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Abstract

Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses.
Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly
stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal
immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this
study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeGntd/dsc,
engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The
generated transplastomic tobacco plants accumulated up to 2.0 g rFaeGntd/dsc per 1 kg fresh leaf tissue (more than 1% of
dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that
chloroplast-produced rFaeGntd/dsc protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4
receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix
was shown to delay degradation of the chloroplast-produced rFaeGntd/dsc in gastrointestinal conditions, demonstrating a
potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing
the rFaeGntd/dsc protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC
infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine
PWD.
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Introduction

Enterotoxigenic Escherichia coli (ETEC) strains that produce long

proteinaceous appendages on their surfaces, called F4 fimbriae

(F4+ ETEC), are the key culprit for Post-Weaning Diarrhea

(PWD) among newly weaned piglets worldwide, which results in

morbidity, reduced growth and mortality, causing severe econom-

ic losses. These ETEC strains are often associated with multire-

sistance to several antimicrobials probably caused by the

prophylactic use of antibiotics [1,2]. Following deprivation of

passive lactogenic immunity from parenterally vaccinated sows,

the small intestine in newly weaned piglets becomes the main

gateway for invading pathogenic F4+ ETEC, which infect,

colonize and produce enterotoxins, changing the water and

electrolyte flux of the small intestine and leading to PWD, weight

loss and often death [3,4]. Vaccination of weaned piglets would be

a desirable means of controlling ETEC-induced PWD; however,

an effective vaccine against porcine PWD, which is cheap to

produce and administer, is currently unavailable. Injectable

vaccines, such as those administered to sows are expensive and

tend to stimulate systemic rather than protective mucosal immune

responses needed to prevent intestinal ETEC infection [5].

Encoded by the fae operon, F4 fimbriae are polymers, composed

mainly of several hundreds of identical protein subunits called

FaeG, as well as minor subunits, such as FaeC, FaeF, FaeH and

FaeD [6,7]. The periplasmic chaperone FaeE plays a crucial role

in F4 fimbriae assembly, which occurs through a donor strand

complementation/exchange mechanism [8,9]. Initially, FaeE

interacts with the C-terminal part of FaeG and complements its

folding with a chaperone donor b-sheet, following which the

donated b-sheet is replaced by an N-terminal b-sheet of another

FaeG subunit. This completes the folding of each subunit and

connects the subunits to each other to form the polymeric F4

fimbriae structure [8]. Three serological variants of F4 fimbriae,

namely F4ab, F4ac and F4ad have been identified by differences in

the sequence of the major subunit FaeG, which contains conserved

regions designated ‘‘a’’ and variable regions forming ‘‘b’’, ‘‘c’’, and

‘‘d’’ determinants [9–14].

The F4 fimbrial adhesin FaeG mediates F4+ ETEC

adherence to F4-specific receptors (F4R) on small intestinal

enterocytes, thus initiating a primary and essential step for

infection [15–18]. Being an important F4+ ETEC virulence

factor, the FaeG protein was shown to possess strong antigenic

properties, and was identified as a prospective candidate for the
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development of an oral subunit vaccine against F4+ ETEC

infections [19–23]. Oral vaccination of piglets with recombi-

nantly-produced FaeG induced F4-specific systemic and mucosal

immune responses [5,21,23,24].

The feasibility of production of a functional recombinant (r)

FaeG protein has been investigated in bacteria [23,24] and in

plants [20,21,25–27]. Initial studies in E. coli showed that rFaeG

was found in an insoluble and inactive form in inclusion bodies,

and laborious re-folding procedures were required for production

of a conformational rFaeG structure similar to that in native F4

fimbriae, yet much less stable [23,24]. On the other hand, nuclear-

transformed tobacco plants, expressing rFaeG targeted to different

sub-cellular compartments, demonstrated that the chloroplast was

a superior environment for accumulation of a soluble and stable

form of rFaeG, which reached 1% of total soluble proteins (TSP)

[25,28]. Structural characterization of the chloroplast-targeted

rFaeG protein revealed a unique spontaneous assembly of the

rFaeG protein monomers into strand-swapped dimers, in which

the monomers mutually complemented each other’s fold, confer-

ring its stability and suggesting existence of a chloroplast-residing

FaeE-like chaperone [28]. Based on the crystallized structure of

the chloroplast-accumulated rFaeG dimers, an N-terminal-deleted

(ntd), donor-strand-complemented (dsc) monomeric rFaeG

(rFaeGntd/dsc) was designed. In rFaeGntd/dsc the N-terminal

domain, which is involved in donor strand exchange between

native FaeG subunits during fimbriae assembly was fused to the

FaeG C-terminus through a linker, allowing it to fold back and

stabilize the core FaeG, resulting in a soluble and stable

monomeric structure [8]. Although the structural and biophysical

properties of rFaeGntd/dsc were extensively characterized [8], the

capacity of this engineered FaeG variant to express to high levels

in plants and serve as an oral subunit vaccine against F4+ ETEC

remains unknown.

Plant-produced subunit vaccines present a safer choice than the

conventional recombinant production systems, such as bacteria,

yeast or mammalian cells, since contamination risk with mam-

malian pathogens and/or endotoxins is minimized. High safety

standards of plants as bio-factories are coupled with low

production and delivery costs and ease of scale-up, which makes

plants a preferable recombinant production platform [29–34].

Further, plants with a transformed plastid genome (plastome) have

persistently demonstrated capability to produce very high yields of

various foreign proteins, reaching 20–40% TSP in leaf tissue [35–

39]; for review see [40–43]. In comparison with classical nuclear

transformation, plastome engineering is considered to have several

advantages, such as lack of positional effects or transgene silencing.

Plastomes are nearly exclusively maternally transmitted, providing

almost perfect biological containment for the engineered genetic

material [44,45]. Chloroplast-expressed proteins are not glycosy-

lated, eliminating the possibility of addition of potentially

allergenic non-mammalian glycans to recombinant proteins; this

feature makes transplastomic technology particularly favourable

for expression of non-glycosylated proteins of prokaryotic origin

[46,47]. Indeed, successful and prolific expression of vaccine

antigens in engineered chloroplasts has been reported in numerous

studies (for review see [42,48,49]).

In the present study we report the high level production of the

rFaeGntd/dsc protein in transplastomic tobacco plants as well as

in vitro characterization of its vaccine properties. Cumulatively, our

results support the development of rFaeGntd/dsc as a protective oral

subunit vaccine against F4+ ETEC, as well as underline that

transplastomic tobacco is a very efficient platform for rFaeGntd/dsc

production.

Results and Discussion

Chloroplasts can Accumulate High Levels of rFaeGntd/dsc

Chloroplast-targeted dimeric rFaeG accumulation reached 1%

TSP in nuclear-transformed tobacco and alfalfa plants [21,28].

Recently reported transplastomic tobacco plants expressed rFaeG

only up to 0.15% TSP [27], pointing out possible limitations of

tobacco chloroplasts as a sequestration compartment for higher

rFaeG yields. To test whether chloroplasts have the capacity to

accumulate larger amounts of the monomeric variant rFaeGntd/dsc

[8], we utilized the speed and convenience of transient expression

via agroinfiltration in Nicotiana benthamiana leaves. Transient

expression, coupled with suppressors of post-transcriptional gene

silencing usually yields high accumulation levels of recombinant

proteins [50], [51]. The results showed that transiently-expressed,

chloroplast-targeted rFaeGntd/dsc accumulated up to ,15–20%

TSP (Fig. 1), thus demonstrating the potential of chloroplasts to

accumulate high levels of the rFaeG protein. Additionally, areas in

leaves agroinfiltrated with the rFaeGntd/dsc-expressing construct

did not show any signs of necrosis, resembling in appearance areas

of leaves infiltrated with the control construct expressing the p19

suppressor of posttranscriptional gene silencing alone, unlike our

previous results with GFP targeted to the ER, which exhibited

complete necrosis of the infiltrated area [52]. These results suggest

that high-level accumulation of rFaeGntd/dsc in chloroplasts is not

harmful to the leaf tissue.

Plastid Transformation Construct Design and Production
of Transplastomic Tobacco Plants Expressing the
Recombinant Adhesin rFaeGntd/dsc

Numerous viral and bacterial antigens have been expressed in

chloroplasts with levels of expression varying from 0.002% TSP

[53] to 72% total leaf proteins [54]; reviewed in detail by [42].

Because we found that chloroplast-targeted FaeGntd/dsc can

accumulate to high levels transiently, we decided to express it

from the tobacco chloroplast genome. The chloroplast transfor-

mation cassette of the pCT-rFaeGntd/dsc construct (Fig. 2a) was

designed to minimize the use of endogenous tobacco regulatory

elements, therefore eliminating the possibility of foreign gene loss

through deleterious homologous recombination between the

duplicated sequences in the transformed plastome [55]. For that,

only two tobacco endogenous cis-acting elements were utilized in

the cassette: the chloroplast promoter of the psbA gene (PpsbA)

along with its 59 UTR was used for expression of the rfaeGntd/dsc

gene; and the intercistronic expression element (IEE), shown to

facilitate efficient processing of polycistronic mRNAs [56], was

placed upstream of the aadA gene. The transformation cassette was

integrated into the tobacco plastome between the tRNA-isoleucine

(trnI) and tRNA-alanine (trnA) genes, a transcriptionally-active spacer

region which is transcribed as a part of the rrn operon from a

strong promoter (Prrn) [57]. Read-through transcription from the

endogenous Prrn was exploited for expression of the aadA gene,

conferring spectinomycin resistance to transformed chloroplasts.

Finally, to stabilize nascent transcripts and prevent degradation by

plastid 39 nucleases, the open reading frames of aadA and rfaeGntd/

dsc were fused with heterologous 39 UTRs with poor homology to

tobacco plastome sequences (Fig. 2a). Hence, our tobacco

chloroplast transformation cassette was designed to produce

separate monocistronic mRNAs, differing in that way from the

construct for transplastomic expression of rFaeG described by

another group, where the aadA-faeG genes, arranged as an operon

in that order, were transcribed from one promoter as dicistronic

mRNA [27].

ETEC Subunit Vaccine Produced in Chloroplasts
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We recently identified Nicotiana tabacum cultivar I 64 as the most

effective for transiently-expressed recombinant protein production

[58]. Additional characteristics, such as high biomass and

relatively low alkaloid levels, make cv. I 64 a valuable low-cost,

efficient and practical delivery vehicle for an oral vaccine that can

stimulate mucosal immunity in the intestine of animals. To our

knowledge, there are no reports on chloroplast transformation in

N. tabacum cv. I 64, hence it was of particular interest to obtain and

characterize transplastomic cv. I 64 plants expressing the

rFaeGntd/dsc protein.

Transplastomic tobacco cv. I 64 plants were obtained by

biolistic delivery of pCT- rFaeGntd/dsc (Fig. 2a). Regenerated

transplastomic plants showed a phenotype identical to wild type

(WT) and were fertile (Fig. 2b). Homoplastomy of these clones was

confirmed by a Southern blot, which displayed specific binding of

the probe to bands of predicted size for transformed and WT

untransformed plastid DNA, showing complete absence of WT

plastome copies in the transplastomic lanes (Fig. 2c). A higher

molecular weight signal was apparent in all three lanes, probably

caused by partially digested ctDNA. We observed very high

transformation frequencies, generating 14 independent transplas-

tomic clones after bombardment of 3 tobacco cv. I 64 leaves.

Using the same transformation construct, we found comparable

transformation rates (15 transplastomic clones from 5 bombarded

leaves) in our low alkaloid N. tabacum cv. 81V9 [59]. This is an

important finding, given the limited number of published reports

on successful chloroplast transformation in tobacco varieties other

than the small variety Petite Havana and considerable recalci-

trance of some tobacco varieties to chloroplast transformation

[60–62].

To acquire insight into the spatial accumulation pattern of

rFaeGntd/dsc in the whole plant, transplastomic clones were

examined for rFaeGntd/dsc expression before flowering. Samples

were taken from 10 leaves, top to bottom (Fig. 3a); proteins were

extracted in buffer EB1 at pH 4.9, separated by SDS-PAGE and

the gels were stained or immunoblotted (Fig. 3b). Buffer EB1 was

used because RuBisCo and other proteins precipitate at that pH

while rFaeGntd/dsc does not. Therefore, the recombinant protein

would be easier to visualize in case expression levels are not very

high. We found that a band corresponding to rFaeGntd/dsc was

clearly visible in all samples in the stained gel; this band was also

immunoreactive with anti-FaeG serum, confirming accumulation

of rFaeGntd/dsc in young as well as in old leaves (Fig. 3b). It’s

worthy to notice that accumulation of rFaeGntd/dsc appeared to be

slightly higher in old leaves than in young leaves, whereas the

amount of plant endogenous proteins diminished (Fig. 3b). This

observation suggests continuous accumulation and stability of the

rFaeGntd/dsc protein inside chloroplasts throughout plant devel-

opment, probably due to the unique donor strand complementa-

tion structure of the rFaeGntd/dsc monomers [8]. We also observed

a less abundant band of ,58 kDa on the immunoblot, likely

corresponding to dimerized rFaeGntd/dsc (Fig. 3b, lower panel).

Formation of strand-swapped dimers of rFaeGntd/dsc could bring

about a stabilizing effect on the protein; this was described for a

different chloroplast-targeted rFaeG variant expressed in tobacco

nuclear transformants [28].

Purification and Yield of rFaeGntd/dsc

After confirming expression of rFaeGntd/dsc in transplastomic

clones, we purified chloroplast-produced rFaeGntd/dsc and used it

as a positive quantifiable control for quantification of rFaeGntd/dsc

yield in transplastomic plants. Since the majority of plant proteins

are insoluble at pH,5.0, while the rFaeG protein remains soluble

and stable [26,63], we acidified the extract to pH = 2.0, causing

most plant proteins to precipitate. The rFaeGntd/dsc protein in the

clarified extract was then purified by immobilized metal ion

affinity chromatography (IMAC), utilizing the N-terminal His-tag

fusion (Fig. 4a). The concentration of purified rFaeGntd/dsc was

assessed by comparison with known amounts of bovine serum

albumin (BSA) using densitometry (Fig. 4b).

Because our goal in the near future is the oral administration

of leaves containing rFaeGntd/dsc to weaned piglets, precise

quantification of rFaeGntd/dsc accumulation in transplastomic

leaves is essential for delivery of standardized vaccine doses to

animals. Therefore, we determined the accumulation of

rFaeGntd/dsc per leaf fresh weight and dry weight. For this, we

homogenized fresh leaf tissue in 10 volumes of extraction buffer

and used this crude homogenate for determining the amount of

rFaeGntd/dsc (Fig. 5a, lane 2). To verify if any rFaeGntd/dsc was

trapped in insoluble debris, the crude homogenate was centri-

Figure 1. Accumulation of chloroplast-targeted, transiently-
expressed rFaeGntd/dsc. Transient expression of the rFaeGntd/dsc

protein via agroinfiltration in Nicotiana benthamiana leaves was
examined by SDS-PAGE and staining (a), and immunoblot analysis (b).
Lanes 1 and 225.0 mg of protein extract of leaves co-infiltrated with
Agrobacteria carrying chloroplast-targeted rFaeGntd/dsc and the p19 viral
suppressor of post-transcriptional gene silencing (1), or p19 alone as
negative control (2). rFaeGntd/dsc is indicated with a black rhomb, higher
bands likely correspond to rFaeGntd/dsc with partially cleaved transit
peptide; Lane 320.5 mg purified F4ad fimbriae as positive control, the F4
native FaeG is indicated with a black triangle; the ,2 kDa difference in
size of rFaeGntd/dsc (29 kDa) and the native FaeG (27 kDa) is due to the
additional complementing fused domain.
doi:10.1371/journal.pone.0042405.g001
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fuged; the TSP-containing supernatant was removed and the

pellet was re-extracted with an equal volume of extraction buffer.

Equal volumes of crude homogenate (Fig. 5a lane 2), supernatant

(Fig. 5a, lane 4), and re-extracted pellet (Fig. 5a, lane 3) were

separated by SDS-PAGE and analyzed by western blotting.

When compared with known amounts of purified rFaeGntd/dsc

(Fig. 5a, lanes 5–8), densitometry indicated that 0.2 mg of

rFaeGntd/dsc is present in 0.1 g of leaf tissue, that about 25% of

the rFaeGntd/dsc is trapped in cell debris, and that rFaeGntd/dsc

represents 11.3% TSP of the first supernatant (Fig. 5a, lane 4).

Upon extraction of freeze-dried leaf tissue, we found that

rFaeGntd/dsc constituted 1% of dry leaf weight and 11.3% of

TSP, indicating that rFaeGntd/dsc is stable in dried leaves. The

prolific expression of rFaeGntd/dsc in the generated transplastomic

plants suggests that transient expression coupled with chloroplast

targeting can be an effective tool for rapid evaluation of the

potential of a protein to be successfully expressed in chloroplasts

via engineered plastome, even though actual expression levels

cannot be predicted.

Our result represents more than a 75-fold increase in the

expression levels of rFaeG adhesin compared with previously

reported transplastomic tobacco plants expressing a different

rFaeG variant [27]. Our construct was designed to express

rFaeGntd/dsc from the psbA gene promoter and 59UTR (PpsbA),

while [27] arranged their construct as an operon aadA-rfaeG

transcribed as dicistronic mRNA. Although in some cases, a

similar operon structure resulted in high yields of foreign proteins

[64–66], a certain bias was demonstrated in the preference of the

plastid translation machinery toward predominant utilization of

the 59-most Shine-Dalgarno (SD) sequences on polycistronic

mRNAs, while recognition of internal SD sequences is inefficient

[67]. Interestingly, expression of human serum albumin (HSA)

from a construct built as an operon aadA-HSA resulted only in

0.02% HSA of total leaf protein, whereas a 360-fold increase in

HSA accumulation was observed when the HSA gene was placed

under the control of the PpsbA and its 59 UTR region [68]. In that

study, differences in HSA mRNA steady state levels could not

account for such a boost in HSA expression, suggesting that the 59

UTR of the psbA gene was associated with strong enhancement of

translation; this is supported by similar findings from other studies

[69–71]. Our results confirm the idea that the psbA 59 UTR

mediates efficient translation of the rFaeGntd/dsc-encoding tran-

script which at least partly explains our high levels of rFaeGntd/dsc

compared to the work of [27]. Another factor that could account

for high rFaeGntd/dsc accumulation is the structural specificity of

the variant we used, which was engineered to have a comple-

menting donor strand previously reported to stabilize rFaeGntd/dsc

in its monomeric soluble form [8].

Because translation of rFaeGntd/dsc is controlled by the 59 UTR

region of the psbA gene, which was reported to be induced by light

Figure 2. Homoplastomic lines show normal phenotype. (a) A schematic representation of the chloroplast transformation cassette (pCT-
rFaeGntd/dsc). The cassette was designed to integrate between the trnI (tRNA-Ile) and trnA (tRNA-Ala) genes of the tobacco plastome. The wild type
(WT) plastome trnI - trnA region is shown at the bottom. Expected sizes of Rsr II-digested fragments are indicated. Thick black lines represent
hybridization sites for the probe used in Southern blot analyses. IEE = intercistronic expression element with the Shine-Dalgarno sequence from the
59 UTR of bacteriophage T7 gene 10 fused to the 39 end; aadA = gene encoding aminoglycoside 39 adenylyltransferase for spectinomycin resistance;
TpsbC = 39 UTR of psbC from white poplar plastome; PpsbA = 59 UTR and promoter of tobacco psbA gene. rfaeGntd/dsc = gene encoding the rFaeGntd/

dsc protein variant. TrbcL = 39 UTR of rbcL from white poplar plastome. (b) Phenotypes of mature transplastomic tobacco cv. I 64 plants transformed
with pCT-rFaeGntd/dsc (1 and 2) were indistinguishable from WT plants (3). A one-meter ruler was photographed to the left of each plant as size
reference. (c) Confirmation of homoplastomy. Southern blot analysis of total plant DNA from 2 independent transformants and 1 untransformed
plant displayed a single band of the expected size.
doi:10.1371/journal.pone.0042405.g002
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[70,71], we compared levels of rFaeGntd/dsc in the leaves of two

greenhouse-grown transplastomic clones, harvested before sunrise

and before sunset of a sunny day on three different days. Analysis

of the collected samples did not reveal any diurnal variation in the

levels of rFaeGntd/dsc accumulation (Fig. 5b), suggesting a very low

rate of foreign protein turnover in chloroplasts, which is supported

by the observation of higher rFaeGntd/dsc levels in older leaves

(Figure 3b). Although some studies that utilized PpsbA 59 UTR

reported an impact of light on recombinant protein accumulation

[54,68], others described results similar to ours [72], supporting

the general concept that a decrease in translation efficiency by psbA

59-UTR in darkness may be compensated by an increase in

protein stability under these conditions [73], [74]. Thus, with

respect to rFaeGntd/dsc yield, leaves can be harvested without

concern for length or intensity of exposure to light.

Stability of rFaeGntd/dsc in Simulated Gastrointestinal
Conditions

Stability of an orally-delivered ETEC vaccine in conditions

present in porcine stomach and intestine is a prerequisite for

successful stimulation of the mucosal immune response in the

piglet gut [75,76]. To test whether chloroplast-produced

rFaeGntd/dsc would survive porcine gastrointestinal conditions,

we ran in vitro assays in simulated piglet gastric and intestinal fl

uids (SGF and SIF, respectively). In those assays we used either

purified rFaeGntd/dsc protein or freeze-dried, pulverized

rFaeGntd/dsc-expressing leaf tissue as a substrate in a time

course experiment over 2 hours. The acidity of SGF was

adjusted to pH = 3.5, representing an average baseline pH in

piglet stomach [76]. These SGF conditions brought about rapid

degradation of the purified rFaeGntd/dsc, which was undetectable

after 5 minutes of digestion (Fig. 6a). Testing the rFaeGntd/dsc-

expressing leaf tissue as a substrate we found that addition of

0.2 g of lyophilized leaf material in 20 ml of SGF at pH = 3.5

increases the pH of the solution to pH = 4.5; this likely reflects

the in vivo situation, where the gastric pH of fed pigs rises to 4.4

[77]. In man, the postprandial gastric pH was reported to rise

up to 6.0 and then gradually drop to pH = 2.0 over a 4 h

period [78]. At pH = 4.5, we found that biomass-embedded

rFaeGntd/dsc was stable over the 2-hour digestion in SGF

(Fig. 6a, lower panel). However, because a pH of 4.5 weakens

the proteolytic function of pepsin, and to determine the survival

of rFaeGntd/dsc at a pH of 3.5, the initial SGF solution was

acidified to pH = 2.0 prior to addition of the leaf biomass. In

this experiment, powdered lyophilized leaves were thoroughly

ground in acidified SGF in a mortar and pestle, thus simulating

Figure 3. Spatial accumulation of rFaeGntd/dsc in transplastomic tobacco plants. (a) Schematic showing the 10 leaves sampled to assess the
spatial accumulation of rFaeGntd/dsc in transplastomic tobacco plants. (b) Samples examined on SDS-PAGE stained gel (upper panel) and western blot
(lower panel). Each lane was loaded with an extract from either ,2.3 mg of leaf tissue (stained gel), or ,0.5 mg (immunoblotted gel). WT = leaf 4
from an untransformed plant. A band of the predicted size (29 kDa, indicated with a black rhomb) corresponding to rFaeGntd/dsc was observed in all
transplastomic leaf samples, but was absent in the WT. This band was immunoreactive with anti-FaeG serum on the Western blot. kDa - protein
molecular weight marker.
doi:10.1371/journal.pone.0042405.g003

Figure 4. Purification of rFaeGntd/dsc from crude plant extract
and quantification. (a) rFaeGntd/dsc was extracted from 5 g of mature
transplastomic leaf tissue and purified. The initial volume of the extract
was 50 ml; 3 ml of the extract from each step of the procedure were
resolved by SDS-PAGE and stained. Lane 1 - Initial extract from leaf
tissue, pH = 7.5; lane 2 - extract acidified to pH = 2 and centrifuged; lane
3 - clarified extract neutralized to pH = 7.4; Lane 4 - flowthrough from
IMAC column; Lane 5 - wash with 20 mM imidazole; Lane 6 - elution of
purified rFaeGntd/dsc; Lane 7 - 0.5 mg of BSA as loading control; kDa -
protein molecular weight marker. (b) Purified rFaeGntd/dsc was
quantified using densitometry. Dilutions of the purified rFaeGntd/dsc

protein (lanes 1 through 7) were resolved in SDS-PAGE gel along with
known amounts of BSA (lanes 8–14; 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05 mg
BSA, respectively) and stained. BSA bands were used for generation of a
standard curve (R2 = 0.987; p = 0.01) and extrapolating rFaeGntd/dsc

concentration. kDa - molecular weight marker.
doi:10.1371/journal.pone.0042405.g004

Figure 5. Accumulation levels of rFaeGntd/dsc in transplastomic
leaf tissue. (a) Samples of equal volume (4 ml) were prepared from
crude extract fractions. Lane 1 - WT extract (negative control); lanes 2, 3
and 4 represent crude extract of 0.4 mg of leaf tissue, re-extracted
pellet, and clarified extract, respectively, where clarified extract contains
5 mg TSP. The rFaeGntd/dsc yield was estimated using a standard curve
(R2 = 0.993) of known amounts of purified rFaeGntd/dsc (lanes 5 through
8:2 mg, 1 mg, 0.5 mg and 0.25 mg, respectively). (b) No variation in
rFaeGntd/dsc accumulation was observed in transplastomic clones (C1,
C2) after dark (D) or after light (L) periods. Image is representative of
sampling on three different days, 1 mg TSP was used per lane. WT =
untransformed control.
doi:10.1371/journal.pone.0042405.g005
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chewing and gastric mixing. Degradation of rFaeGntd/dsc

embedded within the plant tissue was slower than that of

purified rFaeGntd/dsc, with the protein still detectable after 15

minutes of digestion (Fig. 6a). Thus, the plant biomass matrix

demonstrated a potential in delaying degradation of chloroplast-

produced rFaeGntd/dsc in piglet gastric fluid, probably by

providing an abundant competitive substrate in the form of

endogenous plant proteins for gastric proteases. Also, the

physical complexity of the plant biomass may have a ‘‘bio-

encapsulating’’ effect and act as a preserving slow-release factor,

and delaying access of gastric proteases to chloroplast-expressed

rFaeGntd/dsc. On the other hand, the SIF assay with both

purified rFaeGntd/dsc and rFaeGntd/dsc-expressing leaf biomass

had very little impact on rFaeGntd/dsc protein survival (Fig. 6b).

These results therefore emphasize that gastric digestion repre-

sents the limiting step for the stability of chloroplast-produced

rFaeGntd/dsc inside the piglet gastrointestinal tract, and that leaf

biomass could possibly serve as a shelter-vehicle to protect

rFaeGntd/dsc from digestion. Since gastric fluid pH plays an

important role in rFaeGntd/dsc degradation, oral administration

of lyophilized leaves expressing rFaeGntd/dsc would be most

effective if the vaccine is ingested upon neutralization of piglet

gastric pH with a proton pump inhibitor such as rabeprazole, as

was shown with E. coli-produced rFaeG monomers [24]. It has

also been previously shown that embedding in a protective

excipient improved F4 fimbriae stability against gastric acidity

and proteases [79]. Therefore, it is reasonable to propose testing

oral administration of rFaeGntd/dsc-expressing leaf biomass,

possibly coupled with neutralization of gastric pH or embedding

in a protective excipient as a new vaccination strategy against

F4+ ETEC infections in newly weaned piglets.

Functional in vitro Analyses of Chloroplast-expressed
rFaeGntd/dsc

To test the functionality of chloroplast-produced rFaeGntd/dsc,

we performed an F4-specific ELISA and examined the binding of

rFaeGntd/dsc to the brush borders of porcine F4R+ small intestinal

villi. Additionally, we assessed the ability of rFaeGntd/dsc to

competitively inhibit the attachment of F4+ ETEC to these villi.

Both purified F4 fimbriae and chloroplast-produced rFaeGntd/

dsc were readily recognized by F4-specific rabbit serum in western

blot experiments as well as by a monoclonal anti-F4 antibody

ELISA (Fig. 7a). ELISA data indicated correct native conforma-

tion-like folding of the chloroplast-produced rFaeGntd/dsc subunit.

Prompted by our observation that rFaeGntd/dsc dimers might be

forming in transplastomic plants (Fig. 3b), we examined dimer-

ization/polymerization of the rFaeGntd/dsc by running the purified

protein under non-reducing conditions and comparing with the

purified F4 fimbriae sample (Fig. 7b). The results indicate that

despite the fusion of the complementary donor strand, some

rFaeGntd/dsc monomers polymerize to form dimers and trimers,

suggesting that donor strand exchange still occurs occasionally

between rFaeGntd/dsc subunits. Worthy to notice that a higher

degree of polymerization of the F4 fimbriae was correlated with a

better F4-specific mucosal immunogenicity in orally-immunized

piglets [80], thus, the observed partial polymerization of rFaeGntd/

dsc could be beneficial to its vaccine properties if binding sites for

the receptor-carbohydrates are still available in these oligomers.

These results suggested that rFaeGntd/dsc could bind to F4R and

inhibit the attachment of F4+ ETEC to these receptors on the brush

borders of porcine small intestinal villi similarly to F4 fimbriae [81].

This ability makes it an ideal oral subunit vaccine, since efficient F4R

binding would evoke an active mucosal immune response, until

neutralizingnativeIgAantibodiesarepresent inthe intestine. Indeed,

we found that the rFaeGntd/dsc protein specifically binds to the brush

borders of F4R+ villi and not to the brush borders of F4R2 villi

(Fig. 7c), also confirming a previous observation that the N-terminal

His-tag fusion present on the rFaeG protein does not affect its

interaction with F4R [24]. Although binding of the rFaeGntd/dsc

protein to subepithelial cells irrespective of the F4R status of the villi

wasobserved,weconfirmedthespecificbindingtoF4Rpresentonthe

apical surface of the epithelial cells, which line the brush border of

F4R+ small intestinal villi (Fig. 7c).

To further verify the functionality of this potential subunit

vaccine protein, the ability of rFaeGntd/dsc to inhibit the

attachment of F4+ ETEC by competitive binding to F4R+ small

intestinal villi was analyzed (Fig. 8). Chloroplast-produced

rFaeGntd/dsc clearly reduced F4+ ETEC adhesion to F4R+ brush

borders in a dose-dependent manner (Fig. 8c). Although rFaeGntd/

dsc exhibited a similar F4R binding profile as compared to purified

F4 fimbriae, a less efficient inhibition of F4+ ETEC adhesion to

F4R+ villi was observed. The reduced efficiency could be due to

the predominant monomeric character of the rFaeGntd/dsc protein,

or to the addition of an N-terminal His-tag, but can likely be

compensated by increasing the administered dose.

Cumulatively, the high level accumulation in tobacco leaves and

in vitro characterization results of chloroplast-produced rFaeGntd/dsc

suggest that this engineered recombinant adhesin could be tested as a

potential oral subunit vaccine against F4+ ETEC-induced PWD in

newly weaned piglets in vivo. The use of a high-biomass, low alkaloid

tobacco cultivar accumulating gram-quantities of rFaeGntd/dsc per

plant could allow simple vaccine production, which could be directly

administered to animals in a lyophilized form and without extensive

plant tissue processing. Given that oral administration with 2.0 mg of

purified F4 fimbriae could protect F4R+ piglets against a subsequent

challenge with F4+ ETEC [82], and according to our expression

Figure 6. Stability of rFaeGntd/dsc under simulated gastrointes-
tinal conditions. Time course analysis of the stability of chloroplast-
expressed rFaeGntd/dsc in simulated gastric fluid (SGF; a) and simulated
intestinal fluid (SIF; b). rFaeGntd/dsc was present in similar amounts either
as purified protein (‘‘Purified’’) or as lyophilized and powdered
transplastomic leaf tissue (‘‘Biomass’’) and was visualized by western
blotting. SGF digestion of leaf biomass was done at two different pH
values: pH = 3.5 and pH = 4.5. SGF and SIF fluids with no substrate [SGF
(2) and SIF (2), respectively] represent negative controls. The rFaeGntd/

dsc band is indicated with an arrow.
doi:10.1371/journal.pone.0042405.g006
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results of 2 mg/g fresh leaf weight, only 1 g of fresh leaf material

(,200 mg leaf dry weight) may need to be administered per piglet.

However, additional studies are needed to establish the appropriate

dosage of rFaeGntd/dsc for inducing protective immune response in

consuming animals, since polymeric F4 fimbriae possess higher

immunogenicity than refolded E. coli-produced rFaeG monomers

[24], and since in vivo immunogenicityof this rFaeGntd/dsc varianthas

not been tested yet. Consumption of low-alkaloid tobacco at

concentrations up to 30% of the diet was well tolerated by mice

[83], thus, a potential need for administration of larger doses of

rFaeGntd/dsc-expressing tobacco leaf tissue for piglets should not raise

concern.Likewise, studies focusedon feasibilityof feeding lyophilized

rFaeGntd/dsc-expressing leaf tissue to piglets are required.

Conclusions
We report the production of transplastomic tobacco plants

expressing high levels of rFaeGntd/dsc, an engineered variant of the

major subunit FaeG from ETEC F4 fimbriae and a potential oral

vaccine candidate against porcine ETEC-induced PWD. Chloro-

plast-expressed rFaeGntd/dsc displays biological activity, such as

in vitro binding to F4-specific epithelial receptors and inhibiting F4+
ETEC adhesion to porcine small intestinal villi, thus showing

potential for further development and in vivo testing of this protein in

an animal model.

Materials and Methods

Transient Expression of rFaeGntd/dsc in Nicotiana
Benthamiana Leaves

Expression vector pJJJ109, a pCaMterX-based construct [84],

carries an engineered variant F4 rfaeGntd/dsc clone, originating from

the naturally-occurring ETEC strain C1360-79 (Serotype F4ad;

Protein Data Bank entry 3GEA; [8]. The coding sequence of the

rfaeGntd/dsc was fused at the N-terminus to the chloroplast-targeting

transit peptide from pea RUBISCO small subunit. Transient

expression of the rFaeGntd/dsc protein in N. benthamiana leaves was

carried out as described in [52].

Chloroplast Transformation Vector Construction
Details of the chloroplast transformation vector (pCT) con-

struction can be found as Supporting Information (Methods S1).

The rfaeGntd/dsc gene was PCR-amplified from pJJJ109 with

primers rFaeG-NheI-F: 59-ATATGGCTAGCTGGAT-

GACTGGTCATCACCATCACCATC-39 and rFaeG-NotI-R:

59-TACTAGCGGCCGCTTATGCAGTGATACTACCACC-

GATATCGAC-39, incorporating Nhe I and Not I restriction sites

(underlined) for subsequent cloning. The rfaeGntd/dsc PCR-amplified

sequence was digested with Nhe I and Not I and introduced into

pre-cut pCT vector by directional cloning into the corresponding

restriction sites, producing pCT-rFaeGntd/dsc (Fig. 2a).

Generation of Transplastomic Plants and Confirmation of
Homoplastomy

Transplastomic tobacco plants (cv. I 64) were obtained by the

biolistic method [85,86]. Following 3 regeneration rounds on selective

medium containing 500 mg/ml spectinomycin, homoplastomy of all

Figure 7. Chloroplast-produced rFaeGntd/dsc protein is recog-
nized in F4 fimbriae-specific ELISA, partially polymerizes and
specifically binds to the brush border of F4R+ small intestinal
villi. (a) Both rFaeGntd/dsc and F4 fimbriae are recognized by a
monoclonal anti-F4ad fimbriae antibody in ELISA. (b) Purified F4
fimbriae (lane 1) and purified rFaeGntd/dsc (lane 2) were resolved under
non-reducing conditions to assess polymerization. The F4 fimbriae
sample displayed the formation of native FaeG polymers, number of
subunits is indicated by stacked black triangles next to each band. Most
of the rFaeGntd/dsc is present as monomers (denoted by black rhomb);
formation of rFaeGntd/dsc dimers and trimers was also observed (two
and three stacked black rhombs). (c) Adhesion of the rFaeGntd/dsc

protein to the brush border of F4R+ small intestinal villi. Binding to the
F4-specific receptors present on the apical surface of the epithelial cells,

which line the brush border of F4R+ small intestinal villi is shown as a
bright line on the edge of the sample, the result of excited FITC
fluorochrome (indicated with white arrows, lower panel). rFaeGntd/dsc

fails to bind to brush border of F4R2 small intestinal villi. Images are
representative of rFaeGntd/dsc adhesion to isolated villi of three F4R+
and two F4R2 piglets. Bar: 50 mm.
doi:10.1371/journal.pone.0042405.g007
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the clones was confirmed by Southern blot analysis. Three mg of plant

total DNA (Qiagen DNeasy Plant Mini kit, Qiagen, GmbH), were

completely digested with Rsr II enzyme, separated on 0.8% agarose

gel and transferred onto Hybond-N+ membrane (Amersham

Biosciences, UK). DIG-labelled probe was amplified with primers

Probe-F 59-CACCACGGCTCCTCTCTTCTCG-39 and Probe-R

59-TTCCTACGGGGTGGAGATGATGG-39 using PCR DIG

Probe Synthesis kit (Roche Diagnostics, GmbH) and pPF as template.

Hybridization of the probe was carried out at 50uC overnight. Five

high stringency washes (100 mL of 2XSSC +0.1% SDS at 23uC –

twice; 100 mL of 0.5XSSC +0.1% SDS at 68uC – three times) were

performed, followed by 30 min blocking at 42uC and 30 min of

antibody binding with 3 subsequent washes. Detection was carried

out by autoradiography.

Recombinant Protein Extraction and Quantification
Proteins were extracted by homogenizing leaf tissue in liquid N2

in a Tissuelyser (Qiagen, GmbH) then vortexing with 3 to 10

volumes of Extraction Buffer 1 (EB1) (50 mM Na-Acetate, 15 mM

CaCl2, pH 4.9) or EB2 (Phosphate Buffered Saline [PBS]:

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM

KH2PO4 pH = 7.5, 1% Tween-20, 1 mM EDTA, 2% [w/v]

PVPP), both supplemented with 1% phenylmethylsulfonyl fluoride

(PMSF) and 0.1% leupeptin. EB1 was used for the characteriza-

tion of rFaeGntd/dsc accumulation in Figure 3 only. Total proteins

were sampled from the crude homogenate, and total soluble

proteins were sampled after centrifugation for 10 minutes at

140006g. To assess the amount of rFaeGntd/dsc trapped in the

pellet of insoluble plant material after centrifugation of EB2-

extracted leaf tissue, the pellet was re-dispersed in an equal volume

of EB2 by vortexing, centrifuged, and sampled. TSP concentration

was measured using the Bradford assay [87] and BSA as a

standard.

Purification of rFaeGntd/dsc from crude leaf extract was

performed with a 2-step procedure. First, the rFaeGntd/dsc-

containing plant extract was clarified by acidification to

Figure 8. Chloroplast-produced rFaeGntd/dsc inhibits the adhesion of F4+ ETEC to porcine small intestinal villi. Adhesion of F4+ ETEC to
F4R2 villi (a) and F4R+ villi (b), white arrows indicate bacterial cells. Bar: 50 mm. (c) Competitive inhibition of adhesion of F4+ ETEC to porcine small
intestinal villi by the rFaeGntd/dsc protein or F4 fimbriae, determined at different protein concentrations. The data represent the mean 6SE (n = 4).
doi:10.1371/journal.pone.0042405.g008
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pH = 2.0 with concentrated HCl causing most plant endogenous

proteins to precipitate. Subsequent to centrifugation, the pH of the

resulting supernatant was adjusted to neutral (pH = 7.4) with

KOH. Recombinant rFaeGntd/dsc was then purified by IMAC on

a 1 ml His-TrapTM (GE Healthcare, USA) column. Quantifica-

tion of purified rFaeGntd/dsc was carried out by densitometry

analysis of serial dilutions of rFaeGntd/dsc of a stained SDS-PAGE

gel using TotalLab TL100 software (Nonlinear Inc., Durham,

USA) and known amounts of BSA.

To assess levels of rFaeGntd/dsc protein accumulation in

transplastomic leaves, protein immunoblots were detected with

anti-FaeG rabbit serum [26], horseradish peroxidase-conjugated

goat anti-rabbit IgG (1:5000, Bio-Rad Laboratories, USA), and

ECL (Amersham ECL Western Blotting Systems, GE Healthcare,

USA), followed by autoradiography rFaeGntd/dsc was quantified by

densitometry with TotalLab TL100 software (Nonlinear Inc.,

Durham, USA) using known amounts of purified rFaeGntd/dsc

protein to generate the standard curve (R2 = 0.998).

SGF and SIF Experiments
Simulated gastric fluid (SGF) and simulated intestinal fluid (SIF)

analyses were conducted as previously described [21], with a few

modifications. Freeze-dried transgenic tobacco leaves (0.2 g) were

homogenized in 20 ml of either SGF (pH = 2 or pH = 3.5) or SIF

(pH = 7.4) using a mortar and pestle. The emulsions were

incubated at 37uC and samples were taken at various time points.

These were subsequently neutralized and analyzed by SDS-

PAGE. The SGF and SIF were prepared as described by [88–91].

Animals and Samples for in vitro Studies
Sampling of villi from piglets was performed according to the

local animal welfare regulations and approved by the ethics

committee of the Faculty of Veterinary Medicine, Ghent

University. Pigs (Large White6Belgian Landrace) were 6 to

7 weeks old when euthanized. To assess the capacity of rFaeGntd/

dsc to adhere to F4R present on the brush border of porcine small

intestinal villous enterocytes, intestinal villi were isolated as

described by [81]. Subsequently, the villi were scraped off with

glass slides, washed 4 times in Krebs-Henseleit buffer and stored at

220uC.

F4 Fimbriae-specific ELISA
F4ad fimbriae were purified from the E. coli strain H56

(08:K87:F4ad+) as described by [81]. A 96-well plate (Maxisorp

immunoplates, NUNC, Roskilde, Denmark) was coated with an

F4ad-specific mAb (CVI, Lelystad, The Netherlands), blocked

overnight at 4uC in PBS +0.2% TweenH80 and washed with PBS

+0.2% TweenH20 (TPBS). Serial dilutions of the rFaeGntd/dsc

protein and purified F4ad fimbriae were added to the coated plates,

incubated for 1 h at 37uC and washed with TPBS. Next, the plates

were incubated with heat-inactivated F4-specific porcine serum for

1 h at 37uC, washed and finally incubated with an optimal

concentration of HRP-conjugated anti-porcine IgG for 1 h at

37uC. Following several wash steps, an ABTS solution was added

and the optical density was measured at 405 nm (OD405) after 15

and 30 min incubation at 37uC. To remove background signals, a

cut-off value was calculated as followed: cut-off value = mean

OD405 0 mg/ml F4ad fimbriae +2*sd. This cut-off value was

subtracted from OD405 values.

Brush Border Binding Assay
To analyze the epithelial binding capacity of rFaeGntd/dsc, both

F4R+ and F4R2 villi were washed and the FcR were blocked by

incubating the villi for 30 min at RT while shaking with PBS +5%

heat-inactivated goat serum. Subsequently, the villi were incubat-

ed with 500 mg/ml rFaeGntd/dsc, heat-inactivated F4-specific

rabbit serum and FITC-conjugated goat anti-rabbit IgG F(ab’)2
(Sigma) for 45 min at RT while shaking. Villi were mounted on

glass slides and the rFaeGntd/dsc binding was analyzed with a

fluorescence microscope at 488 nm wavelength (Leica Micro-

systems). Images were captured with a digital camera from Scion

Corporation and processed with ImageJ software.

In vitro Villous Adhesion and Inhibition Assay
The F4R status of the isolated villi was determined in an in vitro

villous adhesion assay by incubating the isolated small intestinal

villi with 46108 F4ad+E. coli (strain H56) at room temperature

(RT) for 45 min while gently shaking as previously described [18].

The adhesion of the bacteria was evaluated by counting the

number of bound bacteria along 50 mm villous brush border at 20

randomly selected places with a phase-contrast microscope at a

magnification of 400X. Adhesion of .5 bacteria per 250 mm

villous brush border is considered as positive [92].

The F4R binding capacity of rFaeGntd/dsc was assessed in an

in vitro villous adhesion inhibition assay [80]. Villi of four F4R+
and two F4R2 piglets were incubated with rFaeGntd/dsc or

purified F4ad fimbriae for 45 min at RT while gently shaking.

Subsequently, F4ad+E. coli were added and the adhesion of the

bacteria to the villi was analyzed as described above. The

percentage of inhibition of bacterial adhesion was calculated for

each rFaeGntd/dsc or F4ad fimbriae concentration by comparing

with mock-treated villi as follows: % inhibition = 100–((x/y)*100);

where x = number of bacteria/250 mm brush border at given

concentration of rFaeGntd/dsc or F4 fimbriae; and y = number of

bacteria/250 mm brush border at 0 mg/ml rFaeG or F4.

Supporting Information

Methods S1 Construction of the chloroplast transformation

vector pCT.
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