z, M1 + aXofe + 0( M2 + Aof1))
= Uz, MUz + A1 + (M1 + adaip))

= M- @ 52) + X (2, 00) + 0 <>\1 - (@, 5) + Xea - f’(f,§2))~
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On the other hand, A - g(z,9) + (a + 1) - Im(\) - f'(Z,y) is equal to
(A + A20) - f1(Z, 52+ 671) + (a+ )Xo - f1(Z, 01 + 072) =
M-f(E G2) F A0 (2, 1)+ A0 f1(T, G2)+haa- f1(2, 51 ) +(at+1) Aa- f1(Z, 1) +(a+1) Aad- f (T, §2)
= A fU(Z 52) + M0 - (@ 00) + aded - f1(T,92) + Ao - (T, 50).
So g(Z,Ay) = A-g(%,9) + (a+1) - Im(A) - f(Z,9). .

If @y, ds, ..., u, are k > 1 vectors of V' and h € {f’, g}, then My(uy, s, ..., u;) denotes
the (k x k)-matrix over " whose (i, j)-th entry is equal to h(u;, @;) (4,5 € {1,2,...,k}).

Lemma 3.10 Let {uy, Uz, us} and {v1,0s,03} be two sets of linearly independent vectors
of V! such that (uy,uy, ug) = (U1, U2, 03). Let A = (aij)1<ij<3 be the (3 x 3)-matriz over
F' such that [T_)l, Vo, ’173]T =A- [’I_Lb Ug, ﬂg]T. Then

Myp(01,02,03) = A- Mp(ty, s, us) - AT,

Mg(ﬁl,@g,@g) = A- Mg(ﬂl, ﬂg,ﬂg) . AT + (a + 1) -A- Mf/(ﬂl, Uo, fbg) . Im(A)T

Proof. For all 4,5 € {1,2,3}, we have

Mw

3 3 3
Fl0n0) = /O awtin, Y apt) =Y > ag-f' (g, W)-a; = (A'Mf/(ﬂhﬂmﬂ:a)’AT)

k=1 =1 k=1 I=1 v

Invoking Lemma 3.9, we also have

3 3

9(v;,7;) = E azkukag a;jity) E E a;kg (U, ajity)
=1 k=1 =1

3

Z (aik - g(Un, w) - aj+ (a+1) - ag, - (g, @) - Im(aﬂ)>

=1

= (A M,(ay,u9,13) - A" + (a+1) - A+ M (ity, U, u3) - (Im(A))T>

Mw

=
Il
—

ij

Hence, Mf/(’ljl,?jg,?_}g) =A. Mf/(’ljl,l_bg,ag) . AT and Mg<1_)1,'l_12,1_)3> =A. Mg(ﬂl,’ag,ﬂg) .
AT+<CL+1) 'A~Mf/(ﬁl,ﬁ2,ﬂg) : Im(A)T u

Lemma 3.11 Let {0y, Vg, U3, Uy, Us, Vg } and {wy, we, W3, Wy, Ws, We} be two bases of V', and
let 6 be the unique element of GL(V') mapping (01, U, U3, Uy, Us, Vg) to (W1, We, W3, Wy, Ws,
wg). Then 8 € Sp(V, f) if and only if M (014602, U3+ 004, U5 +00s) = Mp: (101 + 602, w3+
Iy, W5 + 6wg) and My (V1 + 602, U3 + 604, Us + 6Ug) = M (w01 + 02, W3 + dWy, W5 + 6Wg).

Proof. Suppose 6 € Sp(V, f). Then for all i,j € {1,3,5}, we have f'(w; + 0w;41,w; +
0wj1) = fI(094+000,,, 094600, ,) = [/ (040011, 0+00j41) and g(w;+0W; 1, W;+0Wj41) =
g(v! + 00f,,, 09 + 00,1) = g(T; + 00is1,U; + 00;41). It follows that My (01 + 60,75 +

10



d04, U5 + 6Ug) = Mpi(wq + 69, Wy + dWy, W5 + dWe) and My (01 + 00q, U3 + 004, U5 + 006) =
Mg<ﬁ11 + 0wWs, W3 + 0wy, W + (51116).

Conversely, suppose that M (0 + 00, U3+004, U5+006) = M p/ (101 + 02, W3+ 6104, W5+
dwe) and M, (v1 + 00q, U3 + 604, U5 + 006) = My(wq + 0wo, W3 + 0wy, W5 + 0ws). Let i,j €
{1,3,5}. From f'(0; 40041, 0;+00j41) = f'(W0;+0Wit1, W;+0Wj41) and f'(0; 40041, Vj1 +
607) = g(Vi+0Viy1, 0 +0011) = (Wi +0W;ip1, Wi+ 6Wj41) = f'(Wi+0Wiy1, Wjt1 +010;), we
find f'(v; + 6041, 0;) = f/(W; + 6Wit1,W;) and f'(0; + 00ip1, Vj1) = f'(W; + 0Wig1, Wys1).
Since f'(0;,05), f'(0i, Vi), £/ (i1, 05), [/ (Vigr, V), [0, w;5), f'(05,0541), f/(Wig,05)
and f'(w;41,w;41) belong to IF, the latter two equations imply that f'(v;,v;) = f'(w;, w;),
f (0, 0541) = [(Wi,Wj11), f'(Vig1,05) = f(Wigr, w;) and f'(Vig1,0j41) = f'(Wig1, Wj41)-
So, we have that f/(v9,v?) = f'(v, ;) for all k,1 € {1,2,3,4,5,6}. This implies that
0 € Sp(V, f). .

Lemma 3.12 Let {0y, Uy, U3, Uy, Us, U } and {1y, Wa, W3, Wy, W5, We } be two bases of V.. Put
X1 = gb((@l+5@2)/\(?73+5@4)/\(175+5176)), X2 = ¢<(w1+6w2)/\(w3+5w4)/\(w5+5w6)>,
M = Mf’('al + (5@2, vg + (3174, Uy + 5@6)7 M, = Mf/(’lf}l + 51@2,@3 + 5@4,@5 + (5@6), Ny =
M, (01 + 00, U3 + 004, U5 + 00g) and Ny := My (w01 + dws, Wy + 0wy, W5 + dws). Then xi
and xo are Sp(V, f)-equivalent if and only if there exists a matriz A € SL(3,F") such that
M2 = AMlAT and N2 = ANlAT + (CL + 1) -A- M1 : Im(A)T

Proof. Suppose x; and xs are Sp(V, f)-equivalent and let § € Sp(V, f) such that
N (0)(x1) = Xz Then ¢( (i + b13) A (i3 + 81a) A (5 + 615) ) = A*(0) |6 ((1 + 872) A
(U3 + 004) A (U5 + 5@6))] = qb((z‘;? + 608) A (05 + 609) A (08 + 5@3)) . Hence, (w; + dws, w3 +
Sy, Ws +0wg) = (09 + 009, 0§ + 60, 02+ 608) and (09 +009) A (09 +509) A (024 608) = (10, +
dwa) A (w3 —+0ws) A (w5 +dwg) by Lemma 3.7. Now, let A be the nonsingular (3 x 3)-matrix
over F’ such that [y + 0wy, W3 + 6y, W5 + dwe) T = A- [0 4004, 0§ + 608, v + 698 T. Since
(w1 + 619 ) A (W3 + 614 ) A (5 + 1) = (09 +509) A (054009 A (98 +607), we have det(A) = 1.
Now, M (0§ + 609,05 + 609,08 + 608) = My and M, (09 + 605,04 + 609, 0% + 60) = Nj.
Lemma 3.10 now implies that My = AM AT and Ny = ANJAT + (a+1)-A- M, -Im(A)7T.

Conversely, suppose that My = AM; AT and Ny = AN AT+ (a+1)-A- M, -Im(A)7T for
some matrix A € SL(3,F"). Let uy, us, us, uy, us and ug be the unique vectors of V' such
that [y + 010y, W3 + 0wy, Ws + 0] " = A- [ty + Oy, Uz + Otiy, Us + 0ig) L. Since det(A) =1,
we have (w0 + 0w ) A (w34 0wy) A (W5 +0wg) = (g +Uz) A (tg+0tuy) A (s +dtg) and hence
X2 = ng((ﬂl + dtus) A (us + dug) A (us + 5@6)). From Lemma 3.10, we easily derive that
Mf/(al—i‘éﬁg,ﬂ3+(5ﬂ4,ﬂ5+(5ﬂ6) = M1 and Mg(ﬂl+6ﬁ2, 713"‘(5714, ﬂ5+(5ﬂ6) = Nl. Since also
Mf/(l_Jl +57§2, 1_)3 +5Q_J4, 175 +5776) = M1 and Mg(?_ll +5@2, 773 +(51_)4, 1_15 +6@6) = Nl, by Lemma
3.11 there exists a 6 € Sp(V, f) mapping (v, Vg, U3, Uy, Us, Vg) to (U1, Us, Us, Uy, Us, Ug)-
Then y, = gb((ﬂl +5a2)/\(a3+5a4)/\(a5+5a6)> = ¢((@f+5@§)/\(@§+5@§)/\(@g’+5@g)> =

N (0) [o( (01 +602) A (55 +603) A (55 +676) ) | = A*(O)(a). S0, xa and x» are Sp(V, f)-

equivalent. "
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Lemma 3.13 (1) For allz € V', we have g(Z,z) € F
(2) For all z,5 € V', we have g(Z, y)+g(y :i):(a—l— 1) - Im(f'(z,9)).
(3) For allz,y € V', we have f'(Z7,77) + f(Z,9) = (a+ 1) - Im(g(Z, 7)).

Proof. (1) If v; and vy are the unique vectors of V such that z = v; 4+ §v,, then
g9(z,7) = f'(v1 + O0g, 09 + 001) = (1 +6%) - f/(v1,02) = (a+ 1) - f'(vy, 1) €F.

(2) Let vy, Uq, U3 and U4 be the unique vectors of V such that z = v + 002 and y =
U3+ 604, Then g(Z,9) +g(y,2) = f'(01+ 00, 04+ 003) + f' (V3 + 004, Vo +001) = f'(01, 0s) +
a- f' (g, 03)+0- f(Vg, U4)+0- f' (01, 03)+ f' (U3, U2)+8- f'(V3,01) 46 f’(174,772)+a-f’(174,171) =
(a4 1) - (f'(v1,04) + f'(02,03)) and Im(f' (01 + dv2, U3 4+ 004)) = f'(V2,v3) + f'(V1,04).

(3) By (2), we have f'(z7, ") + f'(z,9) = 9(y7,7) + 9(Z,§7) = (a+1) - Im(f"(z,y7)) =
(a+1)-Im(g(z,7)). "

The following is an immediate consequence of Lemma 3.13.

Corollary 3.14 Suppose 171, 172, @3, @4, @5, Vg € V. Then Mf/ (@1+5@2, 1734‘5@4, @5+5@6, Up+
001, Uy + 0U3, Vg + 0Us) is equal to

M, M,
Ms M,

where My = M /(01 + 00q, 03 + 004,05 + 6Ug), My = M,(01 + 002, U3 + 604, U5 + 00),
My =M, + (a+1)-Im(My) and Mz = My = My + (a+ 1) - Im(M;). So, if all entries of
My belong to F, then My = Mjs is a symmetric matrix.

Let O3 denote the (3 x 3)-matrix over F” all whose entries are equal to 0. Let M* denote
the following (3 x 3)-matrix over F":

M* =

o O O
_ o O
o = O

For a proof of the following lemma, see e.g. [5, Lemma 3.14].

Lemma 3.15 ([5]) Let A = (a;;)1<ij<3 be a matriz of SL(3,F'). Then A-M*- AT = M*
Zf and OTlly Zf a1 = 1, 12 — A13 = 0 and Q92033 — A230U32 — 1.

Lemma 3.16 Let @y, s and uz be three linearly independent vectors of V'. Then there
exist three linearly independent vectors vy, o and v3 such that vy A\ Vg A\ U3 = Uy A\ Us N Ug
and My(01,09,03) is equal to either Oz or M*.

Proof. Suppose (uy,us,us) is a totally isotropic 3-dimensional subspace. Then put
(01, g, 03) 1= (Uy, Ug, u3). Clearly, U3 AUy A U3 = Uy A tg A tg and M (0y, D, 03) = Os.
Suppose (1, U, ug) is not totally isotropic. Then there exist vq, U3 € (1, g, u3) such
that f’(va,03) = 1. Let U denote the unique 1-space of (i1, U, u3) such that f'(u,v) =0
for every u € U and every v € (uy, Ug, u3). If v; denotes the unique vector of U such that
@1A172/\@3:ﬂ1/\ﬂ2/\ﬂ3, then Mf/(@1,172,173):M*. ]
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Lemma 3.17 Let {ﬂl, Ug, Us, Uy, Us, ﬂﬁ}, {?717 Vg, U3, U4, Us, @6} and {wl, Wa, W3, Wy, W5, wﬁ}
be three bases of V.. Suppose My (g + dta, U3 + 0y, Us + 0Ug) = O3, Mp(01 + 602, U3 +
Oy, U5 + 00g) = M /(01 + o, W3 + Wy, W5 + W) = M*, g(U1 + d02, Uy + 002) # 0 and
g(w1+0wWs, Wy +0wy) = 0. Then the trivectors x; == gzﬁ((ﬂl +5ﬂg)/\(ﬂ3+5ﬂ4)/\(ﬂ5+5ﬂ6)>,

X2 := (b((171—1—6172)/\(173—1—5174)/\(175—1—5176)> and x3 = ¢((w1+5u72)/\(w3+6w4)/\(w5+6w6)>
of V' are mutually non-Sp(V, f)-equivalent.

Proof. Suppose y; and x; are Sp(V, f)-equivalent for some i € {2,3}. Then by Lemma
3.12, there exists a matrix A € SL(3,F') such that M* = A- O3 - AT = Os, clearly a
contradiction.

Suppose x2 and x3 are Sp(V, f)-equivalent. Then there exists a § € Sp(V, f) such
that y3 = A’()(x2). By Lemmas 3.3 and 3.7, this implies that (@ + ds) A (w3 +
5104) A (05 + 0wg) = (09 + 009) A (0 + 009) A (0 + 60Y). Since f'(vy + dv, ) = 0 for all
U € (U1+00y, U3+00y4, U5+07), we have f/(00+009, w) = 0 for all w € (8)+605, v +608, vl +
5@3) = <w1 + 5@2,w3 + (5@4,@5 + 5w6> Since Mf/(U)l + 5’1,(}2, w3 + (511]4,105 + 5w6) M*,
we have ¥¢ + 009 = n(w; + dwy) for some n € F*. By (1) and (3) of Lemma 3.9, we
then have g(v; + 60q, Uy + 602) = g(v9 + 004, 0§ + 608) = g(n(w, + dwy), n(w; + dwy)) =
n* - g(wy + 6wy, Wy + dy). This is impossible since g(v; + 0V, Ty + 009) # 0 while
g(wy 4 0wa, wy + dwe) = 0. ]

The following is an immediate consequence of Lemmas 3.4, 3.16 and 3.17.
Corollary 3.18 Precisely one of the following cases occurs for a trivector x € Ep:

(A) x = qﬁ((@l + 602) A (03 + dvg) A (05 + 6@6)) for some basis {v1, Vg, U3, Uy, Vs, Vs } of V.
satisfying M (01 + d0a, Vg + 304, U5 + 00g) = Os;

(B) x = qb((@l + 602) A (03 + d04) A (05 + 5"06)> for some basis {v1, Vg, U3, Uy, V5,06 } of V.
satisfying M (01 + d0a, Vg + 004, U5 + 00s) = M™ and g(v; + 002, U1 + 002) # 0

(C) x = qb((f)l + 00s) A (U3 + d04) A (05 + 00g) ) for some basis {vy, Vs, U3, Uy, Vs, Vg } of V.
satisfying My (01 + 00, U3 + 004, U5 + 00s) = M* and g(v1 + 602, U1 + 072) = 0.

So, we have three cases to consider when classifying all Sp(V, f)-equivalence classes of
trivectors of Type (E) of V that are contained in &w. We will deal with each of these
three cases in a separate section.

4 Treatment of Case (A) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of & corresponding to Case (A) of Corollary 3.18.
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Suppose x is a trivector of Type (E) of V' which is GL(V')-equivalent with xj, such
that y = ¢((u1 + dtg) A (s + 0uq) A (Us + 6716)) for some basis {1, U, U3, Uy, Us, Ug} of
V S&tiSfyng Mf’ (’l_Ll -+ 5’122, Uz + 51_64, Us + 5ﬂ6) = 03.

Lemma 4.1 Let {0y, 0, 03,04, 05,06} be a basis of V' such that M (v1 4 00q, U3+ 604, U5 +
dvg) = Os. Then there exists a basis {wy,ws, w3} of W := (U1 + 00Uy, U3 + d04, V5 + 00g)
such that wy N\ Wy A W3 = (U1 + 002) A (U3 + 604) A (U5 + 00g), My (W, W2, ws) = O3 and
M, (w1, wq, ws) is diagonal.

Proof. Suppose {w;, ws, w3} is a basis of W. Then M (1w, e, w3) = Oz. Corollary 3.14
implies that M, (w;, Wy, ws) is symmetric. Also, since M (04 + 002, U3 + 004, U5 + 00g, U +
51717 U4+ 5773, Vg + 5175) is nonsingular and Mf/ (’(ﬂl, Wa, U_J3) = 03, the matrix Mg(u_)l, Wa, U_Jg)
should be nonsingular. Lemma 3.9 now implies that g defines a nonsingular bilinear form
on W. For every vector w € W, we denote by w¢ the set of all vectors w’ € W for which
g(w,w") = 0.

If all diagonal elements of M, (v; + 602, U3 + 004, Us + 60T) were equal to 0, then since
M, (01 + 609, U3 + d04, U5 + 00g) is (skew-)symmetric, it would also be singular which is
impossible. So, there exist a @] € {v; + 00y, U3 + 00y, V5 + 006} and wh, wh € (w))re
such that g(w},w]) # 0 and @} A wh A ws = (01 + 002) A (U3 + d04) A (U5 + 60g). If
g(w), wh) # 0 or g(wh, @) # 0, then there exist a wy € {w), @} and a ws € w,*
such that g(wq,ws) # 0 and wy A ws = wh A wh. If we moreover put w; := wj, then
Wy A\ Wy A\ Wy = (01 + 00) A (U3 + 604) A (05 + 00g) and M, (wy, W, w3) is diagonal.

So, we may suppose that g(w), w)) = 0 = g(w}, ws). Then

M1 0 0
Mg(’lf]i,?f}é,’u_)é) = 0 0 H2
0 125 0

for some iy € F* and some pz € F'\{0}. If we define (w1, ws, w3) := (w} + ELw) +wy, wy+

Bowy, wy + wy), then wy AWy A ws = wy N wy AN wy = (V1 + 002) A (U3 + 604) A (V5 + 00s)

. 2
and M, (w;, 0y, w3) = diag(u1, Z—f, ). "

By Lemma 4.1, we know that there exists a basis {01, Uq, U3, 04, 05,06} of V such that
Mf/(Q_)l +(51_}2, 173"‘(5’(74, 1_}5"'51_)6) = 03, Mg(’l_Jl—l—(S’l_)g, 173—|—5?_J4, 65"‘566) = diag(hl(a—i—l), hg(a—i-
1), hg(a + 1)) and X = gb((?_ll + (51_)2) A (173 + (5174) AN (1_)5 + 517(5)) for some hl, hg, h3 e [F*.

From (CL + 1)]21 = 9(1721;1 + 51_}21', 1_)21;1 + 51_)21') = f/(772i71 + (51722', 1721' + (51_121',1) = (Cl -+ 1) .
f'(Vgi—1, Va;) for every i € {1,2,3}, we find f'(01,02) = ha, f'(03,04) = hy and f'(05,05) =
hs.

From 0 = g(@gi_l + 009;, Vg1 + 5@2]') = f/(@gi_l + 009;, Vg; + 5@2]'_1) = 0 and f/(@2¢_1 +
OV, Vgj—1 + 0025) = 0, we find f'(Vgi_1 + 609, V2j) = f'(V2i—1 + 0V, Vaj—1) = 0 and hence
f/(’l_JQi,I, 'l_Jgj) = f/(T_)Qi,T)gj) = f’(’l_}m‘,b 772]‘71) = f/(@gi,?_]Qj,l) =0 fOI‘ all Z,j € {1, 2, 3} with
i #j. So, f'(v;,v;) =01if 4,7 € {1,2,3,4,5,6} with ¢ # j and {4, j} different from {1, 2},
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{3,4} and {5,6}. This implies that there exists a hyperbolic basis (¢, f1, &, fo, €3, f3) of
(V, f) such that
Uy = €1, Uy = hifi, U3 = €, Uy = hofs, U5 = &3, Vg = hafs.

So,

X = ¢((171 + dva) A (U3 + 004) A (U5 + 656)>

a+1 o o o o
= — Uy ANU3 AN U5+ (a4 1) - 0o A g A g + (01 4+ 02) A (U3 + 04) A (U5 + V)

a+1

= a 'él/\ég/\ég+(a+1)h1h2h3'f1/\f2/\f3

+(&1 + hif1) A (€ + hafo) A (€3 + hs fs).
It follows that x is Sp(V, f)-equivalent with xi(hy, ha, h3).
Reversing the above procedure, we see that the trivector xi(hq,he, hs) is of the form
gb((@f + 6vs) A (05 + dv;) A (0F + 617;)), where {07, 03,05, 05, 05,05} is some basis of V
satisfying My (05 + 003, 05 + 005, UF + 605) = Os and M, (v + 603,05 + 005, U + 00) =
diag(hi(a + 1), he(a + 1), hg(a + 1)). So, x1(h1, he, h3) is GL(V)-equivalent with xj by
Lemma 3.4.

The following proposition, which is precisely Theorem 1.3(2), is a corollary of Lemma
3.12 and the above discussion.

Proposition 4.2 Let hy, ho, hg, b, by, bl € F*. Then the two trivectors x1(h1, ha, h3) and
x1(hy, Ry, hs) of Voare Sp(V, f)-equivalent if and only if there exists a matriz A € SL(3,F")
such that diag(h}, hy, ) = A - diag(hy, ho, h3) - AT,

By Corollary 3.6, we know that the trivector x1(hy, ho, h3) is a trivector of Type (D) when
regarded as a trivector of VV'. One can now ask to which of the trivectors mentioned in
Section 2 x1(hy, he, hs) is Sp(V’, f')-equivalent to. The following proposition answers this
question.

Proposition 4.3 For all hy, ho, hs € F*, the trivector x1(hi, ha, hs) of V' is Sp(V', f')-

equivalent with the trivector ’}/3(2—;, Z—g) of V.

Proof. The trivector xi(h1, ha, hs) = (& + Shi fi) A (€ + Shaf3) A (2€5+ haf3) + (€5 +
Shafs) N (€5 +0ha f3) A (5 + i fi) + (€5 +0ha f3) A (€5 + 0N fi) A (58 + ha f3) is equal to
e NEN f+ e Ny A fl+ 12 -8 NE A fy, where (&), f1, &, f3, @, f}) is the hyperbolic
basis of (V’, f') defined by

—/ 1 + 5 h — e —/ 1 _'_ 5 h —x % —/ 1 + 5 h —x %

€ = %(61 +0hifT), & = %(62 + dha fy), €3 = %(63 +5h3f3)a
- a 1 - - a 1 - - a 1 -

li — o o* h * li — o o* h * li — o o* h % .
fl (a+1)h1h3(a61+ 1f1>7 f2 (a+1)h2h3<a62+ 2f2)7 f3 (a+1)h§(a[€3+ 3f3)
So, x1(h1, he, hg) is Sp(V’, f')-equivalent with 73(2—;, Z—z) .
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5 Treatment of Case (B) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of & corresponding to Case (B) of Corollary 3.18.
Suppose x is a trivector of Type (E) of V' which is GL(V)-equivalent with xj such

that y = ¢<(ﬂ1 + 0tg) A (g + 0tg) N (Us + (5716)> for some basis {1, U, U3, Uy, Us, Ug} of
V satistying My () + 0o, Ug + 0y, Us + 0tig) = M* and g(uy + Sz, 4y + dus) # 0.

Lemma 5.1 Let {0y, 0, 03,04, 05,06} be a basis of V' such that M (01 + 00q, U3+ 604, U5 +
dvg) = M* and g(vy + 009,01 + d03) # 0. Then there exists a basis {wy,wq, w3} of
W = (01 + 00q, U3+ 00y, Us +00g) such that wy Ay Ay = (01 +02) A (03 +d04) A (U5 + 00),
My (w1, ws,w3) = M* and My(wy, W, ws) is diagonal. Moreover, if My(wy, W, ws) =
diag(k(a + 1), hy(a+ 1), ho(a + 1)), then k # 0 and hihe(a +1)? # 0.

Proof. Put w; := ©; + 07y and let U denote the set of all vectors @ € W for which
g(u,w) = 0. By Lemma 3.9, U is a subspace of W. In fact, it is a 2-dimensional
subspace of W not containing the vector ;.

We prove that there exists a vector wy € U for which g(ws,ws) # 0. Suppose to the
contrary that g(u,u) = 0, Vau € U. Let wj be an arbitrary vector of U and let w} be a
vector of U such that f'(wj,w}) = 1. Then g(w), wy) = g(dwj, dwy) = 0. By Lemmas 3.9
and 3.13, g(wy + dwy, wh + dwy) = g(wy, wy) + g(wy, dwy) + g(dws, wy) + g(dws, dwy) =
0-+6-g(wy, wy)+(a+1)- f'(wh, ws) +6-g(ws, w5) +0 = (a+1)+0- (g(wz,w3)+g(w3,w2)> =
(a+1)+d(a+1) - Im(f(wh, w})) =a+1+#0. So, we have a contradiction, proving that
there must exist a wy € U for which g(w,, wy) # 0.

The set U’ of all vectors u € U for which g(u,ws) = 0 is a subspace of U by Lemma
3.9. Since g(wsq,wq) # 0, it is a 1-dimensional subspace of U. So, there must exist a
unique wz € U’ such that w; A we A w3 = (01 + 002) A (03 + 604) A (U5 + d0g). We have

) A
f’(wl, 1212) = f/(whwg) = 0, f/(wg,w?)) w1 = 7r(w1 /\wg/\wg < 1)1 —I—(S?}Q U3+(5TJ4) AN

(1_]5 + 51_)(5)) = U + 5@2 = W1 and hence f/(’(f)g,wg) =1. SO7 Mf/(wl,wg,wg) = M*. By
Corollary 3.14, the matrix M, (ws, Wq, w3) is symmetric. Since g(wq,w1) = g(ws, wr) =
g(ws,we) = 0, one gets that M,(w;,ws, ws) is a diagonal matrix. If M,(wq, ws,ws) =
diag(k(a+1), hi(a+1), ha(a+ 1)) for some k, hy, hy € F, then My (w1, W, ws, 0], w5, w3)
is equal to

0 0 0 k(a+1) 0 0

0 0 1 0 ha+1) 0

0 1 0 0 0 ha(a +1)
k(a +1) 0 0 0 0 0

0  hla+1) 0 0 0 1
0 0 hola+1) 0 1 0 |

by Corollary 3.14. Since My (w;, wq, w3, w],w, w]) is nonsingular, we have k # 0 and

hth(a + 1)2 7é 1. ]
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By Lemma 5.1, we may suppose that y = ¢<(171 + 009) A (U3 + 004) A (U5 + (5176)> where
{v1, Vs, V3,04, U5, Vs } is & basis of V' such that My (v + d0a, U3 + 004, U5 + 006) = M™* and
M (01 + 602, U3 4 604, U5 + 606) = diag(k(a+1), hi(a+1), ho(a+1)) for some k, hy, hy € F
satisfying k # 0 and hiho(a +1)% # 1.

Since k(a+1) = g(v1 + 002, 01 + 00) = f'(V1 + 002, V2 + 001) = (a+1) - f'(01,V2), we have
f(v1,02) = k. In a similar way, one proves that f'(v3,v4) = hy and f'(v5,0g) = ho.

Since f'(01 + 002, V3 + 604) = 0 and g(v1 + 00a, U3 + d04) = f'(U1 + 0o, V4 + d03) = 0,
we have f'(0; + dv2,73) = 0 and f'(; + 002, 74) = 0 and hence

f1(01,03) = f'(Ta,03) = f'(01,04) = f'(V2,04) = 0.
In a similar way, one proves that
f1(01,05) = f'(01,06) = f'(02,75) = f'(v2,76) = 0.

Since f'(v3 + 004, U5 + 00g) = 1 and g(v3 + dv4, V5 + d06) = f'(U3 + 004, Vg + 005) = 0, we

have f'(T3 + 004, T5) = 17 and f'(3 + 604, ) = % and hence
P 55) = ——) (5 T5) =0, f(506) =0, f (5 ) = ——
3, Us a+17 4, U5 ) 3, U6 ) 4, U6 a+1
So, M:(vy, Vs, Vs, Uy, Us, Ug) 1s equal to
[0 Kk O 0 0 0 7]
k0 0 0 0 0
1
00 0 m gz 0
00 i 0 0 -
00 =5 0 0 h
1
(00 0 2 hy 0|
Now, put o] := vy, 0 := Uy, 0 := U3 + hy(a + 1)Us, U} := U4, U5 := U5 and v :=

ho(a + 1)vs + v6. Then My (07, 04, v, Uy, U5, Ug) is equal to

r 0k 0 0 0 0 -
kO 0 0 0 0

0 0 0 0 haha(at1)41 0

0 0 0 0 0 Pahalatl/41

0 0 fhalerlt 0 0 0

L0 0 0 Pahalat1 41 0 0 |

So, there exists a hyperbolic basis (€1, fi, €2, fo, €3, f3) of (V, f) such that

hih 1)2+1 -
=1 2(a+ ) + é271}4:é376g:j12a1_)é_

_ hih 1241 -
T);Zél;@é:kfh@é_ a+1 = 2(a+ ) -

p Js-
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~ 1 ~ _ 1 _
Uy =e1,0 =kfi,03 = p 1(52+h1(a+1)f3),174 = €3,U5 = fo,06 = m(hQ(CH‘l)éQ"_f?))-
So,
a+1 _ o _ _ _ _ _ _
X = " 0y N3 AUs+ (a+ 1) 09 Ay AU+ (01 + Vo) A (U3 + 04) A (05 + 0g)

— 2-élA(ég—i-ln(a—i-l)f:s)/\J?2+/€'fl/\ésA(h2(a+1)éQ+f3>+m'

(e1+Ekfi)A(ex+ (a+1)ez+ hi(a+1)f3) A (ha(a+ 1)éx + (a+ 1) fa + f3).
Hence, x is Sp(V, f)-equivalent with the trivector xa(k, hy, ho).
Reversing the above procedure, we see that the trivector xa(k, hq, ho) is of the form ¢ ((T;f—l—
dvs) A (U5 + 6uF) A (0F + 5@;)) where {07,705, 05, 05,05, 05} is some basis of V' satisfying
My (0F + 605, 0% + 003, U5 + 005) = M* and M, (v} + 6u35, 05 + 005, U5 + 0v5) = diag(k(a +
1), hi(a+1),ho(a+1)). So, x2(k, h1, he) is GL(V')-equivalent with xj by Lemma 3.4.

We will now determine under which conditions two trivectors of Type (E2’) are Sp(V, f)-
equivalent. Let k, hy, ho, k', b}, hYy € Fwith k # 0 # k" and hiho(a+1)? # 1 # ki hh(a+1)2.
By Lemma 3.12, the two trivectors xa(k, hy, he) and xo(K', b}, b)) are Sp(V, f)-equivalent
if and only if there exists a matrix A € SL(3,F’) such that

M*=A-M*- AT,
diag(k'(a + 1), K (a + 1), h(a+ 1)) = A - diag(k(a + 1), hi(a + 1), hy(a + 1)) - AT
+Ha+1)-A-M*-Im(A)T.
Now, the latter condition is equivalent to
diag(k', by, hb) = A - diag(k, hy, hy) - A + A- M* - Im(A)T,
By Lemma 3.15, A has the form

1 0 0
Q21 Ag22 A3 )
a31 aszz G33

where 21, 22, A3, A31, A32, A33 € IF such that 92Q33 — A930A32 — 1. One now Computes that

A - diag(k, hy, hy) - AT is equal to

k ka21 ka31
2 2 2
kag kasz, + hiasy + hoass kagiazi + hiagass + hoaszass
2 2 2
kasi  kasiag + hiagaagn + hoassass kaz, + hiasy + hoass
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and that

0 0 0
A . M* . Im(A)T = 0 ass - |m(022) + 929 * |m(a23) ass - |m(a32) + 99 * Im(a33)
0 ass * |m(a22) + ass - |m(a23) ass |m(a32) + ass - Im(a33)

The condition diag(k’, b}, hy) = A-diag(k, hi, hy)- AY+A-M*-Im(A)" is then equivalent
with k' = k’, 91 = A31 = 0 and

n, 0] hi 0 . 0 1 .
[O hé}_B-[O hz]-B v m,

. . 929 G923
where B is the matrix . So, we have
a3z Aass

Proposition 5.2 Let k, hy, ho, k', 1y, by € F with k # 0 # k' and hiho(a + 1)? # 1 #
R hy(a+1)2. Then the trivectors xo(k, hi, he) and x2(K', b, hY) are Sp(V, f)-equivalent if
and only if k = k' and there exists a matriz A € SL(2,F") over F' such that

R 0] [he 0] o, [0 1]
0 e 0 i a [0 2]

Lemma 5.3 Let hy, ho,h}, b} € F and o, 3,v,v € F'. Put A := [ ?; 5} Then the

conditions

det(A) = 1,
ol [k o0 e, [0
{0 hé} _A[O h2]A+A[1O] im(A)

are equivalent with each of the following two equivalent sets of equations:

(1) = a?hy + $hy + Im(af),
hy = v?hy + v2hy + Im(qv),
(Bh2 +Im(a)) - v + (ahy +1m(3)) - v =0,
a-v+B-y=1,
( h/1 = a2h1 + ﬂzhg + Im(aﬂ),

by = v?hy + v2hy + Im(qv),

(vh1 +Im(v)) - a+ (vhe + Im(7)) - 5 =0,
(| v-at+y- =1

Proof. One can easily verify that Im(AX) = Ap - Im(Ag) + Ao - Im(Aq) for all A, Ay € F'.
Taking this fact into account, a straightforward computation gives that the conditions of
the lemma are equivalent with:

(1) 7y = oy + 3%y + Im(ap),
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(2) by = v2*hy + v2hy + Im(qv),

(3) av vt By =1,

(4) (Bhe +Im(a)) - v + (ahy +Im(B)) -y
(5) (vh1 +Im(v)) - a+ (vhy + Im(v)) - 5 =

Now, (Ghy + Im(«)) - v + (ahy + Im(5)) - v + (Yh1 + Im(v)) - a + (vhy + Im(7)) - 5 =
Im(a)-v+Im(v)-a+Im(8)-v+Im(y)- 6 = Im(av) +Im(57y) = Im(av+ B7v). So, assuming
the validity of (3), we see that (4) and (5) are equivalent. ]

Lemma 5.4 Let hy, ho, b}, by € F and o, 3,7, v € F' such that av + By =1 and

R0l [ 0] o, [0 1] ar
][ e g [mr

where A = [ f; f ] . Then hihy = R R},.

Proof. We make use of the first set of equations given in Lemma 5.3. Consider the
following linear system of two variables v and v:

{(ﬁh2+lm(a))-1/+(ah1+lm(ﬁ))-7 = 0,
a-v+pF-y = 1

The determinant of this system is equal to k) and we have that
vh] = ahy + Im(f5), vhi = Bhe + Im(a).
Using this, we find

(h1)*hy = (yhy)*ha + (vhy)*ha + Im((yhy) (VR)))
= (Bha + Im(a))*hy + (ahy + Im(B))*hy + Im((Bhy + Im())(ahy + Im(B)))
32h2hy + Im(@)?hy + a2h2hs + Im(B)2hs + hihs - Im(a8) + Im(a)?h,
+Im(B)2hs

hlhg(&2h1 + 3%hy + Im(af3))
— hholt,.

So, if b} # 0, then hihy = R\ RY. If b} = 0 and one of hq, hy is 0, then also hihy = h}h.
Suppose therefore that b} = 0, hy # 0 and hy # 0. Then Shy + Im(ar) = 0 and

ahy +1m(3) = 0. So, a = 'm( J eFand = Im Im@) ¢ 7. It follows that Im(a) = Im(8) =0

and hence that a = § = 0. Th1s is however 1mp0831b1e since av + By = 1. "

Lemma 5.5 (1) Let k,hy,hy € F such that k # 0 and hiho(a + 1) # 1. Then the
trivector x2(k, hi, ha) is Sp(V, f)-equivalent with the trivector xo(k, ha, hy).

(2) Let k,hy € F with k # 0. Then the trivector x2(k,0,0) is Sp(V, f)-equivalent with
both x2(k, hq1,0) and xo(k,0, hy).
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Proof. (1) This follows from symmetry, or alternatively, one can take A = [ (1) (1) } in

Proposition 5.2.

(2) We may suppose that h; # 0. By part (1), it suffices to prove that y2(k,0,0) and
X2(k, h1,0) are Sp(V, f)-equivalent. By Lemma 5.3, it suffices to prove that there exist
a, 3,7, v satisfying

hi =Im(af), 0=Im(yv), 0=Im(a)-v+Im(3)-v, 1=av+ [y.

Now, take a and [ arbitrary such that h; = Im(af) and put v = % = % and
v = % = % Then all required conditions are satisfied. "

Proposition 5.6 Let k,hy, ho, k' b, by € F with k # 0 # k' and hiho(a + 1)? # 1 #
hihh(a + 1)%. Then xo(k, hi, ho) and x2(K', kY, hb) are Sp(V, f)-equivalent if and only if
k =k, hihy = b\ Yy and there exist a, 3 € F' such that hy = a*hy + (%he + Im(af3).

Proof. By Proposition 5.2, Lemma 5.3 and Lemma 5.4, these conditions are necessary.

Conversely, suppose that k = k', hyhy = h}h} and there exist a,F € F’ such that
R} = a?hy + %hy + Im(a3). We need to prove that xao(k, hi, he) and xa(K', b)), hj) are
Sp(V, f)-equivalent. By Lemma 5.5(2) and the fact that hihy = h\hj, we may suppose
that hy, he, b}, b are distinct from 0. The linear system

{(ﬁhg—i-lm(a))-1/+(ah1+|m(ﬁ))-’y = 0,
a-v+p-y = 1

has a unique solution for v and v, since the determinant of the system is equal to o?h; +
B%hy + Im(aB) = h} # 0. If we put hf := v%hy + v?hy + Im(yv), then by Proposition 5.2
and Lemma 5.3, x2(k, hi, ho) and xo(k', ', hy) are Sp(V, f)-equivalent. This implies that
hihe = b} hY by Lemma 5.4. Since also hyihy = hhb, we have by = h. Hence, xa(k, hy, h2)
and x2(k', b, hYy) are Sp(V, f)-equivalent. ]

The following corollary to Proposition 5.6 is precisely Theorem 1.3(3).

Corollary 5.7 Let k, hy, ho, k' b, by € F with k # 0 # k' and hihy(a + 1)? # 1 #
Rihh(a + 1)% Then xo(k, hi, ho) and xo(K', b, hb) are Sp(V, f)-equivalent if and only if
k=K, hihy = Wkl and there exist X, Y, Z, U € F such that Iy = hy(X?+aY?)+hy(Z*+
aU?) + (XU +Y2Z).

Proof. Put « = X +60Y and 8 = Z + 6U in Proposition 5.6. .

As before, let k € F* and hy, hy € F such that hyhy(a+1)? # 1. By Corollary 3.6, we know
that the trivector xo(k, hq, ho) is a trivector of Type (D) when regarded as a trivector of
V’. One can now ask to which of the trivectors mentioned in Section 2 xo(k, hy, ho) is
Sp(V', f")-equivalent to. The following proposition answers this question.
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Proposition 5.8 Let k € F* and hy,hy € F such that hiho(a + 1)* # 1. Then the
trivector xo(k, hi, ho) is Sp(V', f')-equivalent with the trivector vo(\) of V', where A\ =
k2 2

?(1 + hth(CL + 1) )

Proof. Put x := x2(k, hi, ha). Then

=%

Y = (éf—l—ﬂfff)/\( il+h1f3+6e3> (f2 + hye} + f3 )
k

+
Sk e*
1

+< il+h1f3+663>/\(f;+h25@;+mf§> ( fl)
+<f§+hgéé;+a—ﬂf§)/\(éi+5kff)/\<%+ —fi+ )

Since f'(e} + 0k fy, 25 + huf; + ey =0, f/(€] + Okfi, f5 + hade + 357 f5) = 0 and
f’(aej1 + hifi + 085, fi + hodes + aj1f?f) = 1, the base 3-space of the trivector x of V'
is not totally isotropic. So, x is Sp(V’, f')-equivalent with either 7y or ~,(A) for some

A € F*. We also have

1
+

] _
X = o e Nn(es+h(a+1)f)Nfs+k-fineA (hg(a+1)é§+f§)+m‘

(& 4+ kfi) A (@ + (a+1)es+ hi(a+1)f3) A (ho(a+ 1)es + (a+ 1) f5 + f3).
We now compute m(y A 7(x)). We have
1

7T(X) = _€1+kf1
and
k - _ k _ _
X A 7w(x) = E-éjAfl*/\é;jA<h2(a+1)é’5+f§>+E~é“{/\ffA(é;+h1(a+1)f§‘>A
f;+m~éi/\ffA<é§+(a+1)é§+h1(a+1)f§)/\
(hala+ Ve +(a+1)f5 + ;)
- k(1 -+ hih 1)? - k 1 _
= anfin (D) g a e M g ).
So,
k hih 2 _ _
rv Ay = M) o g 0D g g

Since m(x) A m(x A m(x)) is not a completely decomposable trivector, y cannot be
Sp(V', f')-equivalent with v, by Section 4 of [6]. So, x is Sp(V’, f')-equivalent with ~,()\)
for some A € F*. By Section 4 of [6], the precise value of A is obtained by multiplying the
SO \ = k2(1+h1ho(a+1)2 )

coefficients of &5 A fi and &5 A f5 in w(x A 7(x)). =
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6 Treatment of Case (C) of Corollary 3.18

In this section, we determine the Sp(V, f)-equivalence classes of trivectors that are con-
tained in the subfamily of & corresponding to Case (C) of Corollary 3.18.
Suppose x is a trivector of Type (E) of V' which is GL(V)-equivalent with xj such

that y = ¢<(ﬂ1 + 0tg) A (g + 0tg) N (Us + (5716)> for some basis {1, U, U3, Uy, Us, Ug} of
V satistying My () + 0o, Ug + 0y, Us + 0tig) = M* and g(uy + dtuz, 4y + 6us) = 0.

Lemma 6.1 Let {01, 0, U3, 04, 05,06} be a basis of V' such that My (1 + 00q, U3+ 604, U5 +
dvg) = M* and g(v; + 6v2, 01 + 002) = 0. Let k be an arbitrary element of F' \ {0}.
Then there exists a basis {wy,wq, w3} of W := (01 + d0a, U3 + 004, U5 + 00g) such that
W1 AWy AWz = (U1 +602) A (U3 +604) A (U5 +005), Mg (07, We, 03) = M* and My(101, ws, W3)
1s of the form

0 k
A 0
0

;O O
>

2
for some A, Ay € F with Ay # 0.

Proof. Put w; := v;+009. Let U denote the set of all vectors u € W for which g(u,w;) =
0. Then U is a subspace of W by Lemma 3.9. By Lemma 3.13(2), U also consists of all
vectors u € W for which g(w;,u) = 0. If U = W, then we would have f’(w;,v) = 0 for all
v € V, clearly a contradiction. So, U is a 2-dimensional subspace of W. By Lemma 3.9(3),
there exists a vector wy € W \ U such that g(ws,w;) = k. Then also g(w;,w3) = k by
Lemma 3.13(2). Now, let U’ denote the set of all vectors u € W for which g(u, ws) = 0.
Then U’ is a subspace of W (by Lemma 3.9) which should be two-dimensional since
wy € U'. Since wy; € U and wy € U', UNU' is a one-dimensional subspace. Let wy be the
unique vector of U NU’ such that (01 + 602) A (03 + 004) A (U5 + 60g) = w1 AWy A ws. Since
f/ (g, w3) - wy = 7(wy Ag AW3) = 7T<(171 +002) A (03 + 004) A (5 +5@6)> = U1 + 00Uy = w1,
we have f'(wq,w3) = 1. So, M,(w,ws,ws3) should be a symmetric matrix by Corollary
3.14. Since g(wy,w1) = g(wq, w1) = g(we,w3) = 0 and g(ws,w,) = k, this implies that
M, (wy, ws, ws) has the form

0 0 &k
0 AN O
E 0 X

for some Aj, Ay € F. By Corollary 3.14, we have that M (w;, w2, ws, w],w], w]) is equal
to

0 0 0 0 0 k
0 0 1 0 A1 0
0 1 0 k 0 A2
0 0 k 0 0 (a+1)-Im(k)
0 A O 0 0 1
k0 A (a+1)-Im(k) 1 0 ]



Since the determinant of My (w;, ws, w3, w], w3, w}) is distinct from 0, we have that \; #
0. "

Now, let k& be a fixed element of F*, to be determined later. By Lemma 6.1, we may
suppose that y = ¢((171 + 009) A (03 + 004) A (05 + 5176)> where {0y, Uy, U3, Uy, U5, U} 1S a
basis of V' such that M (v; 4 00q, U3 + 004, U5 + 606) = M* and

0 0 k(a+1)
My(v1 + 002, U3 + 604, U5 + 605) = 0 hi(a+1) 0 :
k(a+1) 0 hao(a+1)

for some hy, hy € F with hy # 0.
Since 9(1_)1 +(51_)2, 7_}1+51_)2) = O, 9(1_)3—|—5?_)4, ?_}3"‘51_)4) = h1<a—|—1> and 9(1_15+(5176, 1_}5"—57_)6) =
ha(a + 1), we have

f'(01,09) = 0, f'(03,04) = I, f'(U5,U6) = ha.

From f/(T_)l + (5'1_)2, '1_13 -+ 5’174) =0 and f’('l_Jl + (5’172,’1_]4 -+ 5'173) = g(T_)l -+ 6'1_]2, '1_13 + (5’174) = 0, we
find

f/(01,03) = f/(01,04) = f'(02,03) = f'(V2,04) = 0.
Since f'(v1 4 8va, 5+ 606) = 0 and f'(vy + 00q, U + 005) = g(v1 + 002, Us + 006) = k(a+1),
we have ['(0; + 002, 76) = k and f'(0; + 009, U5) = kd and hence

f'(01,05) =0, f'(01,76) = F, [ (Ta,U5) =k, f(v2,76) = 0.

Similarly as in the treatment of Case (B), the facts that f'(v5 4+ dv4, 05 + 00g) = 1 and
[/ (03 + 604, Vg + 005) = g(v3 + d0y, Us + d06) = 0 imply that

1 1

f/(l_)3,1_15) = a1 f/<774;775) =0, f/(@3766) =0, f/(@bl_JG) - a+1

SO, Mf/(@l, Vg, U3, U4, Us, @6) is equal to

(00 0 0 0 k]
00 0 0 k 0
00 0 M 5 O
00 h 0 0 -5
Okza—}rl(l) 0 he
k0 0 =5 hy 0

Now, put

—/ — —/ — —/ — — —/ — — —/ — 2 _ —/ —
Uy =01, Uy:=Uy, Uy:=(a+1)kUs+vy, Uy:= (a+1)kvg+vy, U5 := v5+?v1, Vg := Ug.
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Easy formulas are obtained if we put k := —=. Then M (v}, 0}, v}, 0}, U, U5) is equal to

a+1
_ LS
0O 0 0 0 (1) a1
0 0 0 0 2 0
0 0 0 hy O 0
0 0O hy O O 0
1
0 00 0 0
| 0 0 0 0 0 |
So, there exists a hyperbolic basis (&1, f1, €2, fo, €3, f3) of (V, f) such that
B o - L 1
Uizelv Ué: 1f17 UéZQQ, ’Ug +1f27 Ug €3a U4_h1f3
Then
Uy =€y, Ug = fl, Ug = €3, U5 = 1f2+(a+1)h2*§1, Uy =3+ €, Uy = hifs+ e
So,
a+1 _  _ _ - _ _ _ _ _ _
= — c0p ANU3 A U5+ (a+1) -0y AUy A Ug + (01 + Do) A (U3 + Us) A (U5 + Ug)
1 — - _ 1 _
= 5'é1/\(éz+é3)/\f2+é2/\(h1f3+é1)/\f1+a—+1'(é1+éz)/\(és+h1f3)/\

(fi + fo+ (a+1)%heer).
So, x is Sp(V, f)-equivalent with y3(hy, hs).
Reversing the above procedure, we see that the trivector x3(hq, hs) is of the form gb((@{ +
0v3) A (05 + 6uy) A (05 + 56§)> where {07, 05,05, 05,05, U5} is some basis of V' satisfying
Mg (v + 605,05 + du}, 05 + dvg) = M* and

0 0 1
M, (v} + 005,05 4+ 00,05 +005) = | 0 hi(a+1) 0
1 0 hg((l—i-l)

So, x3(h1, he) is GL(V')-equivalent with xj, by Lemma 3.4.

We will now determine under which conditions two trivectors of Type (E3’) are Sp(V f)-

equivalent. Let hq, ho, b}, b}, € F with hy # 0 # h}. As before, put k := # The two

trivectors xs3(hi, ho) and xs(hf, h}) are Sp(V, f)-equivalent if and only if there exists a
matrix A € SL(3,F’) such that

M* = A-M*- AT, (1)
0 0 (a+ 1)k 0 0 (a+ 1)k
0 (a+ 1), 0 = A 0 (a+1)hy 0 AT
(a+1)k 0 (a+ 1)h} (a+ 1)k 0 (a+ 1)hsy

+@+1)-A-M*-Im(A)T. (2)
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By (1) and Lemma 3.15, we have that A has the form

1 0 0
21 Ag2 A3 ) (3)
a31 dzz G33

where ag1, ase, ao3, asi, ags, azs € F such that ag - ags — ass - azo = 1. By (2), we have

0 0 & 0 0 &k
0 h 0| = A0 h 0 |-A"+A-M-ImA". (4)
k0 R, k0 hy
By (3), we have that
0 0 0
A-M*. Im(A)T = 0 Q93 * |m(a22) “+ a9y - Im(agg) 923 * Im(a32) + a9 - Im(agg)

0 ass - |m(022) + asg - Im(a,zg) ass - |m(a32) + ass - Im(a33)

By (3), we also have

0 0 &% 0 0 k I ax az
A . 0 hl 0 . AT == k:a23 CLQth ]{ZCL21 -+ h2a23 . 0 29 A32
k0 hy kass hiazy kazy + hoass 0 ags ass

Comparing the (1, 2)-entries and the (1, 3)-entries in both sides of the equality (4), we see

that as3 = 0 and az3 = 1. Since ags - a3z — as3 - azs = 1, we also have that as = 1. So, we
find that

A-M*-Im(A)" = diag(0,0,Im(as,))

and
0 0 k [0 0 k 1 as as
A0 hy O [-A" = |0 My kas: 0 1 as
k0 h2 L k h1a32 ka31 + hg 0 0 1
[0 0 k
= 0 hl ka21 + hlagg .
L k ]{Zazl + h1a32 h1a§2 + hg
Equation (4) is then equivalent with
hll - hl,
k:a21 + hl(ng = 0,
h/2 = hg + h1a§2 + |m(a32).
The second equation implies that as, = % The third equation implies that hl, =

hy + hy(X? +aY?) + Y, if we put agy = X + Y where X,Y € F. So, we can conclude:
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Proposition 6.2 Let hy, ho, by, hy € F with hy # 0 # h}. Then the two trivectors
X3(h1, he) and x3(hy, hy) of V' are Sp(V, f)-equivalent if and only if hy = hY and hs + R,
is of the form hy(X%+aY?) +Y for some X,Y €.

Proposition 6.2 is precisely Theorem 1.3(4).

As before, let hy,hy € F with hy # 0. By Corollary 3.6, we know that the trivector
X3(h1, hy) is a trivector of Type (D) when regarded as a trivector of V/. One can now
ask to which of the trivectors mentioned in Section 2 y3(hq, ho) is Sp(V’, f')-equivalent
to. The following proposition answers this question.

Proposition 6.3 Let hy, hy € F with hy # 0. Then the trivector xs(hy, he) is Sp(V', f')-
equivalent with ;.

Proof. Put x := x3(hi, ha). Then

—x —% —x —% —% % f* a+ 1 —% fT*
X = (61+562>A(62+63+(561+5h1f3>/\(a(ail)—|— - h261+ﬁ>
f3 €1
+

(e + e+ 8 + 0 fi ) A (a - (a+ Dhot; + a;ilf{*) A (; + )

_ ex et _
—ff)/\(é’{+5é§>/\(f+f+h1f§+éj).

fs _
1)hoe]
+< + (a + )261+a+1

a+1
Since f(e} +0e3, € + 5 +0¢; +0h fy) = 0, f(&; +0e5, 2y + (a+1)hae + 727 f7) = 0 and
f(&5+ &5+ de; + 0hy f3, % + (a+ 1)hget + a;frlfl*) = 1, the base 3-space of the trivector
x of V' is not totally isotropic. So, x is Sp(V’, f')-equivalent with either v; or vo(A) for

some A\ € F*. We also have

1 —x —% g £x % £ o* [
X = a-el/\(62+e3)/\f2 + e N JT A6+ haf3)

+a+ a (er+e35) A (&5 +hifi) A ((a—|— 1)?hyet + fr +f;>.

We now compute w(x) A w(x A w(x)). We have 7(x) = L&} + & and

h’ —% —% [£* % 1 —% —% —% [£* [£* £k
XA T(x) = ;1’61/\62/\]01/\fg+a‘61/\€2/\(€3+h1f3)/\(f1+f2)

1 —% —% % —%
a
1 * —% —x £ £ £*
Hence, T(x A7(x)) = L-eznes+2-eiAf; and 7(x) Am(x Am(x)) = S-ejAesA(E+hiaf;).
Since 7(x) A m(x A 7(x)) is completely decomposable, the trivector x = x3(h1, he) must

be Sp(V’, f')-equivalent with ~;, see Section 4 of [6]. .
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