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Abstract

We introduce a reactive variant 8DL (standard deontic logic)SDLR1 (re-
active standard deontic logic). Given a Kripkean view on the semanti8Bhfin
terms of directed graphs where arrowsrepresent the accessibility relation be-
tween worlds, reactive models add two elements: arrevese labelled as “active”
or “inactive”, and double arrows» connect arrows, e.g.x{ = Xp) » (X3 — Xy).
The idea is that passing through — X, activates a switch represented by
which inverts the label o%; — X4 and hence activates resp. deactivates this arrow.
This allows to introduce two modalities is the usuaKD -modality of SDL and
operates on the Kripkean graph where all labels and double arrowgremed,
while @ takes them into account.

We demonstrate th&SDL1 allows for an intuitive interpretation of ‘ought’.
The logic can handle contrary-to-duty cases such as several instarttiafithe
Chisholm set in a paradox-free way by means of using double arnegvaranota-
tions to block and give access to ideal worlds.

1 Standard Deontic Logic and its Problems

A logic with modalityo is KD modality if we have the axioms
KO  All substitution instances of classical tautologies

K1 o(pAadg)=(opAog)

K2 +FrA=GrDA

D -OL

It is complete for frames of the fornBS(R, a) whereS # @ is a set of possible
worlds,ae S,RC S x S is serial (i.e., for alk there exists & such thaixRy).

Standard Deontic LogiSDL is a KD modality O. We readu = Op as sayingp
holds in all ideal worlds relative to, i.e. for allt we have: ifuRtthent £ p. So the set
of ideal worlds relative ta is the set

I(u) = {t| uRg.
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TheD condition says
I(X) # @ for xe S.

Following [18], let us quickly review some of thefficulties facingSDL in formal-
izing certain examples. These paradoxes are as follow$4s28, 22, 1].

The Chisholm paradox
Consider the following statements:
1. It ought to be that a certain man go to the assistance olighbour.
2. It ought to be that if he does go he tell them he is coming.
3. If he does not go then he ought not to tell them he is coming.
4. He does not go.

It is agreed that intuitively (1)—(4) of Chisholm are comsig and totally independent
of each other. Therefore it is expected that their formatdlation into logicSDL
should retain these properties.

Let us semantically write the Chisholm set in semiformal lisg with p andq as
follows, p meansieLr andq meansreLL.

1. Obligatoryp.

2. p — Obligatoryq.

3. =p — Obligatory-aq.

4. =p.

Consider also the following:
5. p.

6. Obligatoryq.

7. Obligatory—aq.

We intuitively accept that (1)—(4) are consistent and latijcindependent of each-
other. Also we accept that (3) and (4) imply (7), and that (&) &) imply (6). Note
that some authors would also intuitively expect to concl{@&drom (1) and (2):

Now suppose wefter a logical systemh and a translatiom of (1), (2), (3), (4) of
the Chisholm set intt.

For examplel could be Standard Deontic Logic brcould be a modal logic with
a dyadic modalityOy X (X is obligatory in the context of).

We now list coherence conditions for the translaticemd forL .

We expect the following to hold.

(@ (2) and (3) are translated the same way, i.e., we tranglatiotm:
(23): X — ObligatoryY
to bey (X, Y) and the translation does not depend on the fact that we Bave (
—-p as opposed to (.

1The principle that allows for such inferences is caliientic detachmergsee [19]). See also [24] for a
discussion of its role in the context of the Chisholm set.



(b) The translations of (1)—(4) remain logically independerit.

(© The translated system maintains its properties undeonadie substitution
inL.
The notion of reasonable substitution is a tricky one. Lesayg for the
time being that if we fier a solution for one paradox, sBy(p,q,r,...) and
by substitution forp,q,r,... we can get another well known paradii,
then we would like to have a solution fdk,. This is a reasonable expecta-
tion from mathematical reasoning. We give a general saiutioa general

problem which yields specific solutions to specific problemidch can be
obtained from the general problem.

(d) The translation is essentially linguistically uniformdanan be done item
by item in a uniform way depending on parameters derived fileerentire
database. To explain what we mean consider in classical thgiset

1) p
@ p—a

To translate it into disjunctive normal form we need to knov humber of
atoms to be used. Item (1) is already in normal form in the lizigg of{ p}
but in the language dfp, g} its normal formis pA Q) Vv (p A Q). If we had
another item

@)r

then the normal form op in the language offp, g, r} would be
(PAGAT)V(PAQA=T)V(PA=QAT)V (PA QA —I).

The moral of the story is that although the translation ofi¢lyniform al-
gorithmically, we need to know what other items are in theabase to set
some parameters for the algorithm.

Jones and &n, for example, examine in [18] possible translationsief€hisholm
(1)—(4) intoSDL. They make the following points:

(1) If we translate according to, what they call, optan
(1a) Op
(2a) O(p — q)
(3a) -p— O-q
(4a) -p
then we do not have consistency, although we do have indepesati
(2) If we translate the Chisholm item (2) according to whatythall optionb:
(2b) p— Oq
then we have consistency but not independence, since (pagatogically (2b).

(3) If (3a) is replaced by

’Note that this translation is also not uniform in its treattnehconditional obligations (see (2a) and
(3a)) and hence violates our coherence condition (a).



(3b) O(=p — —0)
then we get back consistency but lose independence, siateflies (3b).

(4) Further, if we want (2) and (5) to imply (6), and (3) and {@)mply (7) then we
cannot use (3b) and (2a).

The translation of the Chisholm set is a “paradox” becaussvkrtranslations into
Standard Deontic Logic (the logic with only) are either inconsistent or dependent.

The fence paradox

The following example is formulated in [21]. Compare witlents (1)—(4) of the
Chisholm paradox.

1. There ought to be no fence.

2. [We are not dealing with this item here.]
3. Ifthere is a fence it should be white.

4. There is a fence.

The fence paradox is a variation of the original gentle mredparadox of Forrester

[6].
1. Itis obligatory that Smith not murder Jones.
2. [ we are not dealing with this item here. ]
3. Itis obligatory that, if Smith murders Jones, Smith musdiones gently.
4. Smith murders Jones.

Of course the fence can be taken down, but the murder cannotdmne. This dfer-
ence can be significant when we consider our options in a loagnof violations and
contrary to duties.

The problems witlSDL are so serious that nowadays researchers in the field call it
‘silly deontic logic’ instead of ‘standard deontic logic’.

There have been many proposals for better systems to acodamenGontrary to
Duties ranging from slight variations &DL (see, for example, [18] and [5]) to con-
siderably diferent systems (see, for example, [25, 21]), mainly the dypidiferential
approach and the temporal approach. See also [3, 15]. Oureaative approach is
new, see [8, 10, 11], and bridges the gap between the twoneasreas this paper will
show.

The community seems quite happy with a dyadic modal opeaid, readingB
is obligatory in the context oA. Thus we have for the fence example

1. O~ fence

2. OtenceWhite-fence.



fence —fence
X y

t

Figure 1: A reactive graph

The dyadic deontic logic satisfies some axioms which carchlgiturn it into a
preferential system. We need not go into details here. Sk, 21].

Our aim is to show thabDL is not so silly, by turning iteactiveand by looking at
reactive standard deontic logiSPLR1, we can save the situation. See [10, 11] for a
more general reactive approach.

Consider the situation in Figure 1. Its graph describes aiplesworld model, of a
reactive kind, for a special reactive modality

The nodest, s, %, y} are possible worlds. The syntactical word ‘fence’ représan
atomic proposition and by writing ‘fence’ next towe inform the reader that in some
given assignmertt (fixed for our discussion) we haver fence undeh. Similarly we
havey £ = fence undeh. The arrowss — y,t —» sands — x are annotated with either
‘+'or ‘—'. The ‘+’ annotation means the connection is active (or connected \tze
‘~’ annotation means the connection is not active or not careded he double arrow
fromt — sto s — xis a switch. It says that if we pass fronto s along the arrow
t — s, then the double arrow gets activated and disconnects v fnom sto ¥, if its
active, and connects it, if it is not active.

Suppose we want to evaludte @ @ - fence.

We havet £ @ @ - fence ff (sincet — sis active)s F @- fence. Now since we
passed through— sto get tos, the connectiors — xis switched ¢ and we continue
(sinces — yis active):

sk o~ fence ffy k — fence

which indeed holds.

Thus, in the model of Figure 1 we indeed have thab @ - fence.

We can add a connectizewhich ignores all the double arrows and all annotations.
Thus we have

t £ oo—fence f sk o—fence it (x £ —=fence andy = —fence)

Since in Figure X  fence we get thatx oo—fence.

Our logic SDLR1 is the logic witho and@. We introduce it formally in the next
section. Then, in sections 3— 5 we shall translate the depatadoxes (such as clauses
(1)—(4) of the Chisholm set and (HC1) and (HC2) of Figure 2&linto it.



2 Formal properties of SDLR1

This section develops the formal technical machinery fargaper. We give formal
definitions of the reactive models we use. We also invegtigataxiomatisation of our
logic relative to the proposed semantics.

2.1 Introducing and discussing the semantics b1
Definition 2.1 (ReactiveK model)

1. Let S be a non-empty set. A reactive relation on S has the for
R=RiUR,
where R € S? and R € S? x S? such that the following holds
If (%, y), (W, 2) € Ry, then(x,y) € Ry and(w, 2) € R;.

(This means RC R; x Ry).

We can represent the elements gfaR ‘x — y’ and the elements of;Ras ‘(x —
y) » (W — 2)’. The elements of Rare called arrows and those of,Rre called
double arrows.

2. Afunctionf : Ry — {0, 1} is called an activity function. Whefitx, y) = 1 we say
X — Yy is ‘on’ or is ‘active’ and we write % y. Wherf(x,y) = 0, we say x- Yy
is ‘off’ or ‘not active’ and we write x- .

3. Anassignment h is a function giving each atomic q a sul{s@thS.

4. A model has the forrm = (S, Ry, Ry, f, @, h) where ae S is the initial world.
DS2
Definition 2.2 (Satisfaction) Our language contains the classical connectives, v, —

, T, L and the two modalities and@. We define satisfaction in a model as follows.

1. Let(S, Ry, Ry, f) be given. Wheréx,y) € Ry and X y, we define a new function,
called f[x,y], which is derived usind and (x,y), and is defined by indicating
what values this function gives to arbitrary paits v) in R, as follows:

f(u,v) if (X, y),(u,Vv)) ¢ R
Tl yl(uv) = { 1— 1) 1 (%), (W) € Ro

2. Given a modeain = (S, Ry, Ry, f, a, h) we define the notion @h = A by induction
as follows:

m & q iff a € h(q), for g atomic
meEAABIfmeAandme B

e mE-AifmegA

Similarly for the other classical connectives

m £ OA iff for all y such that(a,y) € R; we have than £ A, forn =
(S’ Rla R23f3 y9 h)



a

Figure 2: A model foKR

e m k @A ifffor all y such that(a, y) € R; andf(a,y) = 1 we have that’ £ A
forn’ = (S,Ry, Ro, f[a v, v, h).

3. The logickR (reactiveK) is defined as the set of allffis A such that for all
modelsm we havem k A.

4. The logicSDLR1 is defined analogously just that & required to be serial.

5. Note that we have frames of the fof8R;, Ry, f). The logic is normal, as a and

h can be chosen arbitrarily.
JuneR1
Remark 2.3. Note that the functiofiintroduced in the previous Definition 2.1 actually

defines another relatioRy which is a subset oR;: namely the active arrows iR;.
Whenf changes td[x,y], as in item 1 of Definition 2.2, then equivalent®y changes
to Ro[x,y]. We use the notation with the functidrto stress the fact that all reactivity
changes arise from arrow connections frBm

We now address the task of axiomatising the logRR. The axiomatisation of
SDLR1 strengthen&R by D. To be able to do thatfiectively, let us familiarise our-
selves better witlkKR and its unique features.

Consider Figure 2.

Let our starting point ba. As we traverse the agc— b, there are two possibilities.

1. We ignore all double arrows and what they do.
2. We take account of what the double arrows say and what ihey d

Let possibility 1 be formalised by and let possibility 2 be formalised . So
we can write:a k£ ¢¢ to mean traverse frorato the accessible world and ignore all
double arrows and = Pq to mean traverse frora to the accessible world and take
account of the double arrows.

Consider now

arPooOT

Here we move froma to b and activate the double arrow which disconnects the arc
d — e. We check:
beooT



and then
deoT

Now the arcd — e is disconnected by a double arrow but as we are evaluatiaig
noded and¢ ignores all double arrows and theitects, as far ag is concerned — e
is connected and hende= ¢T holds and therefora = P¢¢ T also holds.

The situation is dierent with

ak POPT

Evaluating here takes usdi= PT, butP is affected and takes account of double arrows
and sad £ PT does not hold and hence

aEPOPT

does not hold.
Consider now
ak PPPT.

We can go fronma to e taking account of double arrows. Moving froarto b switches
the connectiord — e off but continuing fromb to d switches it on again and therefore
d £ PT holds.

Note that we cannot evaluate ary= Pq without knowing how we got tox and
which double arrows we activated along the path.

So asking doed 7P T hold cannot guarantee an answer. We need to ask something
like

o P
a—b— de?PT

or
P 0
a—b—de?PT

or in general
M

M Mn
(Xo — X1 — Xp = ... — Xn) E?A
whereM; € {0, P}.
Note that we need a notion tEgitimate sequence$he sequence

P 0 P
a—b—d—e

is not legitimate because by the time we getitd — eis disconnected. So to getéo
from d we need to use.

We thus get a bimodal logic with two modalitieandP with evaluation of formu-
las depending on pathg. .., X,) but not ordinary paths. We also need to know how
we traverse them. So our paths have the foem(xg, M1X1, MaXo, . .., MyXn), Wheret
is a legitimate sequence.

Our task in this section is to find axioms and prove completerfer KR. We
might have thought that it would be useful to consi& as a bimodal logic with two
accessibility relation® andR,, and see what properties they have. The problem is
that the accessible worlds are the same for both relatibagjiference being the way
we traverse them. So really our most reasonable option isrieider a transformed
Kripke model where the pointsorlds are legitimate paths of the form

t= (a, M]_X]_, ooy Man)



such thaBR x Ry %o, . . ., Xa—1R1 X, holds.
Thus we start with
m = (S,Ry, Ry, a, h)

for example §, Ry, Ry, a) is as in Figure 2, and then transform it to a model

m* = (8", R, Re.(a).h)

whereS* is the set of all legitimate sequences of the fdrm (a, MyXq, ..., MnX,)
whereaR X3 A X1R1XoA, ..., AXn-1R1Xn.
We defineR, andR: by

tRyt * (0y), whenx,Ryy,
tRet = (Py), whenx\Ryy

x IS concatenation of sequences.

Lett £ qiff X, E g, for g atomic.

Note thatR; andR; are replaced bR, andRs. R; is used directly in the definition
of the sequenceéswvhich go intoS* andR; is used in the notion of legitimate sequences.

Som is replaced byn*.

If we do that we can get an axiomatisation and a completehessdm after some
hard work (see [12]).

3 Contrary to duty in SDLR1

This section presents our reactive model. We do it in stggesenting several inter-
mediate models and modifying them.

We use a story (Example 3.1) to motivate our model. \flerahe model of Figure
4 below as a first approximation, and then we move to the bettetel of Figure 7
and then, for technical reasons, we adopt the slightly bptefinal model of Figure
9. This is not the final model, but we stick with it for a while.

We then express the fence example in this model, and discastength.

The final model, which is a slight modification of the pre-fimabdel, is given
formally in Section 5.

We want to alert the reader to some disadvantages of our maielurge her or
him to nevertheless continue to read.

The translation turns out to be syntactically complica®gn though the idea is
semantically very simple. This can be a disappointment Her gyntactiallyHilbert
system minded reader, but there are two reasons for it:

1. The subtle complexity of the CTD paradox itself. The odign not to have a
fence is in one context while the CTD kicks in in another cght& his subtle
complexity is unavoidable.

2. The second reason for the complexity is the fact that séoadily we are relying
on the reactivity of the double arrows to solve the paradaxeite the syntax
does not give us connectives which talk directly about thebtearrows. This
makes the model more complex, both in translating the CTDesgions and, as
already mentioned, in axiomatising the logic.



The perceptive reader is sure to detect another problemtrahsglation of the Deontic
modality “Obligatory” is not a pure connective but is doneaaombination of the two
modalitieso ando of the system. This is necessitated by the lack of direct ecnn
tive in the logic representing the double arrows, despieféict that semantically the
obligation is expressed by the double arrows!

We are thus forced to go in a roundabout way to express thgatlins and thus
make a mixed use of the modalities of the system. The wealafdhe translation is
compounded by the need to make it dependent on the strudttive model.

So why consider our system at all?

The answer is that it is semantically very intuitive and leesatdvantages ofi@ring
a systematic solution to the so called paradoxes and can Hipl@CTD sentences all
at once. | put forward to the reader that the call for axiosziton (more specifically,
a Hilbert style axiom system) is partly a cultural remnaonirthe time when modal
logic had no satisfactory semantics and when most logice wessented Hilbert style.
See however paper [14], where a long chain of Chisholm typeiseonsidered and
modelled in a Hilbert axiom system with a reactive semahtitarpretation.

Furthermore, the abovefticulties would disappear once we allow a direct syntactic
counterpart to our double arrows in the axiomatic systemcsivein fact give a really
simple axiomatisation as a Labelled Deductive System, EHeand [7].

We shall address these problems in the concluding section.

We now motivate, through examples, how we treat CTDSDLR1.

Example 3.1 (UK gas boiler) Many homes in the UK have heating with gas boil-
ers. The technology of such boilers keeps on improving botificiency and safety.
British Gas inspects each boiler once a year and makes reendations. In many
cases a slightly older model boiler no longer complies withiew safety regulations,
but of course one cannot ask for the boiler to be replacetipjushe strength of that,
so some additional safety measures are recommended. Hpweve wants to install

a new boiler then only the new models can be installed.

Consider now a family who has a very old boiler. This boilezdks down. It is
dead and finished. They want to get a new boiler. The law sdygtmnew models are
allowed to be installed. However, the slightly older modais still good, they cost a
lot less and still have some good years of service in themy @heperfectly safe with
the new additional safety measures added to them. The oabjem is that the law
does not allow certified engineers to install them. They aay modify older existing
boilers but not install them!

Our family a wants to buy a boiler. They go to an agentvho dfers them options.
They can get an old model or-eold model & new model). The old model cannot be
installed by a certified engineer but ufioially it can be installed and then the family
can pretend that this is an existing old model and ask a esttédngineer to add the
safety modifications.

The clever agene solves the problem of how to work around the regulations as
follows: the sale of new models he assigns to a special depate, and the sale of
old models he assigns to a separate departmerif e, is investigated and is caught
trying to go around the rules, then that is a local probleminSwactice the agent will
sell both boilers himself through fiiérent departments. The new boilers department
and the old boilers department. Figure 3 shows the analagyelea the fence example
and the boiler example.

The only diterence between the two examples is the incentive to the agent
work through specialised departmentsande,. There is no such incentive in fences.

10



Fence Boiler
HC1. There should be no fence | There should be no old
boiler (installed)
HC2. If there is a fence it should If there is an existing old
be white boiler it should be modified
with additional safety mea-
sures.

Figure 3: Fence and boiler problems compared

old boiler new boiler old boiler new boiler
X1 Y1 X2 Y2
e e
\ /

a

Figure 4: Agents showing only new boilers

So let us go back to our family who wants to buy a boiler.

They approach agents, ..., e, and each one of these agenfiecs a list of pos-
sible boilers for sale. Lexil,...,ﬂmi),y'l,...,yﬁ(i) be the list of boilers fiered bye.
Assume thak; are old boilers , angl, are not old boilers.

The family may observe the rule (HC1). Therefore they maysw®r only the new
boilers. In fact, the agent will probably show them only tlewboilers. This means
that the story is represented as in Figure 4. This figure slomlystwo agentse;, e,
each showing one old boiler and one new boiler. They may beislgdhe same boilers
in which case we have Figure 6a. The nedepresents the family. The arrow fraa
to e; symbolises the famila going toe;. (Note that according to Figure 4, the family
goes directly to agents;, &. This scenario shall be modified in Figure 7, in which
the family goes to agemtand agene refers them to departmengs) The nodes, y;
denote boilers for sale¢(old boilers andy; new boilers).

The -’ label one; — x; switches the link frone; to x; off. This blockage of
access to the old boiler is in accordance with (HC1). Sinyildhe arrowe, — X; is
labeled by =’ and hence switched® Both dealers only present new boilers. Although
they have the old boilersq, x,), they do not show them. Now if our family wants to
be presented old boilers they need to explicitly ask theeddal old boilers. This is
realized by means of double arrows and illustrated in Figure

Hence, if our family has the wish to see the old boilers deqjpiC1) they can force
their way tox; andx, by changing the-’ label of the arcs via double arrows. They
pass vié? from ato the dealeg. This activates the double arrovest €) » (g — X))
and @ —» g) » (g — V;). The double arrows invert the labels or the agcs»> x and
g — Y resulting in the +'-labeling ofg — X and the ~’-labeling ofg — y;. Hence,
when our family arrives a# they see Figure 6b.

11



old boiler new boiler old boiler new boiler

Figure 5: The family asks the dealers to show only old bailers

old boiler new boiler .
new boilee
X2 Y2

old boiler no old boiler
—’ ><+[ X Y
€ €
+ -
S
a

. . (b) The view that new boilee - old boiler
(a) Two agents showing new boilers only

Figure 6

We now consider Figure 5 as a reactive Kripke model.

By evaluatinga £ 0@ - old boiler in Figure 5 we are saying that at all agezt®—
old boiler holds. Hence, (HC1) holds and the agents do fiet any old boiler. This
concerns the case when the double arrows do not fire since wefiomato g via ¢.
We take the wish of our family to see only the old boilers into@int when we move
fromato g viaP. In this case the double arrows fire and the dealers show belgld
models. This is expressed by @@ old boiler.

Thus we may translate

(HC1):  There should be no old boiler
as
(HC1)*: Do - old boiler.

The fact ‘old boiler’, which we interpret as what the familyamts to buy, may be
expressed bpo old boiler.

To make the translation clear, let us evalumteo old boiler.

We havea £ @2 old boiler iff for all g that we access viB, g £ © old boiler.

Since we are arriving & along the arrova — g via P the double arrows fire (in
Figure 5) and hence what we seesat Figure 6b.

We now evaluatee £ @ old boiler, and evaluating does take account of the
annotations and so we get:

€ k£ o old boiler iff for all x;, X; £ old boiler,

12



old boiler with old boiler new
added safety no safety  boiler

g
7

.

a

Figure 7: You ought to have a new boiler but if not then you $thdnave a safe old
boiler

which holds.

How do we translate (HC2)? It is not convenient to use Figure fhodel (HC2).
The scenario of Figure 7 is better. Théfdrence is that we use only one agent nede

In Figure 4 we have two agents, each agent is selling bothstgpdoilers. In
Figure 7, there is one agent, agentvho has two departments, one selling old boilers
and one selling new boilers, these two departments are nootel bye; ande,.

The path froneto the department that sells the old boilerss labeled -’ and the
path to the department that sells the new boieris labeled +'. This is in accordance
with (HC1). That means, by default our family is referrediie tlepartment that sells
only new boilers. (HC1) may be translated according to Fguasa @ @- old boiler.
However, we will fine-tune this further below.

As before, were our family to wish to see old boilers instehdy would have to
request so. This is represented by means of double arrowertenate frona — e
and target botle —» e; ande — e, (see Figure 8a). As the family passes through
a — e, a signal is sent to invert the labels ®— e, ande — e,. Note that if the
family moves througta — e via P then the switching takes place. However, if they
move througha — e via ¢ then no switching takes place. The latter represents the
situation in which we disregard the wishes of the family:nitiee labels that represent
the obligations determine the available paths. The tréinslaf the fact “old boiler”
which we interpret as what the family wants to buy is accaydinFigure 8a @ @ old
boiler.

Now suppose our family is at departmentthat sells the old boilers. (HC2) is
realized by means of the labeling of the asgs— x’ ande; — x. The former leads
to the node with the boilers that have added safétgnd hence it is labeledt' in
accordance with (HC2). The latter arc leading to the boiltisout added safety are
labeled by ~’. Hence this path is blocked. So the translation of (HC2) imolve
0 @ @ old boiler with safety.

Example 3.1 motivated a sub-tree of the reactive tree thabeaused for any con-
trary to duty situation. We will enrich it stepwise by additigthe complexity of the
considered sets of conditional obligations.

We needed an explanation for our choice of pomts, e,. If we were to say di-
rectly without explanation that we want semantics whereyeaecessibility configura-
tion of the form aRx and aRy is replaced by aReeRg,eRe,

13



old boiler with old boiler new old boiler with old boiler new

added safety no safety  boiler added safety no safety  boiler
X X y X X y
€ € €
- +
e
a
(@) The family wants to see old boilers witfb) The family wants to see old boilers without
added safety. added safety.

Figure 8

e1Rx%, &RYy;, the reader would have wondered where and why these aydiar, e,
pop up from! We have our explanation now.

We now summarise our graph model and analyse it. Once we tavéhpresent
the logical system formally and study its properties. Wellsdee that for technical
reasons the pre-final model we want to use is Figure 9. Thisdiguthe same as
Figure 8a, except that we made the top nodes of the tree reflekie reasons for that

are technical, having to do with substitution, as we shaltas below.
R1
Remark 3.2 (Summary of the proposed modeNVe have the CTD obligations of the

form below (think of A=fence, B = white fence), where\ and B are classical logic
formulas:

(A1) Obligatory that-A
(A2) Ifitis the case thaf then we should havA A B (in the context ofd)
(A3) Itisthe case thah

Figure 9 is the graph corresponding to (A1)—(A3) which, wiienved as a reactive
Kripke model, is supposed to encode the logical informatixpressed by the set (Al1)—
(A3) and thus model it. We first explain Figure 9 and then dbsdnow it is done.

The story behind Figure 9 is that we have a family standingodem intending
to buy a boiler. We have also an agenselling boilers, having two departments,
departmeng; selling old boilersA, which can be safB, or not safe-B, and department
& selling new boilers-A.

The arcs represent paths which the family can take moving freir initial posi-
tion to the boiler they want to get.

We want to use this setup to represent the contrary to dutyAdat (A2) and
(A3). The representation must be intuitive and make (A1)@nd (A3) all completely
independent of one another.

(A1) is what is obligatory. We represent it by labeling thesdeading to the depart-
mentse; ande;: € — e islabeled =’ ande — e, is labeled %+'. This intuitively directs
the family from nodea to the node=, from which-A —the new boiler— is accessible.
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Figure 9: A model for Remark 3.2

Similarly, the contrary to duty obligation (A2) is represeth by labeling the arcs.
(A2) concerns what boilers are presented by the departmenin accordance with
(A2) the arce; — X is labeled 4+’ while the arce; — X; is labeled -

(A3) are the facts, which we interpret as what the family waatbuy, which means
the path they want to follow. We give the family control of ttleuble arrows so that
they can force their way through the tree even when it meagekibrg obligations. In
that case they need to invert thé-label of some arc by means of a double arrow. See
Figures 8a and 8b. In both cases their wish is in conflict Wit 1). Hence, they use
the double arrows to block the way to the deaewith the new boilers and instead
free their way to the deale; who sells the old boilers. In Figure 8a their wish is to see
old boilers with added safety and hence in coherence witi2jHThus, no additional
double arrows are needed. The situation tsedént in Figure 8b where they want to
see old boilers without added safety. Here they have to @sddhble arrows to invert
the labels of; — xande; — X.

x,i=1,23,...are all points wheré A B holds.
Xj, ] =1,2,3,... are all points wheré A —B holds.
Vi, K=1,2,3,... are all points where:A holds.

Note that we added reflexive arrows to the top poirtsx; andyx. The reason is
that Standard Deontic Logic has the condition that everntpguas a world accessible
to it. So we made the top points reflexive.

Let us now examine how we can express the ideas presentddaaiypby means
of formulas. LetQ be a finite the set of atoms, amd= |Q|. In the following we
presuppose a semantic frame in form a tree analogous to ttelind=igures 9 which
has a maximal depth af+1 from the root node to the top node. The top nodes
are reflexive, as remarked above. In Section 5 we will show tiosvframe can be
characterised axiomatically.

We define:

OX =g ~O-X
PX =¢f =@ =X
The position of a node in the graph indicates what is to beidensd as being settled

when our family reaches the node. For instance, the positian indicates that the
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family settled for buying an old boiler, or, in the fence exde) it indicates that there
is a fence. We can express this as follows: where

context(A) =g a"A,

we have e.gg; F context(A), e; k context(=A), X F context(B), andx; = context(—B).
Note that the context of a node is established independéhéddbels of the arcs. Note
that due to the reflexivity of the top nodes the evaluationvaé context(A) always
checks whetheA is valid at all accessible top models framn There is no need to keep
track at which level of the tree the evaluation takes place.

Another important property of nodes is that they provide itk wpecific choices.
For instance, at nodeour family has the choice between settling for buying ag (
resp. new boilersg;). Similarly, ate; they have the choice between going for a boiler
with or without added safety. This is expressed as followsens

switch(A) =g ©ocontext(—A) A O—-context(—A),

we have e.ge e switch(A), e; £ switch(B), ande; k switch(-=A vV B).

A conditional obligationDaB expresses that whenever our family stands at a node
whereAis considered to be settled and they have the choice betwestedn a context
that is consistent witlB and a node whereontext(-B) holds, they should opt for the
former node.

Translated in our language this can be expressed by in tlveviob way:

7 =g O...0 (i imes) wherer € {00, ©, @, P}
opt(A) =gt P-context(—=A) A =Pcontext(—A),

obliged,B =gt [/\i”:l o' (context(A) A switch(B) — opt(B))] A
[\/i“:l o' (context(A) A switch(B))], and

obligedB =g obliged B

The conditional obligation is expressed &y obliged,B. Note that in Figure 9 we
have, for instance,

(*Al) al= obliged.—A, and
(*A2) ak obliged,A A B.

The first conjunct ofobliged,B, namely A\[; O'(context(A) A switch(B) — opt(B))
expresses that, whenever our family is at a node wAésesettled and where they have
the choice between a path that is consistent Bitind a path that leads B, they are
supposed to opt for the former.

Note that a given conditional obligatiag®aB imposes the following succession:
if Ais considered as settle®,is obliged. This is mirrored in the tree: first it splits
betweenA (nodee;) and-A (nodeey), then it splits betweeB (nodex’) and-B (node
xj). The second conjunction abliged,B, namely\/[., ¢'(context(A) A switch(B)),
enforces the correct splitting in the tree. Were we to skipstihcond conjunct we would
get pragmatic oddities. For instance, the model in Figure@lsvalso verifyobligedgA
andobligedg—A.

We have already mentioned that facts represent the wishesrofamily. That
means, whenever our family has the choice betw&amd-A they “use” the double
arrow to block the way te-A and opt forA if they wish for A. For instance, when
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our family approaches the boiler shepthey activate the double arrowa & €) -
(e —» e)and @ — € » (e — &) which inverts the labels on the ares— e; and
e — e,. After all, their wish is to buy an old boiler (despite (HC1J)his is expressed
as follows:

(*A3) ®n+1A

For instance we havar @3A anda = @B in Figure 9. In Section 5 it is demonstrated
how we can axiomatically ensure that in each model our fataktgs a unique path to
exactly one of the models on top of the tree.

Remark 3.3. 1. It is very important to notice that if we substitute (A3%9rfA
inside (A1)* we get (Al1)* back. This is because in Figure 9 fuintsx/ and
X; andyy are all reflexive, i.e. they are accessible to themselves and hence alll
modalities collapse.

Therefore, for examplego o (oo A) = oo e A, and similarlyo o o(eoo AA
oo B) is equivalent tm@@(AA B). Therefore we can say that first we translate
A andB and then substitute the translation in (A2) and (A1) and §&)% and
(A1)~

2. Also note that the translations Af— OB is taken essentially as the translation
of OaB. Therefore we represent the linguistic CTD Afthen obligatoryB’ in
our logic as sayin@aB. To see this consider Figure 9. The labels implementing
A — OB are blocking the are; — X; to the point where~B holds by -’ and
give access to the point wheBeholds by means of the+-label one; — X.
Compare this with the original obligatiagd—A. The labels that implement this
obligation are the-+'-label one — e; blocking access te; and hence to the
points whereA holds, and the+'-label one — &, giving access te, where-A
holds.

3. Note that the assumption is th&tand B are classical s and are considered
complete units for the purpose of translation. Thus for eplanf X is a wf of
classical logic and is translated into say @ X for whatever reason, then when
- X needs to be translated for the same reason,-tbeis translated as a unit into
oo -Xand notinto-o oo X.

4. Note that the translation of the simple fact
(A3) ltis the case thah

is rather complex. This happens because the node in the miwee (A3) is
“committed” and thus a violation of (A1) becomes inevitalidethe node,. The
node where the obligation (Al) is put forward is the n@deOne dimensional
Kripke semantics allows us to evaluate at one point only. 8ave forced to
describe the entire set up from the context of a single pdtrrhay be natural

to take this point ag,, where the violation is, but then we have no backward
connective to take us back to pomtwhere the obligation is. Thus we describe
all aspects of the model from poiaf because our modalities allow us to go
forward. So from pointa we must isolate and talk about poiet where the
violation occurs and make sure it is not “confused” with p&n

Expressing all of this becomes complicated.
Note that if we do not make these distinctions we get the maesl
So the naive reader should NOT ask:
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Figure 10: Modelling the dog example

e “why is the translation of (A3) complex, after all (A3) sagsjust a simple
fact?!”

My answer would be:
“yes, it is because you keep it simple that you get paradoxes”

Note that in our paper [5] we keep it slightly more simple byngstwo di-
mensional modal logic, and so we can keep track of both poitite point of
obligation and the point of violation.

Remark 3.4(Dog example, see [21])The CTD with the dog is slightly diierent from
that of the fence. Itis

(D1) There should be no dog

(D2) If there is a dog, there should be a sign
(D3) There is a dog.

Both examples have the form

X1)  O-X

(X2) X-QY

(X3) X

In the fence case we haveY — X, which we do not have in the dog case.
We havenot used the special featureY — X in our solution in Remark 3.2. The
translation is the same. Figure 9 becomes Figure 10.

4 Checking for Paradoxes
Remark 4.1 (Rationality conditions) When we dfer a translation into some deontic

logic L and hope to show that we have no paradoxes, we must satis&y istionality
conditions forL andr.
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(R1) The semantics fdr must be compatible in its spirit with our intuitive grasp
of obligations and contrary to duties.

(R2) The translation oA into L must be consistent in with no pragmatic oddities
(i.e. the translations of Obligatoy and Obligatory-A are consistent ii.).
Furthermore, the translation must be modular and increshefRdr example,
if Ay is a set of obligations (which might be a paradox) aads another set,
then

(@) (A1 U Ap) = (A1) UT(A2)

(b) If AGis obtained fromA by substitutiord of classical formulas to the
atoms inA thent(A6) = 7(A)6.3

Example 4.2(Chisholm paradox and rationality of translation)e illustrate our ra-
tionality conditions by applying them to the Chisholm set.

1. It ought to be that a certain man goes to the assistancs oeighbour. Written
asQOH.

2. It ought to be that if he does go he tells him he is comingttemiasH — OT.
3. If he does not go then he ought not to tell him he is comingtewr—-H — O-T.
4. He does not go, writteAH.

Note that if we take in this Chisholm set the subset comprigdd), (3) and (4) and

substitute for
-T=FAW

i.e. we letd be the substitutel = —=F andT = -(F A W), we get the fence example:
1. 6:0-F
2.0:F > OF AW)
3.0:F

Therefore any solution to the Chisholm paradox (1)—(4) Vizgic L and a translation
T must also give a solution to the fence paradox by looking B®, 7(3)0 andr(4)6.

We shall see that the Jone&fR solution in [4] does not satisfy the rationality
condition.

Example 4.3(Translation of the Chisholm paradoxjVe now give the reader an in-
tuitive idea for a rational solution to the Chisholm paradéxproper solution will be
given in Section 5, once we have a precise mathematical fmagisir modelling.

Take the set

1. OH
2.H-OT

3. -H > O-T
4. -H
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Figure 11a Figure 9

H -A

T -B

X1 Yk

Y1 Xj

Y2 X

X2 does not exist

(b)

(a) Chisholm paradox

Figure 11

We use Figure 11a for the translation. Note that it satisfiesationality conditions.
Let us now reduce Figure 11a to Figure 9 (the fence exampl)diyng at clauses
(1), (3), (4) of the Chisholm set and by using the substitutipwhereg(H) = -F =
—-fence, A in Figure 9) and(T) = =(F A W), (=(A A B) in Figure 9). Note that this
substitution complies witlk2b of the Rationality Condition.
We get
X1=—|F/\—|(F/\W)=—|F
Xo==FAFAW=_1
y]_:F/\—!(F/\W):F/\—IW
Yo=FA(FAW)=FAW

We therefore get that after substitution Figure 11a becdfiegre 9 with the cor-
respondence table as given in Figure 11b. Note that we usigume=11a not only the
substitutiorg, but we also drop out clause (2).

We have seen that our translation model makes the fencegaaad the Chisholm
paradox disappeatr.

5 General theory of CTD’s in SDLR1

This section describes a final general model for a generahctaization of single
CTD sets of arbitrary size (such as all previously considesamples, see the defini-
tion below). In the next section we give the most generic ati@rization that is able
to deal with any sets of conditional obligations and facts.

Definition 5.1 (Generalised single CTD set)et Q = {py,..., pn} be a finite set of
atoms and xe {p;, —p;} for each i< n.
A general single CTD set of depth n contains

* Ap = {Oxt}

3Carmo and Jones [3, p. 275] give the same rationality conditemnept that they do not ask for condition
R2b. Indeed their syste@L of [18] is not closed under substitution. See Example 4.2vipeémd the
discussion in Section 6 below, and see [3]. Our system ddis$ysB2(b) as shown in Remark 3.3.
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e a non-empty subs@'CTD of {Xi » OXi+1,coX; = OcoXi;1}, wherecox; = =
if Xi = pi andcox = p; else

e asetof factd\r C {7 | T € {¢, co},i < n} wheree is the empty string
HenceA is a triple (Ao, Actp, Ar) WhereActp = U AL .
Example 5.2. The the dog example and the Chisholm set fall under Defingidn

Remark 5.3. For some CTD sets there are constraints. For instance iretioe fex-
ample we have that implies f (a white fence is a fence). We will first disregard such
constraints but will later come back to them (see Remark 5.9)

When constructing a model for a CTD getve have two degrees of freedom. On
the one hand\r may be incomplete in the sense that for some Q neitherp nor
—-pisin Ar. We want our models factually complete (so, for e@ch Ar eitherp is
modeled or-p). Recall that the facts are taken to be the wishes of our jarttiley
reflect which of the top models they want to reach. Hence,¢h @aodelM our family
will reach a unigue top model which determines the factsahaimodeled byv. That
means that for instance for the Chisholm set with fathere are two corresponding
models: one with fact (where our family reaches the top model that verifendt),
and one with-t (where our family reaches the top model that veri§jesd-t).

The second degree of freedom concerns cases in which for isermee.g.x —
Oxiz1 € Actp- There are dferent options to deal with this situation in a modelof
e.g., we could+’-mark both arcs, the one leading from gnnode to anx,;-node and
the one leading from an-node to aox;,1-node. Or we could validatebliged, cox;,1
in the model (in which case the former arc is labeletldnd the latter is labeledt").

For the sake of simplicity we will in the following presupgothatA is complete in
the sense that for eath n, i = OXi.1,coX — OCOXi11 € AcTp.

Definition 5.4 (CTD model template fon). Let Q be a finite set of atoms, latbe a
generalised single CTD set based on Q. Agto Ar such that for eachp{p;, -p;j} N
Af = 0. We define a CTD reactive model templateAand Ay as follows:

1. The frame has the for(®, Ry, Ry, f, @)

2. LetQa = {{t1X1,...,TkX%) | K < n,7j € {g,co}}. For each se Q,, S is the set of
all members of s.

3. S={a,ees| seQa}
4. R contains the following pairs:
e (&€
* (&) and(e eox,)
o (&5, e55) Where sso x; € Qa ando is the concatenation function
o (&5, e5c0x) Where $so coxX € Qa
e (es,e5) where s has length n

5. the graph has the following labels (where §,):

o f(e— eox)=0

hd f(eSoXi - esmqocoxm) =0

21
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€x1x0 % O, mxs Oxtxexs Bxie X Eoxxaxs B, xe, s Coxe, e xs Ehxe, e, —xs

AN N B P P

X1,X2 X1,7X2 X1,X2 X1,7 X2

Figure 12: The tree template with= 3

L4 f(esocom - eS:)COXiOXi-v-l) =0
¢ all other labels are 1
6. R contains the double arrows as follows:
e (@a—e) —»(e—e)and(e— €) » (e — eyoy) iff coxs € Af
e (s, 65) » (By > €5ey) iff S C Af and (i) f(es — esoy) = Landcoy € A,
or (i) f(ey — eyoy) = 0and ye Ar.
7. for the assignment function:vS — 2° we have the following requirement for
the models gon top of our tree 5) =SSN Q

Remark 5.5. Item 4 in Definition 5.4 defines a modal frame in form of a treguFe
12 illustrates this fon = 3. Figure 13 applies the labeling as in item 5 and the double
arrows as in item 6 for the CTD set

Ao = {Ox1},
AcTtp = {X1 = OXo, coX; — OCcoXy, Xo = OXz, coXp — (OCOX3},
Ar = {=Xg, X, X3}

Example 5.6(Chisholm set) Compare with Example 4.3. We ha@= {g, t}.

Ao = {Og}
ACTD = {g - Ot, -g - O—|t}
A = {=0}.

Our models are illustrated in Figures 14a and 14b (the foforeA;r = {-g, -t} and
the latter forA; = {-g, t}).

Some authors uge(g — t) in the Chisholm set. This is no problem for us, we can
translate it, as we explained in item 5 of Remark 3.3.

Example 5.7(Chisholm withn = 3). We now enhance our Chisholm sgtstands for
“going”, t stands for “telling”,0 stands for “dressing your overall’. We enhance the
usual Chisholm set0g,g — Ot,-g O -t} by {t - Oo, -t — O-0}: if you tell you
should dress your overall, if you don't tell you should notsl your overall.

Obviously this set is in accordance with Definition 5.1. Igutie 15 we have a
model forAf = {-g,t, -0} constructed as in Definition 5.4.
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eXLXz,Xs eX1,Xz,—'X3 eX1,—'X2,X3 exls_‘XZ»_‘XB eﬂX1,X2,><3 eﬂxl,Xz,—'Xs e—‘Xlﬁxz,X3 e—*Xl,—'Xz,ﬂX3

Figure 13: The model template with= 3 (incl. labels and double arrows)

€& L Q0 QO

€ot €.t € gt €9t

NN

(a) Chisholm set with factsg, -t (b) Chisholm set with factsg, t

Figure 14

@mmm (YY) M

€t-o €g-to €g-t-o €gto €gt-o €.g-to E.g-t-o

1

e—.g,ﬂt

Figure 15: Chisholm witm = 3
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Example 5.8(Expressive power afi and®). We try to characterise the graph axiomat-
ically (as a Kripke frame) using by writing modal axioms holding a&. The logic is
non-normal, so the axioms hold atonly. If we want an axiom to hold at level two
points such agy ande 4 in Figure 15 we need to put@in front. The wfs X in the
axioms do not contaim .

The following are the axiom schemas:

(*1) OX - oX

(*2) oX — oX

(*1) and (*2) say that has exactly one accessible possible werld
(*3) AJ=r DAL 0% = Vigjes 00K A X))

(*3) says that eachs has at most 2 accessible worlds.

(*4) o™X & oX)

(*4) expresses the reflexivity of our top nodes.

We now turn to our translation ok. While discussing the various parts af
namelyActp andAg, we will still add some more axioms in order to characterige o
frame.

Now we make sure that the labels representing our obligaaoa placed correctly
and the splitting of the branches of the tree is in correspood to the violation order
imposed byA. Eachx — Qy € Actp is translated by:

A

/n\ o' (context(x) A switch(y) — opt(y)) \n/ o' (context(x) A switch(y))| (ScTo)
i=1

i=1
(6cTp) expresses that whenever at some peirdt whichcontext(x) holds there is an
arc towards a node whemntext(-y) holds and another one towards a node where
-context(—y) holds, then the path towardsntext(-y) is blocked and the path towards
—-context(—y) is accessible. This realizes the obligationytin the contextx. The
second conjunct ofdeTp) makes sure that the splitting of the branches of the tree are
as expected (i.e., in accordance with the violation order).

The facts are modeled by means of the following formulas. \Whkes a fact we
add:

®n+lX (6’:)

Furthermore we add:

(*5) —-Pmlj_

(*6) AFLE X APX - PI(X A X))

These make sure that our family takes one unique path to aoibg@in each model.
7)) AXEO-o VI 00X A =PX)

This formula makes sure that all double arrows are of the tgpe> ey) » (ey — €y/)
(i.e., double arrows always target arcs in the next levehéngraph).

Hence, where (*1)—(*7) axiomatize our framéc{p) and ¢g) provide the transla-
tion of our CTD setA.
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Remark 5.9(Constraints) Suppose we have a set of constraitgs= {- A & | & c Q'}
such as-(w A =f) in the fence example (a white fence is a fence). In this case w
have to change the construction of our model template $lighor instance we adjust
Qar = {{(T1X1,...,TkX) | K < n, 7 € {g,co}, there is noE C {rjx | i < k} such that
- A& €A}

Constraints can be translated into formulasty*?! A &.

Remark 5.10(Independence)Both (a) the translations of the members of CTD-sets
and (b) the instructions for attaching the labels to the aresfor drawing the arrows
are fully independent in our treatment. There are no loglependencies between the
translations of the obligations and facts of a given CTD'set.

Remark 5.11(Solution to Chisholm) Consider the Chisholm set of Examples 4.3 and
5.6. We are seeking a logicand a translatiom of the Chisholm sentences intosuch
that

1. All translations are logically independentlin
2. The translation is consistentlin
3. The translation satisfies the rationality conditions efriark 4.1.

Let the logicL be characterised as in Example 5.8, thégrp) and ¢r) give the
translation of the Chisholm set.

6 Towards more generality: Permissions, separable con-
junctive obligations, specificity cases and CTD cycles

While in the last section we gave a detailed account of how weaha generalized
single CTD set irSDLR1, in this section we allow for less restrictive configuraion
Namely, we will also allow for cycles in CTD sequences anct#jmally for specificity
cases. Moreover, we show howfféirent concepts of obligations as well as permissions
can be expressed within our logic.

Example 6.1(Extended Chisholm set with cycleyWe now add0:g and(O-tg to our
Chisholm configuration. Hence, we have a cyc, Ogt, Otg. The new conditional
obligationsOg and(O-g introduce a new progression: namely the one where we first

“Note that the placement of the double arrows as presentedfinitizm 5.4 item 6 is a function of the
labeling of the tree. This should not be taken as an indidatatependence. The reason is that the instruction
is generic and independent of the concretely given (obbigatthat are represented by) labels.

Our perspective is that the facts reflect the wishes of ourljarfihe double arrows enable them to force
their way to achieve what they want even if it violates oliigias. If what they want violates an obligation
the path will be labeled-". In this case a double arrow will free the way for them. This ¢ phrased
in a generic way that is independent of the concrete obéigatthat are in place. E.g., if they waksuch
a generic instruction which is independent of whether weel@awA or not is: if Ais illegal and hence the
path is barred by-' then use a double arrow to force your way. For more complexsfwt instruction is
the generic case distinctiorffered in item 6 of our Definition.

Another more subtle worry is the following. By means of the dewdrows we allow our family to react
to the given obligations and force their way to reach what thent. One may argue that the norm giver may
use a similar strategy: depending an what the individualsateasubjected to the norms do he may change
the norms. E.g., if there is a certain loophole in the tax sysded too many individuals use it in order to
avoid taxation the norm giver may adjust the law accordinglgrder to fill the loophole. Our reply is that in
this paper we consider the norms as statically given and wetstadyRSDL1 as a system to model norm
change.
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Figure 16: Extended Chisholm with fact$, g and obligationg)_:9, O:g

consider whethetrresp.—t is settled and then are concerned with the question whether
we should day. This is modeled semantically by introducing this sequendke tree.

See Figure 16. While the left hand side of the tree is as bef@r@dd the progressions
on the right hand side (i.e., the sub-tréase, &, ...) and(a,e, e,...)).

Example 6.2(Cycle withn = 3). We consider the following configuration

{O pla Opl p27 O—!pl_' p2’ Opz p3’ Oﬂpz_' p37 Op3 p17 O—\pg pl}
See Figure 17 for the modeling which is in analogy to the presiexample.

Example 6.3 (Makinson’s Moebius example)Makinson gave the following cyclic
example:

{Op1 sz Opz p39 Opg_'pl}
See Figure 18 for a model of this set.

Remark 6.4 (Parallel CTD sets, the problem with specificitydnother question is:
how to deal with parallel CTD sets such as

{xij - Oxij+l, cox].j - Qcoxij+1 li=n(j)-1j<m}

where for eacj < mthe setix’ — Ox',;,cox) —» Ocox' ., | i < n(j) - 1}isa CTD
set as in Definition 5.1.

If some of the CTD sets share a member, it may give rise to Sgigcicases. A
case of specificity occurs whenever we have a conditionaatibn OB and a more
specific contexA A A’ (whereAA A’ + AandA ¥ AA A’) such that: Oana B, andA’
is consistent witlB (¥ —(A” A B)). Itis hence a specific failure of monotonicity in the
condition of the obligation.

For instance, we can give another twist to the Chisholm séttbyducing a case of
specificity. While in Example 6.1 we h&d_.g, we could instead adg®_;—g (after all,
as a rule of politeness, you are supposed never to visit unerwed). Note that this set
cannot be modeled by means of the translation fiered for conditional obligations
in Sections 4 and 5. The reason is that: dbljged_;—g enforces that at some nodge
in the tree we haves F context(—t) A switch(—g), and (b) thaes £ opt(—g). However,
by obligedg we also havess £ opt(g) (in contradiction to (b)) since triviallyes E
context(T) A switch(—g).

SHence, if we want our logic to model these more general casesaweeth drop (*3) from our axiomati-
sation in Example 5.8.
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Specificity can easily arise when we combine two CTD setsghate members.
Take as a simple example the two CTD sais= {Oa,a —» Ob,-a — O-b} and
A, = {Oc,¢c —» Ob,—¢c —» O-b}. Now supposea A —c: due toa — Ob we expect
(a A =c) —» Ob, however, due te.c —» O-b we expecté A -c) —» O-b. Hence, we
either get a violation of the monotonicity af— Ob or a violation of the monotonicity
of -c —» (O-b. Since so far we have not introduced means to deal with spiegifi
cases, we cannot represent such combinations of CTD sets. _ _

However, if the various CTD sets do not share any literas, (fx/,cox! | i <
n(j)} N {X, coxt | i < n(k)} = 0 for all j # k wherej,k < m) we can easily construct
models such as the one in Figure 19 for the combination ofwleeGTD setsA; =
{Oa,a - Ob,—-a —» O=-b} andA; = {Oc, ¢ — Od, =¢c — O-d}.

Example 6.5 (Ross’ Paradox) The Ross paradox concerns the inference fiom

(“You ought to post the letter.”) t@(l v b) (“You ought to post the letter or burn it.”).

By many authors this is considered as being not in cohereithewr every-day usage

of disjunctive obligations. In our semantics we can embedRbss set paradox-free.
Figure 20 features a model fgol, - O (I v b), O-b, =l, =b}.

Remark 6.6 (Deliberative and Non-deliberative obligation$jote that our translation
of obligations has a deliberative flavor. Take for instariemefence example. Here we
have the constraint(w A = f) (a white fence is a fence, see Remark 5.9). Hence, in
Figure 9 (whereA is substituted byf andB is substituted byv), all the worlds above,
verify -w A = f. Nevertheless, we do not hawbliged_; —w. The reason is as follows.
We havee;, £ context(—f). However, we do not have k= switch(-=w) since we do not
havee, £ Ow. Thus, frome, on -w is necessary.

We can also express non-deliberative obligations in ounéssork:

obligedy B =gt [(/\i”:l o' (context(A) A switch(B) — opt(B))) A
(VLy 0 (context(A) A switch(B)))| v
[ AL, O (context(A) — context(B)) A /1L, Oicontext(A)]
What is new in comparison to the definitionaliged,B is the third line. It gives the
non-deliberative flavor to obligations and expresses abhged,B holds also if any

path leading tdA leads also td.
Note that the model in Figure 9 verifiesliged” ; —w.

Remark 6.7. Note thatobliged-(A — B) is not equivalent t@bliged., 4B in our logic.
This is demonstrated in Figure 21.

Remark 6.8 (Permissions) A permissionP,B can be expressed by means of

permitted;B =qr [( AfL, O' (context(A) A switch(B) — P-context(~B))) A
(\/inzl 0! (context(A) A switch(B)))] v
| ALy O (context(A) — context(B)) A /[, o!context(A)|

The first line expresses that whenever our family has thecelmtweerB and a path
that is compatible witlB, they are free to go for the second since the corresponding ar
is labeled by +'.

The second line enforces the correct succession in theseeea{so the discussion
of the definition ofobliged in Section 3). Were we to skip this requirement we would
face pragmatic oddities: e.g., the model in Figure 14a weatdy permitted;—g.
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Figure 20: Ross’ Paradox with facts, —=b
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Figure 21: A model that verifiesobliged(a — b) andobliged,b for the facts-a, =b

The third line expresses that in case every path leadidgs@lso leading td, our
family is allowed to bring abouB in the contextA (after all, in this context they have
no other choice).

Note that weak permissiori®A =4 = O —A are problematic for logics that block
the Ross-inference fro®l to O( v b) (such asSDLR1). The reason is that in such
logicsOl, =O(l vb) is consistent. Now given tha(l v b) is equivalent ta)— (=l A=b),
we getP(=l A =b), which is obviously counter-intuitive. Hence, our persiis is not
weak.

Note that the model in Figure 20 verifiegermission (I A =b), permission_;=b,
—permission, (=l A b), =permission. (=l A =b), and-permission-l.

Remark 6.9 (Separable and inseparable conjunctive obligatiodg)te that in our
translation of conditional obligations we do not get

obliged,(B A C) = obliged,B A obliged,C. (Sep)

Conjunctive norms of that kind are often referred to as ‘fiasable conjunctive norms”.
Consider the following example:
Figure 22 is a model of

{obliged(a A b), obliged_,—b, obligeda, —obligedb, obliged_,a, —obliged_,—a}

Suppose we are supposed to buy ingredients for a strawlseyvehich is to be baked
tonight for the visit of a good frienda stands for “buying flour” and stands for
“buying strawberry”. Suppose the shop is out of flour and weshre time left to go to
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Figure 22: Inseparable conjunctive norms: a modeltitied (aA b), ~obliged>"(aa
b), obliged--a, —obliged-. b, and factsa, —b.

another shop. In this case we have to cancel our plan to bakmakie and are supposed
not to buy strawberries since we have no use for them: hénhgeb. Now suppose
the shop ran out of strawberries but still has flour. Sincdlthe can still be used for
baking fresh bread, we are still supposed to bugitya. This situation is modeled by
the model in Figure 22. Note that this cannot be modeled if axel{Sep).

Now the question arises whether our logic is expressibleign@lso to represent
separable conjunctive norms for which (Sep) holds. Thislmachieved as follows:
where& ¢ Q', we defineobliged}™ \/ € just asobliged, \/ & by

/n\ O (context(A) A switch(B) — opt(B))
=

A [\n/ ¢! (context(A) A switch(B))
i=1

Moreover, we define:
obliged;™ (B A C) =4 obliged, "B A obligedx™C
obliged;—-B =¢ obliged,"B
obligedx™=(B v C) =4 obligedx™(-B A ~C)
obliged;™ (B A C) =g obligedx™(-B v —~C)
Figure 23 is a model afbliged>*"(a A b).

Remark 6.10(Temporal distinctions) The sequences encoded in the tree structure of
our models ffer means to express temporal successions. There are varterge-
tations. For instance we could interpret the fact that ommilfastands at a node with
contextA by A being the case. Another, less strict reading is that at thirgt pur family
considers the fact that they are going to realzes being settled (without it necessarily
already being realized). So in the Chisholm example they stayd at nodey which
means that they decided to go (for instance they all agresdhtiey will go). In this
case they may have next to consider whether they tell or ehétiey do not tell that
they are going.

The second reading is more apt for Forrester’'s gentle mer@ésample.

e O-k “Smith ought not to kill Jones.”

e k— (Og “If Smith kills Jones he ought to do it gently.”
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Figure 23: Separable conjunctive norms: a modeltified, (a b), obliged=*"(a b),
and factsa, —b.

See Figure 24. Of course, if the killing already took plads dlso already a matter of
fact whether the killing was gentle or not. However, if we githvthe second reading
we only consider it as being settled whether Smith decidddlitdones. So if Smith
reaches node, it makes still sense to make a decision betwagrande, -4 and hence
to consider the CTD obligation to kill gently.

Altogether, this gives us additional expressivity whiclm ¢z exploited. For in-
stance, we can express conditional obligations that arsgtaento the exact sequence
of decisions taken by the agent in question:

.....

n+1-m
/\ o't (context(Al)/\ /\ —context(Aj) —
=1
[n+1w(i11)

1<j<m

o' [context(Az)/\ A ~context(A;) —
=1 2<j<m

A

M- (is -1 ~(im1-1)
[. ) [ /\ o'™(context(Am) A switch(B) — opt(B))) .. ]]]]

im=1

n+1-m
/\ ol (context(Al)/\ /\ ~context(A;) —

=1 1<j<m

n+1-m—(ip—-1) )
{ /\ {o'zcontext(Az)/\ /\ ~context(A;) —

ip=1 2<j<m

n+1-m-(iy—1)—...~(im-1—1) .
{. .. [ /\ O'm(context(Am) A switch(B))] .. ]]m

im=1

The first “[.. .]"-conjunct expresses that whenever our family traverbessequence
Ay, ..., An and faces the choice between an arc leadingBand an arc that leading
to a node that is compatible wit, the former is labeled-’ while the latter is labeled
‘+'. The second ‘. .]"-conjunct makes sure that the each mod@&ts a path with the
sequencdy, ..., Ay and a choice betweerB and a path that is consistent wigh

Of course, we can also give a temporal account of the factdnkt@ance our family
may settle firs\;, thenAy, ..., thenA,. This can be expressed by

@°A1 A ... ANQTIA,
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Figure 24: The Forrester set with faéts-g
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Figure 25: Extended Chisholm with facts, —g in the sequence-Qg, —t)

Compare for instance Figures 16 and 25. Both models vetifgnd—g. However, in
the former we have the sequeneg,-g) and hence@?—t A @3-g while in the latter we
have the sequenced, —t) and hence?-g A @°-t.

Example 6.11(Extended Chisholm with specificityMe have already discussed why
our translation cannot model specificity cases (see Remdjk 6

Hence, in order to model specificity cases we need to altetranslation of condi-
tional obligations. As the examples in Remark 6.4 indictite translation need to be
more sensitive concerning the specificity of the given canfhis can be achieved as
follows. Wheres& ¢ Q' and

scontext( /\ &) =4¢ context( /\ E) A /\ —context( /\ EADP)
peQ'\{g.co()lges}

we translateD ) sA by

n
obligedSApgA =df /\ o' (scontext( /\ &) A switch(A) — opt(A))
i=1

and define
obligedy",C =4t obliged™*C A obligedy °C
obliged®", B =4 obliged;’*C

spe

obligedﬁ(AAB)

C =g obliged™y .C
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Figure 26: Extended Chisholm with fact$, ~g andO-;—g
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Figure 27: Extended Chisholm with fact$, -g and— O~ =g, - O-t g

obliged™? & C =g obliged™y .C

(AvB)
Given this translation, the model in Figure 26 is for the set

{obliged*°g, obliged$™t, obliged> -t, obligedg™t, obliged;**g, obliged®° ~g, -t, ~g}

Note that this model does not veribpliged,g. The reason is that the aec — €4
+-labeled and the are; — & 4 is ‘—'-labeled. Since we have k contextT, if
obliged, g were to hold we would have r opt(g). However, due to the labels of the
two arcs that emanate froepwe havee ¥ opt(g). Note also that despite the labels of
these arcs we hawebligeds™*g. The reason is thag ¥ scontextT. Indeed, the only

node wherescontextT holds ise. Since we have r opt(g), we also havebliged3"°g.

Another possibility is to alter the Chisholm set by addin@-: —g and— O~ 0.
This expresses that in case you don't tell, you are neithikgexdbto come nor are you
obliged not to come. Neither option is preferable to the othbe model in Figure 27
is for the set:

{obliged$™°g, obliged5"°t, obliged®y —t, obligedg™t, obliged;"*g,
-obliged*®-g, ~obliged**g, -t, ~g}
Example 6.12(Horty’s Asparagus, Specificity)Another well-known case of speci-

ficity is Horty's exampleO—-f and O,f where f is “eating with fingers” anda is
“eating asparagus”. The model in Figure 28 is for the set

{obliged®*®—f, obligeds"™ f, — f, a}
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Figure 28: The asparagus example with facfsa.
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Figure 29: Parallel CTDs with facts —b.

Example 6.13(Parallel CTD sets) By means ofobliged we can only model com-
binations of CTD sets that do not include any cases of spigifitee Remark 6.4).
However, sincebliged®® is able to tolerate specificity cases, we are now in the posi-
tion to model combinations of any number of CTD sets. E.gemi

- {[A xi] - oxtl,[A °°x.’;] = Ocox,, i =n(j) - 1] < m}

k<i k<i

we only need to merge the semantic trees for a6k X|]<) - Q)g'ﬂ, (Axsi coxi‘() -

Qcoxi'+1 | i < n(j)} so that they share the nodeande in order to get a model of.
Figure 29 is a model of the two CTD sets = {Oa,a —» Ob,—-a —» O-b} and

A, = {Oc,c —» Ob,—-c —» O-b}. As noted in Remark 6.4 this example cannot be

modeled by means ahbliged since it includes a specificity case. The model in Figure

29 verifies

{obliged®"®a, obliged;’ b, obliged™;’ -b} U {obliged*¢c, obligeds"*b, obliged> —b}
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7 Comparison with the Jones—Brn system DL®

It is illuminating to compare our system with the syst&h presented in the classic
paper [18] of Jones anddin in 1985.

They focus in their paper on the Chisholm paradox affief@n page 278 semantics
of the form 6, Ry, Ry, h), whereRy, Ry € S? are serial and

Cl: ReNnRy=w
C2: {(x,XIxeS}CRURy

The two relations correspond to modalit@andO’.

Let OA =4 OA A O'A. After some serious and illuminating discussion Jones and
Porn translate the Chisholm set into their system as foll@see page 284):

Let Oughtp =4t Op A = O’ p. Then the Chisholm set becomes (note that Oymght
is also equivalent t@p A —op, and thus the translation below does not Gg&

1. Oughtp

2. o(p —» Oughtq)

3. o(=p — Ought—q)
4. -p

Their proposal was criticised by Hanson [16] and repliedrimidiately in [17].
We will continue the criticism in the spirit of Hanson and shthat the solution
proposed by Jones an@di to the Chisholm paradox is not closed under substitution

Remark 7.1 (Substitution in the Jonesa system) We show that the solution of the
Chisholm paradox proposed in the JonésrPsystenrDL in [18], is not closed under
substitution.

We observed that if we take the Chisholm set (see exampleash@®)substitute
H = =F andT = =(F A W), we get the fence paradox if we ignore the CTD linguistic
formula—H — O(=T). Thus if the Jones-#tn solution is consistent and independent
it must solve the fence paradox under the above substitutiowever, it does not. We
get an inconsistent set under the above substitution.

The Jones-&n translation is into the modal logic wifR, andR, as we have shown
in the beginning of this section. By substituting the fenagables we get

1. Oughtfence

2. o(=fence— Ought&(fenceA white)))
3. o(fence— Ought(fence\ white))

4. fence

Recall that OughK = OX A —=OX.
Let F = fence W = white we get

5The perceptive reader might ask why are we comparing with thesJand Brn system, when there are
many other systems to discuss, especially those which userenéial ordering, a device which can also be
simulated by reactivity. The answer is simply pragmatic: Pragstematic comparison with other systems
requires technical development and can be the subject ofsequbnt paper. The comparison with Jones
and RBrn is simple and quick and we already studied this system]in [5
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Figure 30

1. O-F AOF

2. 0(=F = O(=(F A W)) A 0(F A W))
3. O(F - O(F A W) A 0=(F AW))

4. F

Let us check whether the above is consistent.

Let (S, Ry, Ry, @, h) be a model of (1)-(4) above, witRy € Ry andR; reflexive and
Ro aKD modality.

So undeh assume (1)—(4) hold a We claim (1), (3) and (4) (the fence example)
is already inconsistent.

Use Figure 30 for help.

From (1) we get thaa £ 0F A O=F, hence for some; such thabR;x; A —aRyx;
we havex; £ F. We say—aRyx; becausa £ O-F. Letyy,...,Ym in the figure be all
Ry accessible points ta. m > 1 becaus® is aD modality we havey; £ —F.

From (4) we geta = F. From (3) and reflexivity we get th&(F A W) must hold at
a but this is not possible singe > 1 and—F holds aty;. Note that (2) can hold in the
model if we add pointg;, w; as indicated!

Note that Remark 7.1 could have been written in 1985. It hakimg to do with
reactivity. It is a straightforward calculation in the saspgrit as Hansson 1989, see
[16]. For a serious analysis of the Jones addhPL985 system using two-dimensional
modal logic and other pre-1985 methods, see [5].

8 Conclusion and comparison

We would like to compare this paper with several other papersvrote which make
use of the reactive idea. We use the Chisholm paradox as ataiyefor comparison.

In Section 6 (see Remark 6.4) we ha®eced the following generic characterisa-
tion of combinations of various Chisholm sets of arbitraepth:

{xij - Qxij+1, coxij - Qco><ij+l li<n(j)-1j<m
The following are problems to be solved:

GP Give alogic and reactive semantics for the general probienm andn arbitrary.
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We have two options for the logic we use:
1. atraditional Hilbert System with Reactive Kripke Seniesfor it, or

2. amost general Labelled Deductive System for GeneraltRedtripke Seman-
tics

We can break the general probldgai into several particular one@P, which we
may solve for the time being, using simpler models.

PP1 SolveGP for the casen = 1, andn arbitrary, i.e., a single arbitrary long chain of
Chisholm like contrary to duties, only paying attentionte violation ordering
while neglecting temporal considerations.

PP2 SolveGP for the casen andmarbitrary, i.e. for several Chisholm like sets, taking
into account both the violation order (indicated by the seme 1...,n(j) for
eachj < m) and temporal considerations.

PP3 SolveGP by giving a general Labelled Deductive system semanticadfyhout
giving any proof theory for it.

PP4 Add a labelled proof system ®P3

PP5 Offer a solution with a new type of modelling, like argumentatar automata
theory.

We now make our comments:

1. In the present paper we firsffered a solution t&°P1 (see Section 5) by using

a semantic approach. Wé&ered a reactive model where the annotations to arcs

mirror the obligations and where there are double arrowkvban change the
annotations. The latter represent the given facts. Usinf semantics we can
translate the traditional Chisholm set into a language thightwo modalities
ando.

In Section 6 we demonstrated how the present approach caseoeto tackle
PP2 We discussed combinations of CTD sets. We pointed out htevaotions
between various CTD sets can lead to complications such exsfisfty cases
and how to deal with them in our semantics. We also demoestiaawRSDL1
can be used to model temporal considerations.

2. We now compare with other papers using the reactive idea.

(a) Paper [9] is a general paper, introducing for the firsettire idea of reac-
tivity.

(b) Papers [10, 11] use a similar semantic approach to dehl tve single
Chisholm paradox with two letters (go, tell) where the tenapaspect is
also taken into account. Part A ([10]) deals with the senaantie. it solves
PP3 Part B ([11]) deals with the proof theory, i.e. papers [11), dddress
PP4by means of the Labelled Deductive System approach. Inactan
deal with several letters. Once we have semantics, we camvitha fam-
ily of general Chisholm sets, because we can evaluate thdividoally.
The problem is that they may interact and so we need to prokessfirst
and this requires proof theory.
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(c) Paper [14] uses an axiomatic Hilbert type approach,maaiesing the reac-
tive semantics and is capable of translating any singleHohis set with
arbitrary number of lettera(> 2), including an arbitrary temporal order
(different from the obligatigiriolation order).

We believe the axiomatic approach can handle several Ahistets (n,n
arbitrary), but a complete temporal order for all sets stidnd given. So
for example the case oh = 1,n = 2 would require a complete temporal
order, sayx; < X1 < z < 2, and the resulting translation and modelling
will be different from what we proposed in (1) above.

(d) Paper [5] is based on Jones arirP[18] and addresses the problem dis-
cussed in Remark 7.1 of the present paper, the solution afhwigiquires
a modified model. We use axiomatic two-dimensional templogik to
model the Chisholm casen(= 1,n = 2). Strangely enough we do not
model the temporal order. We do not think it is possible to ddnsthis
approach. We use the obligatjgiolation progression (ge: tell) as our
“virtual time”, and it is not clear how to account for real #nas well.

We believe that combining the approach of the present pajtertinat of
[14] will allow us to model the most general family of Chishokets (i.e.
m, n aribtrary with arbitrary temporal order) without using ttheory of
Labelled Deductive Systems . This is probably possible bggumulti-
modal logic. However, this way we may not achieve an intaitivodel but
rather a purely technical one.

3. Completely new ideas tacklirgP5can be found in papers [13, 2]. The direction
in which they go is clear from their titles.
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