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ABSTRACT

Recently, some intriguing results have led to speculations whether the central density slope—velocity dispersion
anisotropy inequality (An & Evans) actually holds at all radii for spherical dynamical systems. We extend these
studies by providing a complete analysis of the global slope—anisotropy inequality for all spherical systems in which
the augmented density is a separable function of radius and potential. We prove that these systems indeed satisfy the
global inequality if their central anisotropy is By < 1/2. Furthermore, we present several systems with 8y > 1/2
for which the inequality does not hold, thus demonstrating that the global density slope—anisotropy inequality is not
a universal property. This analysis is a significant step toward an understanding of the relation for general spherical

systems.
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1. INTRODUCTION

Theoretical dynamical models continue to play a key role
in stellar dynamics, as understanding their underlying structure
helps shed light on the properties of numerical and observational
stellar systems and dark matter halos. In this paper, we focus our
attention on the relation between the density slope y (r) and the
velocity anisotropy profile S(r), which has attracted renewed
interest lately. As is well known, An & Evans (2006) proved
that the central inequality yy > 28 is a necessary condition for
the positivity of the distribution function (DF) of a spherical
system. More recently however Ciotti & Morganti (2010a,
2010b) showed that y (r) > 28(r) atall radii (hereafter called the
global density slope—anisotropy relation, GDSAI) is a necessary
condition for positivity of the DF, if 8y < 1/2, in the families
of multi-component Osipkov—Merritt (Osipkov 1979; Merritt
1985), Cuddeford (Cuddeford 1991), and Cuddeford-Louis
models (Cuddeford & Louis 1995), as well as for the Plummer
models of Dejonghe (1987), the Hernquist models of Baes &
Dejonghe (2002), and the models we introduced in Baes &
van Hese (2007, hereafter Paper I). Their proof is based on
the fact that all these models are characterized by having a
separable augmented density (see Section 3). They also note
that currently no counterexamples of the GDSAI are known,
but remark that in the case of Cuddeford models with a central
anisotropy By > 1/2 the GDSAI is only a sufficient condition,
so that possible counterexamples could be found in this range
of values.

These results pose the question under which conditions the
GDSALI holds for all spherical systems. In this paper, we make
important advancements by providing a complete analysis of
the GDSALI for all well-behaved systems with a separable aug-
mented density. This group includes all aforementioned models,
as well as the hypervirial models of Evans & An (2005), the
y-models of Buyle et al. (2007), and the Dehnen—McLaughlin
systems discussed in Van Hese et al. (2009, hereafter Paper II),
among others. First, we show that the GDSAI holds for all sep-
arable systems, if By < 1/2, by proving an equivalent criterion
formulated by Ciotti & Morganti (2010b). In this manner, we
extend their previous results. Our analysis also reveals some
very peculiar properties of separable systems. Furthermore, we
show that counterexamples of the GDSAI do exist for separable

systems with By > 1/2; in other words, we demonstrate that the
GDSALI is not a universal property. However, the velocity dis-
tributions of these models are extreme, and all counterexamples
are very likely dynamically unstable.

First, we outline in Section 2 the general concepts of spherical
dynamical models. In Section 3, we describe the augmented
density framework. In Section 4, we give our analysis of the
GDSALI for separable systems: we prove the inequality for
models with By < 1/2, and we present three counterexamples
with By > 1/2. Finally, we discuss our results in Section 5.

2. SPHERICAL DYNAMICAL MODELS

The dynamical structure of a spherical gravitational equi-
librium system, governed by a positive potential ¥ (r), is com-
pletely determined by the non-negative phase-space DF F(7, V).
For spherical systems, this DF is a function F(E,L) of the isolat-
ing integrals, the binding energy E, and the angular momentum
L:

1 1
E=y()— v = 5v], M

L=rvr, 2)

vp = o2 402, 3)

the transverse velocity. From the DF, the velocity moments

with

Mo an(r) = 2 M / / F(E. L)v? 2" dv, dvy ()

can be obtained, with M being the total mass of the system. In
particular, the density and the second-order moments are
po7(r) = poa(r), (5)

p(r) = poo(r),  pof(r) = pao(r),

and a%(r) = 2002(;"). The density slope and the velocity
anisotropy profile are defined as

dlnp
dlnr

y(r)=— (r), (6)
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Spherical dynamical models satisfy the Jeans equation
dpo? 2 d
L)+ ‘3 D o2 = o)L, @®)
r dr
which can be written as
o (r) (y(r) = 2B(r) + 1 (r) = v2(r), ©)
with
k(r) = d Ino; e e = e o)
dr
Evidently, it follows that
y(r)—2B(r)+k(r) >0, Vr. (11)

Ciotti & Morganti (2010a, 2010b) showed that several sys-
tems (see the introduction) satisfy a stronger condition, the
GDSAI

y(r) —28(r) =0, vr, 12)

and they pose the question whether this condition holds for all
spherical systems. Naturally, the inequality is valid outside the
radius r, where y(r;) = 2. It is also valid at »r = 0, as was
proven by An & Evans (2006). In this paper, we will investigate
the GDSAI for a particular class of systems, namely, those with
a separable augmented density.

3. THE AUGMENTED DENSITY CONCEPT

A spherical dynamical system can also described by an aug-
mented velocity moment (Dejonghe 1986; Paper 1), which ex-
tends the moment to an explicit function fi, 2, (¥, r) of both the
radius and the gravitational potential. An augmented moment is
equivalent to the DF; the knowledge of one augmented moment
determines the entire system. In particular, we will consider the
augmented density p(i, r), and its relationship with the DF is
given by

v 2Yy—E) F(E,
oY, r) =2nM/ dE/ __FE.rvo) vZ,
0

20 — E) — 2
(13)

This integral equation can in principle be inverted to obtain
the DF by using Laplace—Mellin transforms, although in practice
the inversion is only numerically stable for sufficiently smooth
systems. The strength of the augmented density framework lies
in its direct connection to observable quantities like the velocity
moments. For instance, the augmented velocity dispersion
profiles are given by

&AW, r) =

12
0 /, d /, 14
ﬁ(w)/o S, Py dy (14)

~2 _ 2 v 2~/ /
or(y,r) = mfo De[r" p(y', mldy,  (15)

where D, denotes the derivative with respect to 7>. The observed
density and dispersions are then simply recovered from

p(r) = p(Y(r), r), (16)
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ol (r) = GXW(r), 1), (17)
07 (r) = 67 (Y(r), r), (18)
and the density slope is
_ dy
y(r) = ———w() )———( )_w“”() r. (19

As remarked in the Introduction, Ciotti & Morganti have
examined the GDSAI in several systems with a separable
augmented density, i.e., systems of the form

p,r) = f(y)gr), 0< ¥ <o, (20)
with ¥y = ¥(0). For such models, the dispersion profiles read
&) = — ' | SWhay @3}

F@) ’

ldlng

6%<w,r)=(1+— / Fhay. @2

2dlnr> fQ)

Note that the radial velocity dispersion is now only a function
of ¥. The velocity anisotropy profile of these systems has the
simple form

lding

" 2dIn

As we demonstrated in Paper I and Paper II, this property
provides a very elegant way to construct dynamical models
with a given potential, density, and velocity anisotropy. Indeed,
separable systems are completely determined by ¥ (r), p(r), and
B(r), since g(r) is defined by Equation (23) and, by inverting
Y (r), the function f (i) follows from

p(r(¥))
= vy 24
F@) 2 () (24)

However, one still needs to verify whether the corresponding
DF is non-negative everywhere. Equation (19) now reduces to

B(r) =

(). (23)

_ dlng = dlny dlnf
yin = dlnr(r) dlnr(r)dlnw

W), (25)

so that we obtain

df I0)
2y VO =505

In other words, as remarked by Ciotti & Morganti, the GDSAI

(y(r) =2B(r)). (26)

y(r) = 2B(r), vr 20, 27)

is for separable systems equivalent to the statement
daf
dy

The question thus becomes whether this inequality is valid
for all separable systems. In the following section, we will prove
that this is indeed the case, if By < 1/2.

>0, VO < ¥ <o (28)
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4. ANALYSIS OF THE GDSAI FOR
SEPARABLE SYSTEMS

Following the reasoning of An & Evans (2006), we assume
that any well-behaved DF can be written in the form

F(E,L)= L™ (Fy(E)+ F\(E, L)), (29)

with
FI(E,00=0, VO<KE <. 30)

The function L~=2% Fy(E) in this Ansatz can be understood
as the leading term of a Laurent series expansion in L at
L = 0. Toward the center » — 0, the DF is dominated by this
term, which has the form of a system with constant anisotropy.
Consequently, the central anisotropy of the entire model indeed
corresponds with fy. Since the DF has to be non-negative
everywhere, it follows immediately that Fo(E) > 0 VE is a
necessary condition to obtain a physically meaningful DF.

If we consider separable systems, the corresponding aug-
mented density then has the form

P, r) = f@)r (1 +g(r), with g(0)=0. (31

Using u?> = 1// 5 the relation between the augmented
density and the DF (13) can be written as

u=—2bo
m
x / W — E)\>h(Fy(E)
+ Ff (E.ru\/2(y — E)))dE. (32)

In separable systems, it follows that

o, 1)
gr)

oW, r) =21 2% ﬂOr—Zf‘OM/

f) = (33)

Since the left-hand side of this equation is independent of the
radius r, the right-hand side does not depend on r either. The
equality is therefore valid for all values r; in particular, we can
take the limit of » toward the center,

p(l/f r)
_1 =1
f@) 0 = lim

rPpy, r). (34)

This property is the key element to prove the GDSAI when
Bo < 1/2: using Equations (30) and (34), it follows from
Equation (32) that

F(l - ,30) /lp 1/2—8
- —F ° Fo(E) dE.
TG/2= Bo) )o (Y —E) o(E)

(35)

Remarkably, the function f(i) thus only depends on Fy(E)
and By. In other words, for separable systems the function
F|(E, L) has no influence on the GDSAI. Concrete examples of
this behavior are furnished in the systems considered by Ciotti &
Morganti. For instance, the equivalent function B(ir) in Ciotti
& Morganti (2010b) for generalized Cuddeford systems does
not depend on the anisotropy radius r, (see their Equation (13)).

The value of By splits our further analysis into three cases:
Bo<1/2,By=1/2,and By > 1/2.

f) =)y ?2Pm
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4.1. Proof for By < 1/2
If By < 1/2, the derivative of f (1) becomes

Y py=@uyraty LLF

dyr [G3/2—po) £
1 e
. (5 _,30)/ (f — By h FO(E)dE:|. (36)
0

[ m(y — E)'2~PFy(E)

Let us examine the first term inside the brackets: if

blirrll// (Y — E)'/>7Po Fy(E) > 0, (37)

then
lim ( — E)”Y>P Fy(E) ~ lim (¢ — E)™* witha > 1,
E—y E—>vy

(38)
so that

v
f (Y — E)~127P Fy(E)dE = +00. (39)
0
In other words, if the limit is nonzero, then the integral in

the second term becomes infinite. The limit can therefore be
omitted, so that the equation is simplified to

df v2ogo s T(L— fo)
—_ 2 27POM ———
ay) =01 T(1/2 — fo)
X /V/ ﬂ dE >0 40)
o (W= E)h T

and recalling Equation (26), the GDSALI is proven. The above
relation can be generalized further: if n = |3/2 — By] and
a = 3/2 — By — n are the integer floor and fractional part of
3/2 — By, then

k
f 3/2~7—Bo ra-— ,30)
apr ) = M e =B

¥
X / (Y —E)/*PRE(E)>0, 0<k
0

N

n,
4D
so the inequalities
dr f
dyrk

are necessary conditions to obtain a separable system with a
non-negative DF. This extends the results obtained by Ciotti &
Morganti (2010a) for multi-component Cuddeford models.

— W) = VOS¢ <o, O0<k<n,  (42)

4.2. Proof for By = 1/2
When By = 1/2, Equation (35) reduces to

14
f) =21*M f Fo(E)dE. (43)
0
The derivative is then simply
d
—{Nf) =21°M Fo(y) > 0, (44)

so evidently, the GDSALI is again a necessary condition for a
physical dynamical model.
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4.3. Counterexamples for By > 1/2

The proof is not applicable to systems with Sy > 1/2. Indeed,
the derivative has the same form as Equation (45), but now the
two terms inside the brackets are, respectively, +0o0 and —oo
when Fy(E) > 0, so their sum is undetermined. However, we
can rewrite Equation (35) using integration by parts as

o T = By) _
_ 3/2~—po 3/2—po
f() = @)% Mr(S/z— ﬁo)[vf Fy(0)
¥
+ / (¢ — E)/* P Fé(E)dE], (45)
0

where Fj(E) denotes the derivative of Fo(E). After differentia-
tion, we then obtain

Uy = ryraim PO

dyr I'(3/2 — o)
v
+ / (¢ — E)!/2h F(;(E)dE]. (46)
0

[w“”o Fo(0)

Thus, separable systems with a monotonically increasing
Fy(E) (ie., Fj(E) > 0 VE) satisfy the GDSAI. Again, this is
an extension of the results for generalized Cuddeford systems
found by Ciotti & Morganti (2010b).

Yet, the GDSALI is no longer a necessary condition for a
physical model, which raises the question whether systems can
be found for which the global inequality does not hold. To this
aim, we consider the potential-density pair

GMtOt

= , 47
VO = T @7
(r) M 1 (48)

r)=— ———,

P = % P32 (1 oy

with corresponding density slope
3/2+7/2r

= 49
y(r) I r (49)

which is part of the family of Veltmann models or «-models
(Veltmann 1979; Zhao 1996), and was discussed by Moore et al.
(1998). If Mx = M, then the system is also self-consistent. For
this pair, we construct physical DFs that generate four-parameter
anisotropy profiles of the form

Bo + Boo(r/ 1)

PO =

, (50)

with 0 < § < 1, so that
r —2Bo 728 Bs
P, r) = f(¥) —) <1+3 , (51)
Ia

,382 /80_5,300-

Again, our systems have separable augmented densities.
For every anisotropy profile, the function f () follows from
p(r) = p(¥(r),r), and the DF can be found by inverting
Equation (13). Instead of performing these calculations directly,

with
(52)
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we adopt the technique used in Paper II; we first generate a
family of components of the form

N v\ ( wsi>4i (r)2ﬂo ( r26>/35
i , V) = poi | — 1— 5 — 1+ — s
pi(Yr, r) = po <%> 5 Py 2
(53)
where p;, g;, and s; are three parameters, and pg; are normaliza-
tion constants. The corresponding DFs are (see Paper I; Paper II)

— P0i i (4 E Pt
A D)= Sy 2V () &)

Xi(ﬁs) T(1+pi+jsi)
k)T —Bo+k$)T (pi + jsi — 5+ Bo — k)

k=0

L2 —Bo+kd
= 54
><<me> od

for L? < ZraZE, and

00i 00 (qi E O\ Pitisi—3/2
. = —l - j l W

° ﬂ5 F(l +pi + jS,')
‘3 .
=\ k) T(1— Boo — kST (pi + jsi — % + Boo +k9)
12N Pk
L 55
X<%ﬁ> >

for L> > 2r2E. With different values of the parameters, a
library of base functions is thus created, from which a linear
combination is built that fits the given density p(r) at various
radii. This is achieved by minimizing the quantity

1 Naata N 2
Xlz\’ - Nyata ; o) (,O(rm) - ;aipi(rm)> s (56)

using a quadratic programming algorithm (Dejonghe 1989). The
details of this procedure can be found in Paper II. In particular,
we created models with N = 12 components, fitting 25 density
data points extracted from Equation (48).

With this technique, we obtain several dynamical models
with non-negative DFs that violate the GDSAI; three of them
are shown in Figure 1. All three share the anisotropy parameters
Bo = 0.75, Boo = 1, and r, = 0.02 but have different values
for §: 0.3, 0.6, and 1.0, respectively; note that the latter is a
Cuddeford-type model. For the model with § = 0.3, we find
that y(r) < 28(r) for radii in the interval [0, 0.021], with a
minimum around » = 0.0057 (note that the center is a local
maximum, for which yy = 28). In the model with 6 = 0.6,
the y—p relation reaches a local maximum around r = 0.0028,
and the GDSAI does not hold in the interval [0.019, 0.061],
with a minimum around » = 0.036. Finally the largest y—p
fluctuations occur in the Cuddeford model (§ = 1), with a local
maximum around r = 0.0054, and a GDSAI violation within
[0.019, 0.100], with a minimum for » = 0.044.

Evidently, we require rather extreme parameter values to ob-
tain these (modest) violations, while maintaining non-negative
DFs. The central anisotropy Sy has to be high, and the profile
B(r) has to increase very rapidly. It is therefore safe to assume
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Figure 1. Three models for which the GDSAI does not hold: § = 0.3 (solid line), § = 0.6 (dashed line), and § = 1.0 (dotted line). In the first panel, the density data

points are also displayed.

that the self-consistent variants of these models are dynami-
cally unstable. This can be seen from the standard criterion for
radial-orbit instability: 27, / Ty = 2(v,)/{vr) = 5.45, 8.26, and
10.42 for the three models, which is much higher than the >~ 2
threshold for similar models (see Merritt 1999 for an overview).
Further evidence of dynamical instability is given by the radial
velocity distributions

20 ) —v?

F,(r)= 271M/ F(E, L)vrdvr. (57)
0

As shown in the bottom row of Figure 1, these profiles have
two or three peaks at small radii. These are indications of Hénon
instabilities (see Merritt 1999; Barnes et al. 1986). In theory,
if the systems are instead not self-consistent but embedded
in a massive dark matter halo, they might withstand these
instabilities; however, one can safely argue that such equilibrium
systems are too extreme to arise in structure formation.

4.4. The Inverse Relation

Finally, we remark that the function Fy(E) can be derived
from f(y) by means of an Abel-related inversion (Cuddeford
1991; An & Evans 2006), which holds for all values of 8y < 1,

280

(27)32MT(1 — a)I'(1 — Bo)

(/E dn+lf dlﬁ
X +
o dy"(E —y)*

Fo(E) =

1 df
E® dy"

(0)> . (58)

where again n = |3/2 — Bo] and @« = 3/2 — By — n are the
integer floor and fractional part of 3/2 — . Thus, the additional
condition

dn+1
—f(llf) =0,

dy VO <y <o,

(59)
is sufficient to obtain a non-negative Fy(E). As Ciotti &
Morganti (2010a) showed, this also implies that the entire DF
F(E, L) is non-negative in the case of generalized Cuddeford
systems. However, it is not a priori clear whether this prop-
erty is true for all separable systems, since the behavior of
Fi(E, L) might still lead to negative values of the DF. Further
study is therefore needed to determine if Equation (59) is a
sufficient condition for the existence of a physical separable
model.

5. DISCUSSION

In the previous section, we presented a full analysis of
the GDSALI for spherical dynamical systems with a separable
augmented density. As our proof shows, the GDSAI holds if the
central velocity anisotropy Sy < 1/2. We further demonstrated
that for systems with Sy > 1/2, the GDSAI can be broken, as
shown by three counterexamples, although these systems are
not physically realistic.

Equations (40) and (44), combined with Equation (26), also
reveal a remarkable property of separable systems: the GDSAI
is purely determined by By and Fy(E). The function Fy(E)
can be interpreted in various ways: it can be thought of as the
phase-space distribution of particles at purely radial orbits, as
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the phase-space distribution of particles at the center, or as the
energy distribution of the constant-anisotropy component of the
DF. As a surprising consequence, if a separable system has a
given potential 1 (r) and density p(r), then knowledge of Fy(E)
alone is sufficient to construct the complete DF of the system.
Indeed, we showed that Fy(E) is equivalent with f (i), and in
combination with p(r), the function g(r) = p(r)/f(¥(r)) can
also be derived, determining the augmented density f(y) g(r)
and thus F(E, L).

The next logical step will be to investigate the GDSAI for
general, non-separable spherical models. One possible approach
would be to consider a spherical system as a linear combination
of separable systems. In fact, an analytic p(y, r) or F(E, L) can
be written as a double sum of power-law functions, by means
of a two-dimensional Laurent series expansion. An alternative
approach would be to ask the following question: given a
spherical dynamical system with a given ¥ (r) and a DF that
generates p(r) and B(r), does there always exist a separable
model with a non-negative DF that generates the same density
and anisotropy? As we mentioned in Section 3, the function
g(r) follows directly from B(r), and in turn this determines
f () from g(r) and p(r). However, there is no a priori reason
that the corresponding DF is also non-negative. If it is, the same
GDSALI analysis applies as presented in this paper. We currently
do not know of any (p(r), B(r)) pair that can only be generated
by non-separable models, but more study is required to resolve
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these questions. We think that our analysis of separable systems
can be a useful stepping stone for further investigations of the
GDSALI for spherical dynamical systems.

The authors thank the referee Luca Ciotti for the generous
comments and helpful suggestions that improved our paper.
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