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Abstract

Background: Measuring messenger RNA (mRNA) levels using the reverse transcription quantitative polymerase chain
reaction (RT-qPCR) is common practice in many laboratories. A specific set of mRNAs as internal control reference genes is
considered as the preferred strategy to normalize RT-qPCR data. Proper selection of reference genes is a critical issue,
especially in cancer cells that are subjected to different in vitro manipulations. These manipulations may result in dramatic
alterations in gene expression levels, even of assumed reference genes. In this study, we evaluated the expression levels of
11 commonly used reference genes as internal controls for normalization of 19 experiments that include neuroblastoma, T-
ALL, melanoma, breast cancer, non small cell lung cancer (NSCL), acute myeloid leukemia (AML), prostate cancer, colorectal
cancer, and cervical cancer cell lines subjected to various perturbations.

Results: The geNorm algorithm in the software package qbase+ was used to rank the candidate reference genes according
to their expression stability. We observed that the stability of most of the candidate reference genes varies greatly in
perturbation experiments. Expressed Alu repeats show relatively stable expression regardless of experimental condition.
These Alu repeats are ranked among the best reference assays in all perturbation experiments and display acceptable
average expression stability values (M,0.5).

Conclusions: We propose the use of Alu repeats as a reference assay when performing cancer cell perturbation
experiments.
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Background

Reverse transcription quantitative polymerase chain reaction

(RT-qPCR) has proven to be a reliable method to quantify gene

expression. Correct normalization is a critical issue for accurate

interpretation of RT-qPCR results. This can be achieved using

several strategies such as ensuring similar numbers of cells, similar

amounts of input RNA, applying internal control reference genes

like ribosomal RNAs (rRNAs) or messenger RNAs (mRNAs), or

merging multiple strategies in one protocol [1,2].

The use of mRNAs as internal control reference genes for

normalizing RT-qPCR data is being applied widely [2–6].

However, this strategy should be carried out carefully as its

accuracy depends directly on the expression stability of the

selected reference genes. According to the Minimum Information

for Publication of Quantitative Real-Time PCR Experiments

(MIQE guidelines) [7], it is no longer accepted to consider that

certain reference genes are stable by convention. Our group has

previously reported a strategy for accurate normalization of RT-

qPCR data based on geometric averaging of multiple stably

expressed internal control genes [4]. In this study, we show that

the choice of reliable internal controls is of particular importance

in experiments that involve perturbation of cancer cells. Treating

cancer cells with therapeutic agents or RNAi-mediating siRNA or

shRNA molecules induces dramatic changes in the expression

levels of many genes including commonly used reference genes.

This phenomenon is due to (non-specific) off-target effects that are

encountered upon delivery of such molecules [8], or indirect

regulation after treatment. Therefore, we evaluated the expression

of commonly used reference genes and expressed Alu repeats as

internal controls for normalization in experiments that include

perturbed cancer cell lines. Alu repeats are found in the

untranslated regions of several thousands of known protein coding

genes, and they have been reported to be useful as a single

normalization factor for RT-qPCR reactions [9].
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Results

Cancer Cell Perturbation Experiments
Treatment with nutlin-3. Nutlin-3 is a small molecule that

can specifically inhibit the p53-MDM2 interaction, which results

in activation and stabilization of p53 [1,2,10]. Treatment with

nutlin-3 induces apoptosis (Figure 1A), cell cycle arrest, differen-

tiation, or senescence in neuroblastoma cells with wild-type TP53

[2–6,11].

Treatment with ATRA. All-trans retinoic acid (ATRA) is a

small lipophilic molecule [7,12] that inhibits proliferation and

induces differentiation of neuroblastoma cells [4,13–15]. We

treated CLB-GA and NGP cells with 0 or 5 mM ATRA for one

and five days, and observed that ATRA induces the outgrowth of

neurites (Figure 1B).

Treatment with withaferin-A. Withaferin-A is a steroidal

lactone purified from the medicinal plant Withania somnifera. This

compound induces apoptosis in neuroblastoma cells and is an anti-

angiogenic agent [8,16]. We treated SK-N-SH and IMR-32

neuroblastoma cells with withaferin-A and observed reduced cell

viability in a dose and time dependent manner (Figure 1C). We

then treated SK-N-SH and IMR-32 cells with 0 or 1 mM
withaferin-A for one day to evaluate the stability of the reference

genes.

Treatment of neuroblastoma cell lines with TAE-

684. TAE-684 is a small molecule inhibitor of activated

anaplastic lymphoma kinase (ALK) [9,17] and reduces cell

viability of ALK mutated neuroblastoma cells [18]. After treating

SK-N-SH and CLB-GA cells with TAE-684, we observed reduced

cell viability in a dose and time dependent manner (Figure 1D).

Figure 1. Various treatments of neuroblastoma cells. (A), nutlin-3 treated NGP cells, 16 mM (right) and vehicle control (left). (B), ATRA treated
NGP cells with elongated neurites (right) and vehicle control (left). (C), cell viability assay of IMR-32 and SK-N-SH cells after treatment with increasing
concentrations of withaferin-A for 24 hours. Error bars, SD (n = 3). (D), cell viability assay after treatment of CLB-GA and SK-N-SH cells with increasing
concentrations of TAE-684 for 24 hours. Error bars, SD (n = 3). (E), RT-qPCR expression data of PTK9 in SH-EP, SK-N-SH, SH-SY5Y and SK-N-BE(2c) after
transfection with miR-1 mimic or scrambled miRNA mimic serving as a negative control (NC). Error bars, SEM (n= 2). (F), RT-qPCR expression data of T-
UCR uc. 73 (left) and T-UCR uc.460 (right) 24 hours after transfection of SH-EP cells with siRNA against T-UCR uc. 73 and siRNA against T-UCR uc. 460
respectively. Errors bars, SEM (n = 2).
doi:10.1371/journal.pone.0071776.g001
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We then treated these 2 cell lines with 0, 0.1, 0.3 and 1 mM TAE-

684 for 3, 6, 12, 24, and 48 hours to evaluate the stability of the

reference genes.

Treatment of a NSCLC cell line with TAE-684. H3122 is a

NSCLC cell line with an EML4-ALK fusion gene that was treated

with TAE-684 in the same manner as described above.

Transient transfections of neuroblastoma cell lines with

miR-1 mimic. MiR-1 targets the 39-UTR of the PTK9 mRNA

leading to PTK9 degradation [19]. MiR-1 is often used as a

positive control in experiments with miRNA mimic transfections

to evaluate target gene mRNA down regulation by qPCR. We

performed transient transfections of SK-N-BE(2c), SK-N-SH, SH-

EP, and SH-SY5Y neuroblastoma cells with miR-1 mimic,

negative control (a scrambled miRNA mimic), or mock transfec-

tion for 24 hours (Figure 1E).

Transient transfections of SH-EP cells with siRNAs

against transcribed ultraconserved regions. We transfected

SH-EP cells with siRNA against both strands of T-UCR uc.460,

and an siRNA against the negative strand of T-UCR uc.73.The

knockdown efficiency is shown in Figure 1F. More details about

the experimental design are found in File S1.

Transient transfection of leukemia cell lines with miR-

223 mimic. MiR-223 was found to be highly expressed in T-cell

acute lymphoblastic leukemia (T-ALL) [20]. However, three T-

ALL cell lines, HPB-ALL, ALL-SIL and TALL-1 presented with a

low miR-223 level. We expected that overexpression of oncogenic

miR-223 in these cell lines would increase the proliferative

capacity of the cells and prove the oncogenic potential of this

miRNA (data not shown).

Optimization of concentration of PHF6-targeting siRNA in

T-ALL cell lines. We transfected PHF6 wild-type T-ALL cell

line JURKAT and evaluated the knockdown efficiency on mRNA

level (Figure 2). Next, we transiently transfected the HSB-2 and

PF-382 T-ALL cell lines (both PHF6 wild-type) with PHF6-

targeting siRNA. Significant PHF6 knock down was confirmed by

qPCR (shown in Figure 2). More details about the experimental

design are found in File S1.

Transient transfection of a melanoma cell line with

siRNA against cyclophilin-B. WM9 is a melanoma cell line

that was transiently transfected with 20 nM and 50 nM siRNA

against cyclophilin-B (PPIB), or a scrambled negative control

siRNA.

Treatment of breast cancer, AML, prostate cancer,

colorectal cancer and neuroblastoma cell lines with

JQ1. JQ1 is a small molecule compound that inhibits a

bromodomain protein called BRD4. Targetting of this oncogene

leads to growth inhibition of cancer cell lines. One known

mechanism is through downregulation of MYCN. We treated two

breast cancer cell lines (MCF-7 and SKBR3), one AML cell line

(K562), one prostate cancer cell line (PC-3), one colorectal cancer

cell line (SW-620) and one neuroblastoma cell line (SJNB-12) with

1 mM JQ1 for 24 and 48 hours.

MCF-7 and HeLa Transcriptome PCR Arrays
We used commercially available ready-to-use cDNA plates from

MCF7 (breast cancer cell line) and HeLa (cervical cancer cell line).

Each cDNA sample has been synthesized from RNA extracted

from a cell line that had been exposed to one of 90 different

chemical inhibitors. These chemical inhibitors target a wide range

of different pathways resulting in various perturbations of a two

widely used cancer cell lines. The chemical inhibitors and the

genes they target are listed in Table S1.

Alu Repeats are the most Stably Expressed Reference
Sequence
mRNA levels of 11 candidate reference assays were measured in

all above described experiments and the average expression

stability was calculated using the geNorm algorithm. GeNorm

ranks the reference genes according to their stability value

(referred to as the M-value) and calculates the optimal number

of genes to be used for normalization in a given experiment using

the V-value (Figure S1). The M-values can be used to rank the

genes from the least to the most stable one [4].

In 13 of the 19 perturbation experiments performed, Alu

repeats (Alu-Sq) were ranked among the three most stable

reference assays (Figure 3). This observation prompted us to

further analyze the potential value of Alu repeats as stable

reference candidates.

A rank aggregation method based on voting theory (Borda

count) was used to combine the 19 ranked lists of reference

candidates [21]. This method tries to find an ordered list of

reference assays as close as possible to all individual ordered lists by

calculating the weighted Spearman’s footrule distance, and using a

cross-entropy Monte Carlo algorithm or genetic algorithm [21].

Figure 2. RT-qPCR expression data of PHF6 in T-ALL cell line. JURKAT cell line after transfection of PHF6-targeting siRNA or scrambled siRNA
(negative control: NC). Error bars, SEM (n= 2).
doi:10.1371/journal.pone.0071776.g002
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The analysis of the 19 full gene lists, generated by the 19 different

experiments, resulted in Alu repeats ranked at the first position

(Figure 4). This confirmed that Alu repeats represent the most

stable reference assay across all data sets.

Discussion

RT-qPCR is the most commonly used method to quantify gene

expression and accurate normalization is required to interpret the

RT-qPCR data correctly. Normalization using endogenous

control genes is a widely used method to correct for the technical

variations that occur during RT-qPCR reactions. Until recently, a

single non-validated reference gene has routinely been used as an

internal control. We have previously reported that this strategy can

lead to incorrect data with an error up to 3-fold in 25% of the

cases [4]. Using multiple reference genes as internal controls for

normalizing RT-qPCR data as well as using the appropriate

reference genes for specific experimental purposes has already

been strongly advocated in literature [2,22]. Validating the stable

expression of reference genes is an important issue in every single

experimental procedure since cell manipulations such as treatment

with therapeutic compounds can dramatically influence their

expression.

In this study, we emphasize on the fact that proper selection of

the reference genes is important for interpretation of RT-qPCR

data and demonstrate that Alu repeats represent the most stable

reference assay in a wide range of experimental conditions in eight

different cancer types.

We selected 11 reference genes that are widely used in literature

and that belong to different functional classes to avoid co-

regulation. We selected structure related genes (ACTB, RPL13A),

metabolism related genes (HPRT, GAPDH), and transcription

related genes (TBP). The rest of the genes are not categorized

specifically in one functional class. We also included expressed Alu

repeats, which are abundantly interspersed throughout the

genome. A commonly used normalization factor for RT-qPCR

experiments in literature is 18S rRNA. The rRNA constitutes

more than 90% of total RNA, and this fact led many researchers

to use 18S rRNA as a control for normalization of gene expression

data. However, it has been shown that equal fractions of rRNA do

not necessarily ensure equal fractions of mRNA [23]. This concern

is even of greater importance in cancer cell perturbation

experiments as these perturbations may lead to differential

expression of RNA polymerase I and/or II, or differential

degradation of the two RNA populations [24], and consequently

may result in further imbalances in the rRNA/mRNA ratio. In

addition, the high amount of rRNA as compared to mRNA makes

it difficult to subtract the background fluorescence in data analysis

of RT-qPCR data [4]. Due to these reasons, using 18S rRNA as a

control in RT-qPCR experiments could lead to false interpretation

of gene expression data. We have therefore not evaluated 18S

rRNA in our study.

RT-qPCR was performed for the 11 reference assays in 21

cancer cell lines derived from 9 different cancer entities using

SYBR green technology. The cell lines were exposed to harsh

treatment conditions, generating 19 different datasets with a total

of 418 samples. The cells were treated with various chemical

inhibitors including pro-apoptotic compounds and, differentiation-

inducing agents, or transfected with miRNA mimics or siRNAs.

Using geNorm [4] implemented in qbase+ [1], we calculated the

stability value or M-value. The M-value is the average pairwise

variation (standard deviation) of the log-transformed ratios of

expression levels of paired candidate reference genes. This value

not only allowed us to rank the reference genes in terms of their

stability, but also to compare the stability of these reference genes

across different experimental conditions. M-values and the

Figure 3. Average expression stability values of the reference genes. X-axis shows the ranking of reference genes, and Y-axis shows geNorm
M-values. (A), nutlin-3 treated neuroblastoma cells. (B), ATRA treated neuroblastoma cells. (C), withaferin A treated neuroblastoma cells. (D), TAE-684
treated neuroblastoma cells. (E), neuroblastoma cells transfected with siRNAs against T-UCRs. (F), neuroblastoma cells transfected with miR-1 mimic.
(G), T-ALL cell lines (HPB-ALL, ALL-SIL, and TALL-1) transfected with miR-223 mimic or negative control miR mimic. (H), T-ALL cell line JURKAT
transfected with PHF6-targeting siRNA or negative control siRNA. (I), T-ALL cell lines (HSB-2 and PF-382) transfected with PHF6-targeting siRNA or
negative control siRNA. (J), NSCL cell line (H3122) treated with crizotinib. (K), melanoma cell line (WM-9) transfected with siRNA against Cyclophilin-B.
(L), AML cell line (K562) treated with JQ1. (M), breast cancer cell line (MCF-7) treated with JQ1. (N), breast cancer cell line (SKBR-3) treated with JQ1.
(O), prostate cancer cell line (PC-3) treated with JQ1. (P), colorectal cell line (SW-620) treated with JQ1. (Q), neuroblastoma cell line (SJNB-12) treated
with JQ1. (R), MCF-7 treated with 90 different chemical inhibitors. (S), cervical cancer cell line (HeLa) treated with 90 different chemical inhibitors.
doi:10.1371/journal.pone.0071776.g003

Figure 4. Rank aggregation analysis. Rank aggregation result using the cross entropy algorithm with spearman’s foot-rule weighted distance
which shows a consensus order of reference genes from the most stable to the least stable.
doi:10.1371/journal.pone.0071776.g004
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rankings of the reference genes in all data sets are shown in

Table 1. M-values lower than 0.5 are classified as good values [1].

Dispersion of M-values of every gene among all experiments are

shown as a box plot in Figure S2.

After calculating the M-values and ranking the reference genes,

we noticed that Alu repeats are ranked among the most stable

reference genes in the vast majority of the datasets and generally

have low M-values. We then applied a rank aggregation strategy

[3] to determine the optimal ranking of the reference genes across

all 19 data sets. This analysis confirmed that Alu repeats represent

the most stable reference assay with acceptable M-values. All our

gene expression measurements were done using SYBR green.

Different technologies are currently available, and several studies

have performed comparisons between the different platforms used

[25]. Results have shown that SYBR green is in very good

concordance with the widely used TaqMan gene expression

assays. In the current study, we have used cell lines that give a

good yield of RNA and perfect quality (tested using the Experion

system from Bio-Rad). We believe that using such high quality

RNA material and such abundant reference genes will generate

reproducible results regardless of the platform being used. Our

results strongly emphasize the importance of proper selection of

reference genes for different experimental setups. In addition, we

showed that Alu repeats can serve as a stable reference in most of

the experimental conditions.

Conclusions
The reliability of RT-qPCR data is based on the accurate

normalization of the generated data using internal reference genes.

The stability and suitability of putative endogenous control genes

is a necessity for accurate normalization and for correct

interpretation of gene expression data. In this study, we report

that, among 11 commonly used reference genes, Alu repeats are

the most stable reference sequence in cell lines from 9 different

cancer types that were subjected to different perturbation

experiments. We therefore recommend to include Alu repeats as

a first candidate for normalization of RT-qPCR data.

Materials and Methods

Selection of the Reference Genes
The selection of the internal control genes evaluated in this

study (Table 1) is based on a previous study published by our

group [2,4–6]. These genes are commonly used as reference genes

in literature and belong to different pathways to avoid co-

regulation of these genes upon different treatment conditions. We

expanded this selection to include expressed Alu repeats.

Cell Lines and Culturing of Cells
The cells used are established cell lines from 9 tumour types,

neuroblastoma, T-ALL, melanoma, breast cancer, acute myeloid

leukemia, prostate cancer, colorectal cancer, non-small-cell lung

Table 1. M-values for the candidate reference genes under different treatment conditions.

S 0.68 1.15 0.86 0.61 0.77 0.63 1.22 0.62 1.01 0.94 1.08

R 0.75 0.90 0.59 1.18 0.81 0.54 0.86 0.53 0.98 0.93 1.06

Q 0.16 0.47 0.27 0.14 0.14 0.21 0.18 0.23 0.25 0.28 0.30

P 0.05 0.22 0.12 0.07 0.04 0.04 0.06 0.15 0.10 0.26 0.17

O 0.38 0.33 0.40 0.11 0.12 0.16 0.36 0.21 0.26 0.30 0.13

N 0.14 0.41 0.46 0.33 0.30 0.13 0.13 0.43 0.36 0.51 0.39

M 0.06 0.26 0.25 0.14 0.08 0.11 0.08 0.29 0.18 0.23 0.21

L 0.14 0.38 0.32 0.12 0.08 0.20 0.09 0.10 0.25 0.45 0.28

K 0.08 0.14 0.12 0.08 0.08 0.10 0.13 0.10 0.17 0.12 0.11

J 0.22 0.34 0.38 0.27 0.26 0.46 0.22 0.51 0.28 0.41 0.54

I 0.62 0.64 0.75 0.98 0.59 0.63 0.55 0.82 0.67 0.57 1.35

H 0.15 0.15 0.16 0.19 0.41 0.31 0.29 0.22 0.27 0.33 0.21

G 0.59 0.80 0.61 0.56 1.10 0.88 0.83 0.99 1.98 1.42 1.66

F 0.33 0.32 0.32 0.45 0.56 0.65 0.39 0.84 1.29 1.48 1.07

E 0.48 0.58 0.77 1.11 0.46 0.47 0.54 0.85 0.64 1.35 0.90

D 0.42 0.28 0.52 0.27 0.30 0.34 0.65 0.70 0.29 0.58 0.48

C 0.37 0.34 0.65 0.38 0.41 0.70 1.04 0.61 0.77 0.52 0.84

B 0.47 0.50 0.29 0.39 0.63 0.56 0.53 0.28 0.45 0.31 0.88

A 0.61 0.60 0.93 0.69 0.64 0.61 0.79 1.11 0.87 0.99 1.20

Alu-Sq TBP HPRT1 YWHAZ GAPDH SDHA HMBS B2M UBC ACTB RPL13A

This table shows the 19 ordered lists of 11 reference candidates with their corresponding M-values. These M-values were used to rank the 11 reference candidates
within each ordered list (in columns).
(A), nutlin-3 treated neuroblastoma cells. (B), ATRA treated neuroblastoma cells. (C), withaferin A treated neuroblastoma cells. (D), TAE-684 treated neuroblastoma cells.
(E), neuroblastoma cells transfected with siRNAs against T-UCRs. (F), neuroblastoma cells transfected with miR-1 mimic. (G), T-ALL cell lines (HPB-ALL, ALL-SIL, and TALL-
1) transfected with miR-223 mimic or negative control miRNA mimic. (H), T-ALL cell line JURKAT transfected with PHF6-targeting siRNA or negative control siRNA. (I), T-
ALL cell lines (HSB-2 and PF-382) transfected with PHF6-targeting siRNA or negative control siRNA. (J), NSCL cell line (H3122) treated with crizotinib. (K), melanoma cell
line (WM-9) transfected with siRNA against cyclophilin-B. (L), AML cell line (K562) treated with JQ1. (M), breast cancer cell line (MCF-7) treated with JQ1. (N), breast
cancer cell line (SKBR-3) treated with JQ1. (O), prostate cancer cell line (PC-3) treated with JQ1. (P), colorectal cancer cell line (SW-620) treated with JQ1. (Q),
neuroblastoma cell line (SJNB-12) treated with JQ1. (R), MCF-7 cells treated with 90 different chemical inhibitors. (S), cervical cancer cell line (HeLa) treated with 90
different chemical inhibitors.
doi:10.1371/journal.pone.0071776.t001
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cancer, and cervical cancer. Details about culturing of the cell

lines, and their source are mentioned in File S2.

Drug Treatment and Cell Viability Assessment
Cells were treated with 16 mM nutlin-3 (Cayman Chemical,

USA) or vehicle control (ethanol) for 1 and 5 days, 16 mM ATRA

(Sigma-Aldrich, Belgium) or vehicle control (DMSO), 1 mM
withaferin-A or vehicle control (ethanol), 0.1 mM, 0.3 mM or

1 mM TAE-684 (Novartis, Switzerland) or vehicle control

(DMSO), 1 mM JQ1 (Cayman Chemical, USA) or vehicle control

(DMSO) for the aforementioned time points. Cell viability was

measured using CellTiter-Glo (Promega, Belgium) a luminscent

ATP-based assay.

Transfection with siRNAs and miRNA Mimics
SK-N-BE(2c), SK-N-SH, SH-EP, and SH-SY5Y cells were

transfected with a miR-1 mimic using Dharmafect-2 (Dharmacon,

United Kingdom) according to the manufacturer’s instructions. In

short, 500.000 cells were seeded in 6-well plates in antibiotics free

medium and supplied with 10% fetal calf serum. 24 hours later,

cells were transfected using a final concentration of 100 nM of

miR-1 mimic and 0.2% of Dharmafect-2. The cells were then

harvested after 48 hours.

SH-EP cells were transfected with siRNAs against T-UCRs

(uc.73 and uc.460) using Dharmafect-2 according to the instruc-

tions of the manufacturer. In short, 100.000 cells were cultured as

described above and transfected using a final concentration of

50 nM siRNAs and 0.2% Dharmafect-2. The cells were harvested

after 15, 24, 48 and 72 hours.

The T-ALL cell lines were electroporated at 250 V and

1000 mF (exponential decay pulse) (Genepulser II; Bio-Rad,

Hercules, CA, USA) with 400 nM, 100 nM, 25 nM and 10 nM

of PHF6-targeting siRNA (ON-TARGETplus SMARTpool;

Dharmacon, Lafayette, CO, USA) for JURKAT cells and with

400 nM PHF6-targeting siRNA for HSB-2 and PF-382. ALL-SIL,

T-ALL-1, and HPB-ALL were electroporated with 600 nM of

miR-223 mimic. As a control, we electroporated the cells with

similar concentrations of a scrambled siRNA (ON-TARGETplus

Non-targeting Pool; Dharmacon, Lafayette, CO, USA) or without

any siRNA. We harvested HSB- 2, PF-382, ALL-SIL, T-ALL-1,

and HPB-ALL cells 1, 24, 48, 72, and 96 hours post-electropo-

ration and JURKAT cells after 48 hours.

WM-9 cells were transfected with 20 nM, and 50 nM of siRNA

pool against PPIB or scrambled siRNA (ON-TARGETplus Non-

targeting Pool; Dharmacon, Lafayette, CO, USA).

The list of the chemical inhibitors used by Qiagen to treat

MCF-7 and HeLa cells and their list of target genes are listed in

Table S1.

RT-qPCR
Extraction of total RNA, DNase treatment, cDNA synthesis,

and SYBR Green I RT-qPCR from perturbed cells were carried

out as described previously [4,7]. The ready-to-use cDNA plates of

MCF-7 and HeLa were ordered from Qiagen, Netherlands. The

following primer sequences are available in the RTPrimerDB

database (http://www.rtprimerdb.org) [4,26]: ACTB (RTPri-

merDB ID #1), B2M (#2), GAPDH (#3), HMBS (#4), HPRT1

(#5), RPL13A (#6), SDHA (#7), UBC(#8), YWHAZ (#9). The

sequence of the Alu-Sq repeats primers are CATGGT-

GAAACCCCGTCTCTA for the forward primer and

GCCTCAGCCTCCCGAGTAG for the reverse primer. The

primer sequences of the TBP primers were as described [8,27].

RNA quality index (RQI .8) was assessed for 20 samples selected

at random using Experion (software version 3.2, Bio-Rad,

Nazareth Eke, Belgium).

Statistical Measurements and Data Analysis
GeNorm available in qbase+ (Biogazelle, http://www.

qbaseplus.com) was used to calculate the M-values and quantify

gene expression data. GeNorm is an algorithm that calculates a

gene expression stability measure (M-value) of the selected

reference genes. This is done by calculating the pairwise variation

(standard deviation of logarithmically transformed expression

ratios) of each reference gene with all other reference genes. The

lowest M-value indicates the gene with the highest expression

stability. Stepwise exclusion of the gene with the highest M-value

allows the ranking of genes in terms of expression stability. The

analysis of all individual ranked gene lists was done using the rank

aggregation R package called ‘‘RankAggreg’’ [21]. RankAggreg

was used to determine the most stable reference gene across all

experiments. Rankaggreg is an R package for rank aggregation

analysis. We used this package to analyze the individual ranked

gene lists. These gene lists were ranked in terms of their M-values

and the rank aggregation analysis allowed us to find the closest

possible list to all individual lists generated by the individual

experiments. More specifically, we used the Cross-Entropy (CE)

Monte Carlo algorithm implemented in this package which starts

by generating random lists and then converges towards the best

optimal list through an iteration procedure that uses a distance

function. Weighted Spearman’s footrule distance is used for this

purpose and in our case the weight used is the M-value generated

by the GeNorm algorithm for every gene in the individual lists.

Supporting Information

Figure S1 GeNorm V-values of the individual experiments. GeNorm V-

value is used to determine the optimal number of reference genes.

GeNorm calculates the pairwise variation between 2 sequential

normalization factors (NFs). The normalization factor is the

geometric mean of expression of the selected reference genes. The

normalization factor NFn+1 is the geometric mean of NFn plus an

additional reference gene. V2/3 is the variation between the NF2
and NF3, and so on. Vandesompele et al. [4] proposed 0.15 as a

cutoff below which there is no need to include an additional

reference gene. (A), nutlin-3 treated neuroblastoma cells. (B),
ATRA treated neuroblastoma cells. (C), withaferin A treated

neuroblastoma cells. (D), TAE-684 treated neuroblastoma cells.

(E), neuroblastoma cells transfected with siRNAs against T-UCRs.

(F), neuroblastoma cells transfected with premiR-1. (G), T-ALL

cell lines (HPB-ALL, ALL-SIL, and TALL-1) transfected with

premiR-223 or negative control premiR. (H), T-ALL cell line

JURKAT transfected with PHF6-targeting siRNA or negative

control siRNA. (I), T-ALL cell lines (HSB-2 and PF-382)

transfected with PHF6-targeting siRNA or negative control

siRNA. (J), NSCL cell line (H3122) cells treated with crizotinib.

(K), melanoma cell line (WM-9) transfected with siRNA against

cyclophilin-B. (L), AML cell line (K562) treated with JQ1. (M),

breast cancer cell line (MCF-7) treated with JQ1. (N), breast

cancer cell line (SKRB-3) treated with JQ1. (O), prostate cancer

cell line (PC-3) treated with JQ1. (P), colorectal cell line (SW-620)

treated with JQ1. (Q), neuroblastoma cell line (SJNB-12) treated

with JQ1. (R), MCF-7 cells treated with 90 different chemical

inhibitors. (S), cervical cancer cell line (HeLa) treated with 90

different chemical inhibitors.

(TIF)

Figure S2 Dispersion of M-values. Box plot showing the dispersion

of the M-values of every reference genes across al datasets.
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(TIF)

Table S1 Chemical inhibitors. A list of the 90 chemical

inhibitors and the genes they target.

(XLSX)

File S1 Experimental design and manipulation of the cell lines. Transient

transfections of SH-EP cells with siRNAs against transcribed

ultraconserved regions, and optimization of concentration of PHF-

6-targetting siRNAs in T-ALL cell lines.

(DOCX)

File S2 Cell lines and culturing of cells. Information about the source

and the culturing conditions of the cell lines.

(DOCX)
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