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Abstract. This paper studies a single-server non-preemptive priority queue
with two traffic classes in order to model Expedited Forwarding Per-Hop Be-

havior in the Differentiated Services (DiffServ) architecture. Generally, queue-

ing models assume infinite queue capacity but in a DiffServ router the capacity
for high priority traffic is typically small to prevent this traffic from monopo-

lizing the output link and hence causing starvation of low-priority traffic. The

presented model takes the exact (finite) high-priority queue capacity into ac-
count. Analytical formulas for the system content of each class are determined

as well as the high-priority packet loss ratio. For each class, service of a packet

takes a (different) general independent distribution. The issues this causes are
resolved by using spectral decomposition. Numerical examples indicate the

considerable impact of the finite capacity on system performance.

1. Introduction. The rapid development of modern telecommunication networks
has resulted in a wide variety of performance demands for various types of traffic.
Evidently, allowing all traffic to meet their Quality of Service (QoS) requirements is
of paramount importance. One of the more popular attempts to supply improved
QoS is Differentiated Services (DiffServ) [1],[2], a computer networking architecture
in Internet Protocol (IP) networks that distributes packets in various traffic classes.
It provides QoS differentiation by basing the order in which packets are transmitted
on class-dependent priority rules. In DiffServ each packet is forwarded according to
its Per-Hop Behavior (PHB). Obviously, implementation of DiffServ is particularly
interesting in networks that struggle to provide acceptable QoS because bandwidth
is limited and/or variable.
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A rather coarse, but very practical, classification distributes packets in two traffic
classes. Real-time traffic, such as streaming video, requires low delays but can
endure a small amount of packet loss. On the other hand, data traffic, such as file
transfer, benefits from low packet loss but has less stringent delay characteristics.

This paper considers a two-class priority queueing system representing a DiffServ
implementation where real-time traffic (Expedited Forwarding PHB) has strict pri-
ority scheduling over data traffic (Default PHB). Although this scheduling algorithm
is quite drastic, as data packets are only served if the system is void of real-time
packets, it minimizes the delay of the real-time packets. Furthermore, upon arrival
of a real-time packet, its delay is known, in contrast to queues with more intricate
scheduling algorithms where, f.i. the delay could be influenced by future arrivals.
This provides an upper bound for the number of real-time packets the system should
be able to contain, given the allowed maximum delay for this type of packets.

As real-time packets receive absolute priority, they can occupy the server (al-
most) permanently, denying data traffic of any service, if no admission control is
performed. Therefore, the amount of real-time traffic allowed into the system should
be regulated. Moreover, queueing a very large amount of real-time packets is useless
anyway as they require small delays. These two observations emphasize the impor-
tance of limiting the capacity for real-time packets, evidently, without neglecting
packet loss constraints. On the other hand, data packets require a very low amount
of loss to achieve their QoS requirements. Therefore, the system capacity for data
packets should be as large as practically feasible. Hence, we can assume that the
capacity for data packets is sufficiently large to be approximated by infinity but
that the capacity for real-time packets should be modelled exactly.

In the literature, various priority queueing systems (a.o. [8],[5]) have been dis-
cussed with infinite queue capacity, as this facilitates mathematical analysis of the
system. In contrast, the queueing model studied in this paper considers finite ca-
pacity for real-time packets and infinite capacity for data packets, as explained in
the former paragraph. This paper is an expansion of [3] where service of a packet
was assumed to be deterministically equal to a single slot for data traffic and it is an
extended version of [4]. As packet sizes of real-time and data packets are typically
dissimilar, the current contribution expands the differentiation amongst packet sizes
of both classes as we allow service times to take a (different) general distribution
for each class. When a real-time packet arrives during service of a data packet
(thus in a system void of real-time packets), it does not interrupt the service of the
data packet. This is called non-preemptive priority and it causes the performance
of real-time traffic to be dependent on data traffic, which was not the case in our
previous contributions. The complexity introduced by the use of general service
times is resolved by applying the spectral decomposition theorem (e.g. [6]).

The presented model is related to [10] where both queues are presumed to have
infinite capacity. Finite queue capacity is considered in [9] as well, albeit by a
different methodology, but only packet loss is investigated under the restriction of
single-slot service times. Assessing the impact of the finite real-time queue capacity
on the system contents is the main purpose of the current contribution.

The remainder of this paper is organized as follows: first the model under con-
sideration will be thoroughly described. In section 3, several performance measures
for our system are determined analytically. Next, the unfinished work is obtained.
Afterwards, the results are investigated in some (numerical) examples. The paper
is concluded in section 6.
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2. Model. This paper studies a discrete-time single-server two-class non-preemp-
tive priority queueing system where class-1 (real-time) packets receive strict priority
over class-2 (data) packets. Packets are handled in a First-In-First-Out (FIFO)
manner within a class. We limit the capacity of the class-1 queue to N packets
such that real-time packets that arrive at a full queue are dropped by the system.
The system can hence contain up to N + 1 class-1 packets simultaneously, N in
the queue and 1 in the server. In contrast, the class-2 queue has infinite capacity.
Time is divided into fixed-length slots and a packet can only enter the server at slot
boundaries, even if arriving in an empty system.

Let si (i = 1, 2) denote a generic random service time of a class-i packet . These
independent variables have corresponding pgfs Si(z) and mean values µi (i = 1, 2).
Observing the system at the beginning of a slot happens after the departure (if any)
at the slot boundary but before arrivals in that slot.

We assume that, for both classes, the numbers of arrivals in consecutive slots form
a sequence of independent and identically distributed (i.i.d.) random variables. We
define ai,k as the number of class-i (i = 1, 2) packet arrivals during slot k. The
arrivals of both classes are characterized by the joint probability mass function
(pmf)

a(m,n) = Pr[a1,k = m, a2,k = n] (1)

which allows us to take into account dependence between both classes. The corre-
sponding probability generating function (pgf) is denoted by

A(z1, z2) =

∞∑
i=0

∞∑
j=0

a(i, j)zi1z
j
2 . (2)

The partial pgf of the number of class-2 arrivals in a slot with i (0 ≤ i ≤ N) and i
or more class-1 arrivals are respectively denoted by Ai(z) and A∗i (z). We establish

Ai(z) = E[za2,k 1{a1,k = i}] =

∞∑
j=0

a(i, j)zj , A∗i (z) =

∞∑
j=i

Aj(z) . (3)

The indicator function 1{.} evaluates to 1 if its argument is true and to 0 if it
is false. The mean number of class-1 and class-2 arrivals per slot are respectively
expressed as

ā1 =

∞∑
i=1

iAi(1) , ā2 =
d

dz
A∗0(z)

∣∣∣∣
z=1

= A∗0
′(1) . (4)

Hence, the arrival loads per class are ρ1 = ā1µ1 and ρ2 = ā2µ2. The mean number
of total arrivals and total arrival load are respectively denoted by āT = ā1 + ā2 and
ρT = ρ1 + ρ2.

3. Analysis. First, we review the spectral decomposition theorem for non-diagonal-
isable matrices as it will be used frequently in the remainder of this paper. In section
3.2, the equations for the system contents of both classes at the beginning of so-
called start-slots are established. The next subsection addresses the characterization
of arrivals during a class-i service. This enables determination of the system con-
tents at start-slots in subsection 3.4. Finally, the system contents at the beginning
of random slots are derived from those at start-slots.
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3.1. Spectral decomposition of non-diagonalisable matrices. Let us con-
sider a square m ×m matrix A and a scalar function f . The spectral decomposi-
tion theorem allows us to express the image of A under f by evaluating f (and its
derivatives) in the eigenvalues of A, see e.g. [6].

In this paper, the function f is typically a power series f(z) =
∑∞
n=0 fnz

n and
the matrix A is non-diagonalisable. Such a matrix A cannot be reduced to a
completely diagonal form by a similarity transform. However, any square matrix
can be reduced to a form that is almost diagonal, called the Jordan normal form
J. Based on this reduction, it is possible to prove that the matrix f(A) can be
uniquely defined as

f(A) =

s∑
j=1

kj−1∑
i=0

1

i!
f (i)(λj) (A− λjI)i Gj , (5)

see formula (7.9.9) in [6]. In this expression, {λ1, . . . , λs} (s≤m) are the s distinct
eigenvalues of A, kj denotes the index of eigenvalue λj and f (i) is the ith derivative
of f . Obviously, it is required that the function f and its derivatives exist in the
eigenvalues, i.e.

λj ∈ dom f (i) , j = 1, . . . , s , i = 0, . . . , kj−1 . (6)

The matrices Gj are called the constituents or spectral projectors of A belonging
to the eigenvalue λj and have the following properties:

• Gj is idempotent, i.e. G2
j =Gj .

• G1 + G2 + . . .+ Gs = I, with I the m×m identity matrix.
• GjGj′ = 0 whenever j 6= j′ (1≤j, j′≤s).

In general, the matrices Gj need to be calculated from the transformation matrix
P, for which J = P−1AP. Specifically, if P is partitioned conformably as

A = PJP−1 =
[
P1 P2 · · · Ps

]


J1

J2

. . .

Js




Q1

Q2

...
Qs

 , (7)

with Jj the Jordan segment corresponding with eigenvalue λj , then the projectors
Gj are

Gj = PjQj (j = 1, . . . , s) . (8)

We also note that the columns of Pj span the space of the right eigenvectors of A
corresponding to λj while the rows of Qj span the space of its left eigenvectors.

This spectral decomposition theorem provides us with a very powerful tool from
a computational point of view. Instead of having to evaluate the matrix power series∑∞
n=0 fnAn, we only need to evaluate the function f and its derivatives for scalar

arguments and compute a finite number of matrix multiplications. The downside
is that the eigenvalues of A have to be calculated, as well as the matrices Gj . But
once this is done, f(A) can easily be calculated for any function f satisfying (6). In
subsection 3.3, it will become clear that in our case the downsides are virtually non-
existent as the eigenvalues and spectral projectors are surprisingly easy to obtain.

3.2. Relating consecutive start-slots. A start-slot is a slot where service of a
packet can start. In Figure 1, the evolution of the system is exemplified for an ad-
hoc case. Hereby, we hope to clarify the concept of start-slots and give some insights
into the system studied in this paper. On the left, the queueing system is depicted
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Figure 1. Evolution of the finite/infinite non-preemptive queue-
ing system with N = 3 over 37 slots. The contents of both the
high-priority queue (1-packets: dark grey) and low-priority queue
(2-packets: light grey) are shown, as well as the content of the
server. An arriving high-priority packet that can not be accommo-
dated is lost. Start-slots are indicated with a ‘•’.

for N = 3. Class-1/class-2 packets are dark-/lightgrey. Each class has a dedicated
queue, both queues are served by the same server. The evolution of the system
contents, influenced by arrivals and completed services, is depicted during 37 slots.
The following events are particularly interesting. In slot 10, class-1 packets arrive
in a system void of class-1 packets. Although class-1 packets have priority, class-1
service can only start after the class-2 service in progress is completed. Therefore,
class-1 performance is dependent on class-2 traffic. Slot 12 exemplifies that the
class-1 queue can only hold N packets, while slot 26 demonstrates that packets can
not enter the server upon arrival, but only at slot boundaries.

Note that a slot where the system is empty at the beginning of the slot is a start-
slot as well (slots 25 and 26 in the example). Evidently, the time epoch between
the beginning of two consecutive start-slots consists of s1, s2 or a single slot(s),
depending on the type of packet in the server (if any). Therefore, study of the
evolution of the system during a service time is of paramount importance to the
analysis. Let eji,k represent the number of class-i arrivals during a class-j service
that starts in slot k. We have

eji,k =

sj−1∑
m=0

ai,k+m . (9)

Notice that the eji,k are i.i.d. (for different k) as the ai,k are i.i.d. and independent
of sj .

Let ni,l denote the class-i system contents at the beginning of start-slot l, con-
stituted by the class-i queue contents (thus excluding the server) and by the packet
in the server if this packet is of class i. The set {(n1,l, n2,l), l ≥ 1} forms a Markov
chain. Assume that start-slot l corresponds with slot k. Relating start-slots l and
l + 1 establishes the following set of system equations:

n1,l+1 =


min(N, a1,k), if n1,l = 0, n2,l = 0

min(N, e21,k), if n1,l = 0, n2,l > 0

min(N,n1,l − 1 + e11,k), if n1,l > 0

,

n2,l+1 =


a2,k, if n1,l = 0, n2,l = 0

n2,l − 1 + e22,k, if n1,l = 0, n2,l > 0

n2,l + e12,k, if n1,l > 0

.

(10)
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The system equations can be explained as follows: if the system is empty, start-slot
l+1 is the next slot (k+1) and thus only the arrivals during slot k contribute to the
system contents. If n1,l = 0, n2,l > 0, a class-2 packet starts service at the beginning
of start-slot l and it leaves the system immediately before start-slot l+ 1. For each
class, admitted arrivals during this class-2 service contribute to the system contents
at the beginning of start-slot l+ 1. On the other hand, if n1,l > 0, a class-1 packet
starts service at the beginning of start-slot l and it leaves the system immediately
before start-slot l + 1. For each class, admitted arrivals during this class-1 service
contribute to the system contents at the beginning of start-slot l+ 1. Note that the
class-1 system contents at the beginning of start-slots cannot exceed N , the class-1
queue capacity.

3.3. Arrivals during a service. In this subsection, the number of arrivals during
a class-j (j = 1, 2) service is characterized. The partial pgfs of the number of class-2
arrivals during a class-j service, during which i (0 ≤ i ≤ N) and i or more class-1

packets arrive are respectively denoted by Eji (z) and Ej∗i (z). We have

Eji (z) = E[ze
j
2,k 1{ej1,k = i}] , Ej∗i (z) =

∞∑
m=i

Ejm(z) . (11)

Obtaining these partial pgfs is, in general, a tedious task. We have

Eji (z) =
1

i!

di

dxi
Sj
(
A(x, z)

)∣∣∣∣
x=0

, Ej∗i (z) = Sj
(
A(1, z)

)
−

i−1∑
k=0

Ejk(z) . (12)

However, from a computational point of view, this is infeasible for general Sj(z)
and A(z1, z2). The most common approach would be to invert this two-dimensional
transform using the (fast) Fourier-series method. When solving the system under
consideration however, following alternative method is interesting, especially from a
numerical point of view as a lot of the computational effort is reused in the further
analysis of the system.

In this subsection, these pgfs are obtained using the spectral decomposition the-
orem. Packets only leave the system at the end of a service. Therefore, in each
slot during a service, the queue contents evolve according to the (N + 1)× (N + 1)
matrix

Y(z) =



A0(z) A1(z) · · · AN−1(z) A∗N (z)
0 A0(z) · · · AN−2(z) A∗N−1(z)
...

. . .
. . .

...
...

...
. . . A0(z)

...
0 · · · · · · 0 A∗0(z)

 . (13)

More precisely, for 1 ≤ i, j ≤ N + 1, given that the class-1 queue content is i − 1
during the previous slot, Y(1)ij is the probability that it is j − 1 in the current
slot (this is the probability that j− i class-1 packets are effectively allowed into the
system), while Y(z)ij is the partial pgf of the packets added to the class-2 queue.

The partial pgfs Eji (z) and Ej∗i (z) are found as elements of the matrices Ej(z) =
Sj
(
Y(z)

)
, j = 1, 2. Using spectral decomposition, these matrices are readily ob-

tained because of the special eigenstructure of Y(z). As this matrix has a triangular
form, the eigenvalues simply are its diagonal elements. There are two distinct eigen-
values: λ1 = A∗0(z), with index 1, and λ2 = A0(z), with indexN . The corresponding
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spectral projectors are easily shown to be independent of z and are given by

G1 =
[
0 · · · 0 e

]
, G2 =

[
I −e

0T 0

]
. (14)

Here I denotes the identity matrix of appropriate size, xT is the transpose of vector
x and e and 0 indicate the column vectors of appropriate size with all elements
equal to 1 and 0 respectively.

Hence, spectral decomposition (5) yields

Ej(z) = Sj
(
Y(z)

)
=



Ej0(z) Ej1(z) · · · EjN−1(z) Ej∗N (z)

0 Ej0(z) · · · EjN−2(z) Ej∗N−1(z)
...

. . .
. . .

...
...

...
. . . Ej0(z)

...

0 · · · · · · 0 Ej∗0 (z)


= Sj

(
A∗0(z)

)
G1 +

N−1∑
k=0

S
(k)
j

(
A0(z)

)
k!

(
Y(z)−A0(z)I

)k
G2 .

(15)

Note that E1(z) and E2(z) share all factors except (the derivatives of) the functions
S1(z) and S2(z). Especially note that the (computationally expensive) powers of(
Y(z)−A0(z)I

)
are shared.

3.4. System contents at the beginning of start-slots in steady state. The
partial pgf of the class-2 system contents at the beginning of start-slot l that has
class-1 system contents equal to i is denoted by

Ni,l(z) = E[zn2,l 1{n1,l = i}] . (16)

Let us organize these pgfs into a row vector of N + 1 elements

nl(z) =
[
Ni,l(z)

]
i=0..N

, (17)

which corresponds with the system contents at the lth start-slot. Furthermore,
define the (N + 1)× (N + 1) matrices

H1 =


1

0
. . .

0

 , H2 = I−H1, D =

[
0T 0
I 0

]
, (18)

and the row vector of N + 1 elements

h1 =
[
1 0 · · · 0

]
. (19)

By conditioning on the state of the server at start-slot l, a relation between nl(z)
and nl+1(z) is derived from the system equations (10). We have

nl+1(z) = nl(0)H1Y(z) +
(
nl(z)− nl(0)

)
H1

1

z
E2(z) + nl(z)H2DE1(z) . (20)

This can be explained as follows. The first term corresponds with an empty server.
Therefore, n2,l = 0, n1,l = 0 and start slot l + 1 is the next slot thus we take into
account the arrivals in a single slot (start-slot l). The second term represents the
evolution of the system when a class-2 service starts at start-slot l. This yields that
n2,l > 0, n1,l = 0, that by start-slot l + 1 the class-2 packet in service will have left
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the system and that we need to consider arrivals during a class-2 service. The final
term corresponds with a class-1 packet starting service at start-slot l. Then n1,l > 0
the class-1 packet in service will have left the system by start-slot l+ 1 and packets
arriving during this class-1 service need to be accounted for.

Assume that the system has reached steady state and define following steady-
state values

n(z) = lim
l→∞

nl(z) = lim
l→∞

nl+1(z) =
[
Ni(z)

]
i=0..N

. (21)

Taking the limit of (20) for l→∞ induces

n(z)
(
zI−H1E2(z)− zDE1(z)

)
= n(0)H1

(
zY(z)−E2(z)

)
. (22)

Furthermore, note that
n(0)H1 = N0(0)h1 . (23)

Hence, (22) becomes

n(z)
(
zI−H1E2(z)− zDE1(z)

)
= N0(0)h1

(
zY(z)−E2(z)

)
. (24)

The constant N0(0) is the only unknown. It is found in two steps. First, evaluation
of (24) in z = 1 produces

n(1)
(
I−H1E2(1)−DE1(1)

)
= N0(0)h1

(
Y(1)−E2(1)

)
. (25)

As the matrices Ej(1), j = 1, 2 are right-stochastic by construction, each row of
matrix [I − H1E2(1) − DE1(1)] sums to 0 and it hence has rank N and is not
invertible. We thus require an additional relation in order to obtain the vector
n(1). The normalization condition provides n(1)e = 1. Combining this with (25)
yields

n(1) = N0(0)

[
h1

(
Y(1)−E2(1)

)∥∥∥∥ 1

N0(0)

][
I−H1E2(1)−DE1(1)

∥∥∥∥e]−1 . (26)

By [A‖b] we denote the matrix A with the last column replaced by the column
vector b and by [a‖b] the vector a with the last element replaced by b. Second,
derivation of (24) with respect to z yields

n(z)
(
I−H1E

′
2(z)−DE1(z)− zDE′1(z)

)
+ n′(z)

(
zI−H1E2(z)− zDE1(z)

)
= N0(0)h1

(
Y(z) + zY′(z)−E′2(z)

)
.

(27)

Observe that Ej(1) (j = 1, 2) and Y(1) are right-stochastic matrices by construc-
tion. Therefore, (

I−H1E2(1)−DE1(1)
)
e = 0 ,h1Y(1)e = 1 . (28)

Keeping these identities in mind, evaluation of (27) in z = 1 and multiplication of
both sides of the resulting equation by e yields

N0(0) =
n(1)

(
I−H1E

′
2(1)−DE1(1)−DE′1(1)

)
e

1 + h1

(
Y′(1)−E′2(1)

)
e

. (29)

Substitution of (26) for n(1) provides N0(0).
Now that N0(0) has been obtained, (26) provides n(1), the probability mass

function (pmf) of the class-1 system contents at the beginning of a start-slot in
steady state and from (24), the pgf of the class-2 system contents at the beginning
of a start-slot in steady state are found as n(z)e. From this pgf, all moments can
be determined by multiple differentiation of (24) with respect to z and evaluation
in z = 1.



INFLUENCE OF REAL-TIME QUEUE CAPACITY 9

3.5. System contents at the beginning of random slots in steady state.
The class-i system contents at the beginning of slot k are denoted by ui,k. Note
that 0 ≤ u1,k ≤ N + 1 as the class-1 queue can hold up to N packets and the server
can hold a single packet. Define the vector u(z), of N + 2 elements, containing the
partial pgfs of the system contents (of both classes) at the beginning of a random
slot in steady state. We have

u(z) =
[
Ui(z)

]
i=0..N+1

= lim
k→∞

[
E[zu2,k 1{u1,k = i}]

]
i=0..N+1

. (30)

The vector u(z) is obtained by conditioning on the state of the server. We have

u(z) = lim
k→∞

[
E[zu2,k 1{u1,k = i, no service}]

]
i=0..N+1

+ lim
k→∞

[
E[zu2,k 1{u1,k = i, class-2 service}]

]
i=0..N+1

+ lim
k→∞

[
E[zu2,k 1{u1,k = i, class-1 service}]

]
i=0..N+1

.

(31)

If a class-j (j = 1, 2) packet is in service during a random slot, the time epoch
between the beginning of that slot and the beginning of the preceding start-slot is
called the elapsed service time s−j of that packet. Keeping in mind that a random
service slot is part of a larger service time with higher probability, the pgf of the
elapsed service time of the class-j packet in service in a random slot has been
determined in [7]. We have

S−j (z) =
Sj(z)− 1

µj(z − 1)
. (32)

Let f ji,k represent the number of class-i arrivals during the elapsed class-j service
time up to slot k. We have

f ji,k =

s−j∑
m=1

ai,k−m . (33)

The matrix containing the corresponding partial pgfs is again found using the spec-
tral decomposition theorem (5). Recall that, in each slot during a service, the
queue contents evolve according to the matrix Y(z), defined in (13). Therefore, the
number of arrivals during an elapsed class-j service time are given by

Fj(z) = S−j
(
Y(z)

)
= S−j

(
A∗0(z)

)
G1 +

N−1∑
k=0

S
−(k)
j

(
A0(z)

)
k!

(
Y(z)−A0(z)I

)k
G2 .

(34)

Note that almost all factors were previously obtained in (15), which is very inter-
esting from a computational point of view.

The state of the server in a random slot k equals the state of the server in the
preceding start-slot l, as in an empty system these slots coincide and in a non-empty
system a class-j (j = 1, 2) packet enters the server in start-slot l and remains there
until the following start-slot. Therefore, we can express the system contents at
a random slot as the system contents at the preceding start-slot augmented with
the arrivals during the elapsed service time. This observation enables following
calculations. First,

E[zu2,k 1{u1,k = i} | no service]

= E[z0 1{u1,k = i} | u1,k = u2,k = 0] = 1{i = 0} .
(35)
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Second,

E[zu2,k 1{u1,k = i} | class-2 service]

= E[zn2,l+f
2
2,k 1{min(N, f21,k) = i} | class-2 service]

= E[zn2,l | n1,l = 0, n2,l > 0] E[zf
2
2,k 1{min(N, f21,k) = i}] .

(36)

This equals 0 for i ≥ N + 1 as the class-1 queue can only contain up to N packets
and it is hence impossible that more than N class-1 packets are admitted during
an elapsed service time. Finally,

E[zu2,k 1{u1,k = i} | class-1 service]

= E[zn2,l+f
1
2,k 1{min(N,n1,l + f11,k) = i} | class-1 service]

=

i∑
j=1

E[zn2,l 1{n1,l = j} | n1,l > 0] E[zf
1
2,k 1{min(N − j, f11,k) = i− j}] .

(37)

Note that this equals 0 for i = 0 as a class-1 service can only be in progress when
there are class-1 packets in the system.

On average, the time epoch between the beginning of start-slots l and l + 1
consists of a single slot if the system is empty (Pr[n1,l = n2,l = 0]), of µ2 slots if a
class-2 packet is served (Pr[n1,l = 0, n2,l > 0]) or of µ1 slots if a class-1 packet is
served (Pr[n1,l > 0]). Therefore, γ, the steady-state probability that a random slot
is a start-slot, is defined as

γ = lim
k→∞

Pr[slot k is a start-slot]

=
1

N0(0) +
(
N0(1)−N0(0)

)
µ2 +

(
1−N0(1)

)
µ1

.
(38)

Recall that if the server is idle during a slot, that slot is a start-slot. Therefore, the
probability that the system is empty at the beginning of a random slot is given by

U0(0) = lim
k→∞

Pr[u1,k = u2,k = 0]

= lim
k,l→∞

Pr[n1,l = n2,l = 0, slot k is a start-slot] = γN0(0) .
(39)

In steady state, the system is in stochastic equilibrium. Therefore, on average,
the amount of packets effectively accepted by the system equals the amount of
packets served by the system. This yields that the effective total load is found as
ρeT = 1 − U0(0). The effective class-1 load and mean number of effective class-1
arrivals are therefore expressed as ρe1 = ρeT − ρ2 and āe1 = ρe1/µ1 respectively. In a
random slot, the server is empty, serving a class-1 packet or serving a class-2 packet.
The probabilities of these events are

Pr[no service] =U0(0) ,

Pr[class-1 service] =
(
1− U0(0)

) ρe1
ρeT

= ρe1 ,

Pr[class-2 service] =
(
1− U0(0)

) ρ2
ρeT

= ρ2 .

(40)
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Substituting equations (35)-(37) and (40) in (31) produces

u(z) = U0(0)
[
1 0 · · · 0

]
+

ρ2
N0(1)−N0(0)

(
n(z)− n(0)

)
H1F2(z)

[
I 0

]
+

ρe1
1−N0(1)

n(z)DF1(z)
[
0 I

]
.

(41)

The class-1 and class-2 system contents are respectively characterized by u(1) and
u(z)e.

Using Little’s law, the average delay can be found from the average system con-
tents. Furthermore, the class-1 packet loss ratio, this is the fraction of class-1
packets that is rejected by the system, is easily obtained. It is given by

PLR1 =
ā1 − āe1
ā1

. (42)

4. Unfinished Work. The total unfinished work at the beginning of slot k, de-
noted by wT,k, is defined as the number of slots it takes to serve all packets in
the system at the beginning of slot k, when no new packets arrive from slot k on.
Furthermore, the unfinished work of class-j (j = 1, 2) at the beginning of slot k,
denoted by wj,k, is defined as the number of slots of the total unfinished work that
are effectively spent on serving class-j packets.

As service times can have an infinite support, we cannot explicitly track the
class-1 unfinished work, as we did for the class-1 system contents. Instead, it is also
tracked by a pgf. Therefore, define the bivariate pgf of the unfinished work as

W (z1, z2) = lim
k→∞

E[z
w1,k

1 z
w2,k

2 ] . (43)

Each class-j packet in the system at slot k contributes a class-j service time to
the class-j unfinished work, except for the packet in service, only the remaining
service time of that packet, denoted by s+j , should be accounted for. The elapsed

and remaining service time are obviously correlated. In [7], p. 31, the bivariate pgf
of the elapsed and remaining class-j service time is obtained as

S∗j (x, y) = E[xs
−
j ys

+
j ] = y

Sj(x)− Sj(y)

µj(x− y)
. (44)

As each class-1 packet in the queue adds a class-1 service to the unfinished work
of class-1, define the column vector

s1(z) =
[
S1(z)i

]T
i=0..N

. (45)

Analogously to the system contents, W (z1, z2) is found by conditioning on the state
of the server and by relating slot k to the preceding start-slot l. We have

W (z1, z2) = U0(0) +
ρ2(n(S2(z2))− n(0))

S2(z2)(N0(1)−N0(0))
H1S

∗
2 (Y(S2(z2)), z2)s1(z1)

+
ρe1n(S2(z2))

1−N0(1)
DS∗1 (Y(S2(z2)), z1)s1(z1) .

(46)

The spectral decomposition theorem enables calculation of this expression, as S∗j (x, y)
can be seen as a function in a single argument x by keeping y constant at z1. Hence
we can evaluate it for x = Y(S2(z2)) using spectral decomposition.
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5. Numerical Examples. We aim to give some qualitative insight into the main
factors governing system performance rather than performing a case study of a
simplified model of a DiffServ router. Therefore, the choice of distributions (and
their parameters) might seem ad hoc but any i.i.d. distributions may be chosen for
the numerical results as long as the system is stable for these inputs. We study an
output-queueing switch with L inlets and L outlets and two types of traffic as in
[10]. On each inlet of the switch a batch arrives according to a Bernoulli process
with parameter νT . A batch contains b (fixed) packets of class 1 with probability
ν1/νT or b packets of class 2 with probability ν2/νT (with ν1 + ν2 = νT ). Incoming
packets are routed uniformly to the outlets where they arrive at a queueing system
as described in this paper. Therefore, all outlets can be considered identical and
analysis of one of them is sufficient. The arrival process at the queueing system can
consequently be described by the pmf

a(bn, bm) =
L!
(
ν1
L

)n(ν2
L

)m(
1− νT

L

)L−n−m
n!m!(L− n−m)!

, (47)

for n and m integers with n+m ≤ L and by a(p, q) = 0, for all other values of p and
q. Obviously the number of arrivals of class-1 and class-2 are negatively correlated
as there can be no more than Lb− i class-2 arrivals in a slot with i class-1 arrivals.
For increasing values of L, the correlation increases and the numbers of arrivals
of both types become uncorrelated for L going to infinity. We now study a 4 × 4
output-queueing switch and assume the batch size b = 5. The remainder of this
section can be divided into two parts. First, our system will be compared with the
system described in [10], to which we shall refer as ’the infinite system’, because it
is equivalent to our model with N = ∞. Evidently, packet loss is not accounted
for in the infinite system and we shall study the impact hereof under varying traffic
conditions. In the second part, the influence of the general service times on system
performance will be examined.

In the first place, consider

ν1 = ν2 = 0.02 , S1(z) = 1/4z2 + 1/2z3 + 1/4z4 , S2(z) = 1/2z + 1/2z2 . (48)

Note that the arrival load is constant, we have ρT = 0.9. The longer class-1 service
times reflect the fact that real-time packets are often larger than data packets.

Figure 2 depicts the packet loss ratio versus the class-1 queue capacity N . Ob-
viously the packet loss decreases with increasing N . The region between 10−2 and
10−3, which we have marked in grey, is particularly interesting. Most real-time
applications tolerate this amount of packet loss, but the infinite system does not
capture packet loss and we will show that this causes it to be inaccurate for other
performance measures in this region as well. A packet loss ratio over 10−2 causes
the QoS delivered to real-time applications to be unacceptable and is hence imprac-
tical in a DiffServ setting. Systems with a very small packet loss ratio (<< 10−3)
are accurately modelled by the infinite system.

The mean and the standard deviation of the system contents at the beginning
of random slots of both classes are plotted versus N in Figure 3. The effect of
the priority scheduling is clear as the class-2 system contents exceed those of class-
1, despite that, on average, the system receives the same amount of packets of
each class and that class-1 packets generally have longer service times. The values
increase for increasing N and clearly converge to the values corresponding with the
infinite system, represented by the horizontal dotted lines. This validates that, for
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Figure 2. Packet loss ratio versus class-1 queue capacity.

N going to infinity, the system considered in this paper tends to the infinite system,
as the number of dropped class-1 packets tends to zero. However, in our region
of interest (again marked in grey) the infinite system considerably overestimates
the mean value and standard deviation of the system contents of both classes. For
instance, at N = 21, the smallest value for N where PLR1 < 10−2, the mean and
standard deviation of the class-2 system contents are overestimated by 14% and
17% respectively.

the total arrival load approaches 100%. Next, for Figure 4 we fix N = 20 and
vary ν1 = ν2 to consequently vary the total arrival load ρT between 0% and 100%
while plotting the mean system contents of both classes. Instead of showing the
packet loss on a separate figure, we have immediately marked the region of interest,
where 10−3 < PLR1 < 10−2, in grey. Again the effect of the priority scheduling is
apparent. Especially note the class-2 starvation as the curves for the system under
consideration and the infinite system seem to be close together, due to the steep
slope, but for λT ∼= 0.875, where the PLR1 approaches the 1% boundary, the error
introduced by using the infinite model over our model amounts to 8 and 13% for
class-1 and class-2 respectively.

We now focus on the effect of the service times. Consider

N = 20, ν1 = 0.06, S1(z) = z2 , ν2 = 0.06/i, S2(z) = zi . (49)

Note that µ2 = i. By increasing i, the average class-2 service time increases,
while the average number of class-2 arrivals decreases. Therefore, the arrival load
ρT remains constant at 0.9. Figure 5 depicts the average system contents at the
beginning of random slots of both classes for average class-2 service time µ2 from
1 to 40. Evidently, the decrease of E[u2] is caused by the decrease of µ2 and hence
λ2, i.e., on average less packets arrive. This figure exemplifies the effect of class-2
traffic on class-1 traffic, as increasing values of µ2 yield an increased probability
that a class-1 packet arrives during the service time of a class-2 packet in a system
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Figure 3. System contents versus class-1 queue capacity.
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Figure 4. Average system contents vs arrival load.

void of class-1 packets and has to wait until the end of this service before it can
enter the server.

Finally, consider

N = 20 , ν1 = ν2 = 0.15 , S2(z) =
z

2− z
. (50)
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Figure 6. Average system contents versus class-1 queue capacity N .

In Figure 6 we have plotted the mean class-2 system contents versus the class-1
queue capacity for three distributions for the class-1 service times with the same
mean µ1 = 4 slots, yielding ρT = 0.9, but different amounts of variance. In order
of increasing variance, we have

S1
1(z) = z4 , S2

1(z) =
z

4− 3z
, S3

1(z) = 0.7z + 0.3z11 . (51)
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Note that we have used the (shifted geometric) distribution for S2(z) and S2
1(z) to

exemplify that service time distributions with unbounded support can be handled.
The only requirement is that the first N derivatives of the pgf of the service time
can be calculated as they are needed in (15) and (34). As expected, larger values
of N correspond with higher class-2 system contents and higher variance of class-1
service times induces higher class-2 system contents. However, for smaller values
of N , the effect is less explicit as class-1 packet loss is high in this case, hence
dampening the effect of class-1 (service times) on class-2 performance.

6. Conclusions. A two-class non-preemptive priority queue with finite capacity
for high-priority packets has been studied in order to model a DiffServ router with
Expedited Forwarding Per-Hop Behavior for high-priority traffic. This enables de-
termination of high-priority packet loss. In a DiffServ router, the capacity for
high-priority packets is often small to prevent this traffic from monopolizing the
system and should thus not be approximated by infinity. Analytical formulas for
system content of both traffic classes were determined making extensive use of the
spectral decomposition theorem to cope with the difficulties that arise when consid-
ering general service times for both classes. Several numerical examples indicate the
impact of small but practically feasible amounts of real-time packet loss on system
performance, which is considerably different from what was predicted in existing
models.
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