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Abstract

Let V' be a 6-dimensional vector space over a field I, let f be a nondegenerate
alternating bilinear form on V and let Sp(V, f) = Sps(F) denote the symplectic
group associated with (V, f). The group GL(V') has a natural action on the third
exterior power \*V of V and this action defines five families of nonzero trivectors
of V. Four of these families are orbits for any choice of the field F. The orbits of
the fifth family are in one-to-one correspondence with the quadratic extensions of F
that are contained in a fixed algebraic closure F of F. In this paper, we divide the
orbits corresponding to the separable quadratic extensions into suborbits for the

action of Sp(V, f) € GL(V) on A*V.
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1 Introduction and main results

Let V be a 6-dimensional vector space over a field F which is equipped with a nonde-
generate alternating bilinear form f. Let Sp(V, f) € GL(V') denote the symplectic group
associated with f. An ordered basis (&, f1, €2, f2, €3, f3) of V is called a hyperbolic basis
of (V,f)if f(ei,e;) = f(fi, f;) = 0 and f(&;, f;) = d; for all i,j € {1,2,3}. Here, d;;
denotes the Kronecker delta.

Let A’V denote the third exterior power of V. The elements of A*V are called the
trivectors of V. For every § € GL(V), there exists a unique \*() € GL(A® V) such that
N2 (0) (01 A Ty A T3) = 0(T1) A O(T3) A B(T3) for all By, Ty, 55 € V. Two trivectors ay and o
of V' are called GL(V)-equivalent [resp., Sp(V, f)-equivalent] if there exists a § € GL(V)
[resp., 8 € Sp(V, f)] such that A*(0)(ay) = as.

The subspaces W :=< & Aéy A3, e1 Aes A f3, €1 A fa NEs, &1 A fa A f3, L Néa Aés, fi A
62/\f3>f1/\f2/\€3,f1/\fz/\fs,el/\(€2/\f2—€3/\f3) fi A (62/\f2—€3/\f3) e A (es A
f3—€1/\f1) f2 (63/\f3—€1/\f1> 63/\(61/\f1—62/\f2) f3 (61/\f1—62/\f2)>and
Wi=<e AN fatesAfs), fin(@Afateshfs),eaN(esAfa+erAfr), fah(EsA fz+
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LN fi1),esAN(ELA fi4+E N fo), fan(E A fi+eE A fa) > of /\3 V' are independent of the
considered hyperbolic basis (€1, f1, €, fa, €3, f3) of (V. f). If F is a field of characteristic
distinct from 2, then A*V = W @ W. If char(F) = 2, then W C W.

Let I be a fixed algebraic closure of F. Suppose F; C F is the quadratic extension of
[ defined by the irreducible quadratic polynomial ¢(X) = X% — aX — b of F[X]. Since
b= —q(0) # 0 # q(1) =1—a—b, the values p1; :== a+b—1 and py := =4=" are
nonzero. The field F; is also the quadratic extension of F (contained in IF) defined by the
quadratic polynomial po(X? —aX —b) = paX? — (pypto + pi1 + p2) X + pp. Observe that
if char(F) # 2, then the discriminant a? 4 4b of ¢(X) is distinct from 0. If char(F) = 2,
then a? + 4b = a? # 0 if and only if the extension F; of F is separable.

Proposition 1.1 (De Bruyn [3]) Let {0y,0s,...,76} be a basis of V. Suppose ps X? —
(papig + 1+ po) X + 1 and phyX? — (i phy + py + pb) X + iy are two irreducible quadratic
polynomials defining the respective quadratic extensions Fy C F and F) C F of F. Then
the trivectors py - v1 A\ Uy A U3 + g - Ug A 05 A Ug + (U1 4+ 04) A (V2 + U5) A (03 + U6) and
Wy - U1 A Uy A U3+ iy - g ATy A Dg + (01 + 04) A (D2 +05) A (03 + 0g) are GL(V)-equivalent
if and only if 1 = ).

For every quadratic extension F; of F contained in F, let Xr, be a fixed trivector of
the form gy - U1 A Uy A U3 + pig - U4 A U5 A Ug + (01 + 04) A (U2 + 05) A (U3 + Ug), where
{v1,09,...,06} is some basis of V and pq, s € F are chosen in such a way that F; C F
is the quadratic extension of F defined by the irreducible quadratic polynomial ppX? —
(pape + p1 4 p2)X + 1 € F[X]. The trivector xj, is not uniquely determined, but by
Proposition 1.1, it is uniquely determined up to G L(V')-equivalence.

Classification results for GL(V')-equivalence classes of trivectors of V' were obtained
by a number of people.

e Reichel [7] obtained a complete classification of all trivectors of a 6-dimensional
vector space, assuming the base field is the field of complex numbers.

e Cohen and Helminck [1] obtained a complete classification of all trivectors of a 6-
dimensional vector space, assuming the base field is a perfect field of cohomological
dimension at most 1.

e Revoy [8] obtained a complete classification of all trivectors of a 6-dimensional vector
space, regardless of the structure of the underlying field.

The classification of the GL(V')-equivalence classes of trivectors of V' can be found in the
following proposition.

Proposition 1.2 ([1, 7, 8]) Let{v],vs,..., 05} be a fixed basis of V.. Then every nonzero
trivector of V' is GL(V')-equivalent with precisely one of the following vectors:

(A) vF AN U5 AN TS5

(B) 07 Nvy AN U5 4+ U7 AUy AL

(C) o7 AUy A0S+ U5 ANVENTE;



(D) 07 NU5 ATy + U7 AU ANTE + U5 AUy AT B
E) x3. for some quadratic extension Fy of F contained in F.
Fy

Let X € {A,B,C,D,E}. A nonzero trivector a of V' is said to be of Type (X) if it is
GL(V)-equivalent with the trivector described in (X) of Proposition 1.2. The description
of the trivectors of Type (E) in terms of the parameters p; and ps is taken from De Bruyn

3]-

Popov [6, Section 3] obtained a complete classification of all Sp(V, f)-equivalence classes of
trivectors of V', assuming the underlying field F is algebraically closed and of characteristic
distinct from 2. Popov’s method heavily relies on the decomposition of /\3 V as a direct
sum W @ W (which is only valid if char(F) # 2) and invokes a result of Igusa [5] regarding
the Sp(V, f)-equivalence classes of trivectors contained in the subspace W C /\3 V. This
result is only valid if the field is algebraically closed and of characteristic distinct from
2, see [5, p. 1026, Proposition 7|. In view of their applications to hyperplanes and
projective embeddings of symplectic dual polar spaces, the authors are interested in the
classification of all Sp(V, f)-equivalence classes of trivectors, regardless of the structure
of the underlying field.

The Sp(V, f)-equivalence classes of the trivectors of Type (A), (B) and (C) were de-
termined by De Bruyn and Kwiatkowski [4] for any field F. The present paper is about
trivectors of Type (E). By Propositions 1.1 and 1.2, if two trivectors of Type (E) are
Sp(V, f)-equivalent, then they define the same quadratic extension F’ C F. So, it suffices
to consider the following problem.

Let ' be a fixed quadratic extension of F contained in F. Let & denote the
set of all trivectors of V' which are GL(V')-equivalent with ;. Then determine
the Sp(V, f)-equivalence classes into which & splits.

In the present paper, we give a complete solution for the above problem in the case the
quadratic extension F’ of IF is separable. As before, let a,b € [F such that F’ is the splitting
field of the polynomial X? — aX — b € F[X]. Since we assume that the extension F’ of F
is separable, we have

a’ +4b # 0.

The extension F’ of F is also a Galois extension and we denote by v the unique nontrivial
automorphism of F’ fixing each element of FF.
Before we can state our results, we need to define a number of trivectors. Consider a

fixed hyperbolic basis (&%, ff, &5, f5, €5, f3) of (V, f).
e For all hy, hy, hy € F* :=F \ {0}, let x1(hy, he, h3) be the trivector

2-é>{Aé;/\é§+a-(hl-f;‘/\é;/\éj;,+h2-éiAf;Aé§+h3-é{Aé;Af§>+(a2+2b)-

<h1h2 FEAfyNEs+hihg- fEANESA fi+hohs-Ef A fy A f;) + hihohsa(a®+3b) - fy A fa A fs.



Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form xi(hq, he, h3)
for some hy, hy, hy € F* is called a trivector of Type (E1).

e For all k, hy, hy € F with k # 0 and hihg(a® + 4b) # 1, let x4(k, h1, ho) be the trivector
(1 — hiho(a® +4b)) - ef Aes A fi + (1 + hyho(a® +4b)) - &f A es A fa
+k-O?A@Ajg—Ml—hmxf+4myfpyﬁAé;+aj?A%AﬁQ
+hi(1 — hiho(a® +4b)) - € A fo A fi + (a® +4b)hy - € N E5 N €.

Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form y4(k, hq, hs)
for some k, hy, hy € F* satisfying hihg(a® + 4b) # 1 is called a trivector of Type (E4).
Notice that no trivector of type (E4) exists if the field F contains precisely two elements.

e For every k € F*, let xa(k) be the trivector x4(k,0,0). So, x2(k) is equal to
QA@AE+QA@Aﬁ+k(ﬁA@Aﬁ—bﬁAﬁA%+mﬁA@Aﬁ)

Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form x»(k) for
some k € F* is called a trivector of Type (E2).

e For all k,h € F*, let x3(k, h) be the trivector x4(k, h,0). So, x3(k, h) is equal to
EAGATAGAGA +h (Fi AGAS b FATEAG +a- FAGAR) +h-ai ABAT.

Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form x3(k, h) for
some k, h € F* is called a trivector of Type (E3).

e For every k € F*, let x5(k) be the trivector
FINGNAfi+2-E AN FiNEs —a-fFiNEsA fo+a- fENEN fa+a-ef A fiNE;+(a>+b)- [N fo NEs
+k<aiﬁAEAé§—ﬁAé@\E+éﬁW§Aﬁ)

Any trivector of V' which is Sp(V, f)-equivalent with a trivector of the form xs(k) for
some k € F* is called a trivector of Type (E5).

The following two theorems are the main results of this paper.

Theorem 1.3 The trivectors of V' that are GL(V)-equivalent with x5 are precisely the
trivectors of Type (E1), (E2), (E3), (E4) and (E5).

Theorem 1.4 (1) Let i,j € {1,2,...,5} with i # j. Then no trivector of Type (E1) is
Sp(V, f)-equivalent with a trivector of Type (E7j).

(2) Let hy, ha, hs, by, hy, by € F*. Then the trivectors xi(hi, ha, hs) and x1(h}, h,
hy) are Sp(V, f)-equivalent if and only if there exists a 3 x 3-matriz A over F' with



determinant equal to 1 such that A - diag(hy, ha, h) - (AY)T is equal to diag(h), hb, hj)
or diag(—h, —hb, —h}).

(3) Let k, k' € F*. Then the trivectors xa(k) and x2(k") are Sp(V, f)-equivalent if and
only if k' € {k, —k}.

(4) Let k,h, k', i € F*. Then the trivectors xs(k,h) and xs(k',h') are Sp(V, f)-
equivalent if and only if there exists a o € {1,—1} and an n € F'\ {0} such that k' = ok
and h' = on¥*1 - h.

(5) Let k, hy, ha, k', 1y, bl € F* such that hihe(a® + 4b) # 1 # hihb(a® + 4b). Then the
trivectors x4(k, h1, he) and x4(K', b, h}) are Sp(V, f)-equivalent if and only if hihl, = hihs
and there exist ny, 1, € F' and a o € {1, —1} such that k' = ok and ohy = n! ™ hy+n3 " hy.

(6) Let k, k' € F*. Then the trivectors xs(k) and xs(k") are Sp(V, f)-equivalent if and
only if k' € {k, —k}.

In Theorem 1.4(2), the matrix diag(hy, he, hs) denotes the diagonal matrix with diagonal
entries equal to hy, ho and hg.

The conditions in Theorem 1.4(2),(4),(5) can be rephrased such that no reference is
made any more to the extension field F'. E.g., the condition in Theorem 1.4(4) that there
exists a 0 € {1,—1} and an n € F'\ {0} such that ¥ = ok and h' = oh - n¥! can be
rephrased as follows: there should exist a o € {1,—1} and A, u € F such that ¥’ = ok and
A2+ adp — bp? = Uh—}; Indeed, if § € F is a root of the polynomial X% —aX — b € F[X],
then §+ 0% = a and §%*! = —b. Hence, (A\+0pu)¥* = (A +0u)(A+0%p) = X2 +adu—bu?.

Suppose I is the finite field F, with ¢ elements. Every quadratic extension of F is
then separable. The number of Sp(V, f)-equivalence classes of trivectors of Type (E) can
easily be deduced from Theorem 1.4. If i € {1,2,3,5}, then the total number of Sp(V, f)-
equivalence classes of trivectors of Type (Ei) is equal to ¢ — 1 if ¢ is even and q;21 if ¢ is
odd. The total number of Sp(V, f)-equivalence classes of trivectors of Type (E4) is equal
to (¢ —1)(q¢ — 2) if ¢ is even and w if ¢ is odd.

We will prove Theorems 1.3 and 1.4 in Section 4. In Section 3, we do all the preparatory
work. If we consider the 6-dimensional vector space V'’ over ' that naturally extends the
6-dimensional F-vector space V, then the trivector xj is a trivector of Type (C) of V’,
see Lemma 3.8. In Section 2, we list all the Sp(V’, f')-equivalence classes of trivectors of
V', where f’ is the alternating bilinear form on V' that naturally extends f. Although
the trivectors of Type (E2), (E3) and (E4) can be uniformly described, we wish to look
at them as if they belong to three distinct families. One of our motivations for doing so
is that these trivectors belong to three distinct Sp(V”’, f’)-equivalence classes of trivectors
of V', see Corollary 4.2.



2 Classification results regarding trivectors of Type
(C)

Let V' be a 6-dimensional vector space over a field ' which is equipped with a nonde-
generate alternating bilinear form f’.

The following classification of the Sp(V’, f')-equivalence classes of trivectors of Type (C)
of V' was obtained in De Bruyn and Kwiatkowski [4].

Proposition 2.1 ([4, Theorem 1.5]) Let (&}, f7, &5, f5, €5, f3) be a given hyperbolic ba-
sis of (V' f"). Then every trivector of Type (C) of V' is Sp(V', f')-equivalent with at least
one of the following trivectors:
(C1) 61 /\é§ NEs+ N fi N fi A fi for some X € F'\ {0};
(C2) fi A(es+es) A(fs = f3) +A-ei Aes A fs for some X € F'\ {0};
(C3) el/\ez/\fz + A fr /\ég/\f3 for some A € T\ {0},
(C4) fl NesA(E+ f3)+A-eines A fs for some X e F'\ {0};
(C5) e /\é§ (f5 + )+ X-& A f5 A(ff + @) for some A € F'\ {0}

(C6) frA(es+ey) A(fs +e- f3) +A-EAesA fy for some N € F'\ {0} and some
e\ {0 —1}.

A trivector of V' is said to be of Type (Ci), i € {1,2,...,6}, if it is Sp(V’, f’)-equivalent
with a trivector described in (Ci) of Proposition 2.1. Observe that there are no trivectors
of Type (C6) if |F'| = 2.

Proposition 2.2 ([4, Theorem 1.6]) Let (&}, f;, &5, f3, €5, f3) be a given hyperbolic ba-
sis of (V' f").

(1) Leti,j € {1,2,...,6} with i # j. Then no trivector of Type (C1) is Sp(V', f')-
equivalent with a trivector of Type (C').

(2) If \, X € F'\ {0}, then the trivectors & Nes AN &5+ X- ff A f5 A f; and & Aes A

S5+ N A A fsoare Sp(V!, f)-equivalent if and only if X' € {\, —A}. )

(3) If \, N € F"\ {0}, then the trivectors fi A(es+e5) AN(f35 — f3)+A-eiAes A fy and
fin@+e)AN(fs—f5)+N-enesAf; are Sp(V', f')-equivalent if and only if A=\,

(4) If \, N € F'\ {0}, then the trivectors e; Aes A f5 + X+ ff Ne&s A fs and &5 A ey A
fs+N-fines N fiare Sp(V', f')-equivalent if and only if N € {\, )\}

(B) If NN e F \ {O} then the trivectors fi Aes A (&5 + f3) +A-ef Aey A fy and
finesn (62 + O+ N e nes A fsoare Sp(V', f)-equivalent if and only Zf N e {\ =}

(6) If \, N € "\ {0} then the trivectors & ANes A (fi + f3)+ A& A fi A (ff + &)
and e NeEs AN (f5+ )+ N e N fin(fi +e5) are Sp(V', f')-equivalent if and only if
Noe {\ —A}.

(7) If A, N € F'\{0} and e, € F'\{0, =1}, then the trivectors fi A(e3+e5) A(f5 +e-
O +HN-ENEA f5 and fi N (62+é§) (fs+e-f)+N-esnesnfy are Sp(V', f)-equivalent
if and only if € =€ and N € {\, —\}.



For a proof of the following lemma, see e.g. Lemma 5.7 of De Bruyn and Kwiatkowski

[4].

Lemma 2.3 Let {v1,0q,...,06} and {w,ws,...,ws} be two bases of V'. If v1 A v A
U3+ Uys AN 05 A Ug = Wy A\ Wy A\ W3 + Wy A W5 A Wg, then {0y A U2 A V3,04 A\ U5 A\ U} =
{1 A wy A W3, w4 N w5 A W}

3 Preliminary lemmas

Suppose F and F’ are two fields such that F’ is a separable quadratic extension of F. Then
F'/FF is also a Galois extension and we denote by 1) the unique nontrivial automorphism
of F’ fixing each element of F.

Let V' be a 6-dimensional vector space over F' and let B* = {v},v5,...,05} be a basis
of V'. The set V of all F-linear combinations of the elements of B* can be given in a
natural way the structure of a 6-dimensional vector space over F. By definition, B* is
also a basis of this vector space V.

For every vector & = Y o_ \f of V', we define 7% := 3.0 AY%*. The verification of
the following lemma is straightforward.

Lemma 3.1 (1) Ifz € V', then z¥ = T if and only if T € V.

(2) If M\, A2y ooy A € F and vy, 0y, ..., 0, € V' for somen > 1, then (Z?:l /\ﬂ_)i>w =
LA

(3) If B = {v1, 0, ...,06} is a basis of V and A, Aa, ..., \g € F', then (Z?:1 /\Z-T)i>w =
> AT

Every element of GL(V) naturally extends to an element of GL(V'). In the sequel, we
will identify each element of GL(V') with its corresponding element of GL(V’).

Lemma 3.2 Ifz € V' and 0 € GL(V), then 0(z)¥ = 0(z¥).

Proof. Let A\, Ag,..., A\ € F such that 7 = 3.0 A\@7. Since § € GL(V), we have
0(v;) € V and hence 0(})¥ = 0(v7). By Lemma 3.1, we have 0(z)¥ = (3.0_, \0(7}))¥ =
Z?:l )‘gje(@:) = 9(2?:1 )‘;%;'k) = ‘9<f¢)- "

Now, let /\3V denote the third exterior power of V' and let /\3 V' denote the third
exterior power of V. We can and will regard A®V as a subset of A\*V’. The set B* :=
{v; ANo; A |1 <i < j <k <6} can be considered as a basis of the vector space INA%

. 3 A A 3
as well as a basis of \”V'. For every vector a =37, ;¢ Nij - U7 AU; A of A"V,

we define o := 37, ;. _pc6 )\;@k - 07 AN; A v;. The following clearly holds.

Lemma 3.3 (1) If o € A* V7, then o = o if and only if a € N> V.



(2) If AMi, Aoy ooy A\ € F and oy, 0, ..., € /\3V’ (for some n > 1), then we have

(4
<Z?:1 )\z‘%‘) =Y Ao
(3) If Oy, Ty and U3 are vectors of V', then (0, Ay A T3)Y =07 A0S ATY.
(4) If B = {v1,0a,...,06} is a basis of V and N, € " for all i,j,k € {1,2,...,6}

. . . . j— — —_— w
satisfying 1 < i < j < k <6, then (Elgi<j<k§6 Nijk - Ui A U; N vk) = ZKKK%G )\;@k
i AT A T

Every element of GL(A®V) naturally extends to an element of GL(A®V’). In the
sequel, we will identify each element of GL(A®V) with its corresponding element of
GL(A*V'). For every § € GL(V'), there exists a unique A\*(8) € GL(A®V’) such that
N*(0) (01 ATy A T3) = 0(0y) A B(Ty) A O(s) for all oy, 00,55 € V. If § € GL(V), then
N (6) € GLIN'V).

Now, let f be a nondegenerate alternating bilinear form on V. Then f can be extended
in a unique way to a nondegenerate alternating bilinear form f on V'. Let Sp(V, f) =
Sp(6,F) and Sp(V’, f') = Sp(6,F’) denote the symplectic groups associated with these
alternating bilinear forms. In view of GL(V) C GL(V’), we also have that Sp(V, f) is a
subgroup of Sp(V', f’).

The following lemma is known, see e.g. De Bruyn [2, Section 4].

Lemma 3.4 For every hyperbolic basis B = (€1, f1, €a, f2, €3, f3) of (V', f'), let mp denote
the linear map from /\3 V' to V' defined by

WB(él VAN /\ég) = 71'3(61 /\EQ/\]?Z}) = WB(él /\fQ/\é?)) = WB(él /\fZ /\f3) =0,

st

ma(fiNé Nes) =mp(fines A fs) =mp(fi A faAes) =mp(fi A f2 A f3) =0,
mp(e1 Nea A fo) = mp(er Aes A f3) = en,mp(fi Aéx A fo) = g
mp(Ea Ner A fi) =mp(ea Aés A fs) = es,mp(fa Aer A f1) = g
mp(es Ner A fi) =mp(es Aéx A fo) = es,mp(fs ANer A fi) = g

Then mg is independent of the chosen hyperbolic basis B of (V', f').

(Y]
>
| D
w
>
o
SN—
I
o

Put 7 := 7p, where B is an arbitrary hyperbolic basis of (V', f’).

Lemma 3.5 For every trivector o of V, we have w(a¥) = m(a)¥.

Proof. Choose a hyperbolic basis B = (g1, 92,.-.,3¢) of (V,f). Then 7 = mp. Let
Nije €F' (1 <i < j <k <6) such that a = 21§i<j<k§6 Xiji = Gi N Gj A Gg. Then mp(a) =
S i<icjenes Mgk - (G A Gj A Gr) and hence wp(a)” = 3, g A TB(i A G5 A Ge)
since 75(g; A g; A Gx) € V. On the other hand, a¥ = Zl§i<j<k§6 )\:f;k - i N g; N g, and
hence 75(¥) = 371 o;icn<e A;ﬁ-k 7p(gi A Gj N Gk)- "



Lemma 3.6 For allz,5j € V', we have f'(z¥,4%) = (f'(z,9))".

Proof. Put 7 = >0 A} and § = 26 , 1505, Then f'(z, gj) Z? 12]6 LAl
f(wy,v7). Since f'(v;,7}) € F, we have (f'(z,7))" = SO 123 . AV f’(vl,v]). On

the other hand since ¥ = ZZ 1)\;%;‘ and y¥ = Z? 1,u] v;, we have (@, g%) =

i g Ay - f(5,75). Hence, (3%, 5%) = (f(7,7))"- .
p(

Let G be one of the groups GL(V),GL(V’), Sp(V, f), Sp(V’, f'). Two trivectors oy
and oy of V' are called G-equivalent if there exists a § € G for which A\*(8)(a1) = ao.
The following is obvious.

Lemma 3.7 (1) Two GL(V)-equivalent trivectors of V' are also GL(V")-equivalent.

(2) Two Sp(V, f)-equivalent trivectors of V' are also GL(V')-equivalent, Sp(V', f')-
equivalent and GL(V")-equivalent.

(3) Two Sp(V', f')-equivalent trivectors of V' are also GL(V')-equivalent.

Let § be a fixed element of F'\ F. Then § is a root of an irreducible quadratic polynomial
X?—aX —beF[X]. If weput uy =a+b—1and pp = =0t then § is also a root of the
polynomial poX? — (p1pi2 + p1 + po) X + p1 € F[X]. We define

Xpr = 1 - U5 ATy A0S + pig - 0y A U5 A TG + (0] +03) A (05 +05) A (03 + 7).
Observe that
5§+ 6V =a, 6™ =—b, > =ad +b, & = (a® + )5 + ab.

Since F’ is a separable extension of I, the other root §% of X? — aX — b is distinct from
0. We have
(69— 8)? = (6¥ + 0)? — 40¥™ = a® + 4b # 0.

Lemma 3.8 There exist vectors vy, 09,03 € V' such that {vy, s, U3, 1771/’,@;/’, @;b} s a basis
of V! and X = Uy ATy ATy + 07 AOY A DY

Proof. It is straightforward to verify that

Xir = p1- U} ATy AT+ pg - Uy ATE AT + (07 + 05) A (05 + 03) A (05 + 0)
51/) —_ 1 —% —% — % —x _x _x
— —5(5111 5 (U + 007) A (U5 4 603) A (D5 + 603)
1—90 - . . . . B

where {6(6 )(?14 + 607), 0% + 005, U5 + 073, W‘S)(% + 6%}, 05 + 6Vus, vf + 0V05} is a
basis of V. .

Lemma 3.8 implies that, although xj is a trivector of Type (E) of V, it is a trivector of
Type (C) when regarded as an element of A\* V.
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Lemma 3.9 Suppose X 6 /\ V' can be written in the form vy A va A U3 + 17% A @3 A @;f’,
where {1, Uy, U3, 07, 05,05} is a basis of V. Then x is GL(V)-equivalent with x.

Proof. Let uq, 1y and u3 be Vectors of V’ such that {uy, uy, us, uf, U, U } is a basis of
V' and x& = @ Alg AT + @l ATy A Gy, Let 6 be the element of GL(V’) defined by
vl = Uy, Ty — Ty, T — Tz, O — @Y, 0y — 1y, 05 — @Y. Now, {0y + 07,060, + 0Y07, 0y +
v2 , 003 + 5‘”@2 , U3 + 123,51)3 + 5wv¢} is a basis of V' which is mapped by 6 to the basis
(U + 0%, 0014 060" Uy + 1Y, 0ty + 6V, Tig + 0, 0tis + 0¥as } of V. So, € GL(V). Since
N’ (0)(x) = X, the trivectors x and x% are GL(V)-equivalent. ]

Lemma 3.10 Let x be a trivector of V' which is GL(V)-equivalent with x5 . If x =
U1 A\ Uy A D3+ Uy A5 A Ug for some basis {v1,0s,...,06} of V', then we have vy N\ U5 N\ Vg =
(01 A Dy A 3)Y.

Proof. Let 6 be an element of GL(V) such that y = A*@)(x%). By Lemma 3.8,
there exist vectors uy, o, u3 € V' such that {ﬁl,EQ,ﬂg,ﬁl,ﬂ;ﬁ,a?} is a basis of V’ and
Xb = Ty ANig Aig+ 1Y AT AT . By Lemma 3.2, we have y = A*(0)(x&) = 0(@;) A(i) A
0(1a3) +0(a?) AO(T) AO(TY) = 0(Tiy) AO(Taz) AO(as) +0(a1)¥ AB(Tz)" AB(Ti5)?. By Lemma
2.3, we have {0 AUy A U3, 04 A U5 ATg} = {0(t1) A O(z) AO(ts), (0(iiy) AO(i) AO(u3))¥ }
Hence, 04 A U5 A U6 = (01 AUy A U3)Y. .

For all z,5 € V', we define h(Z,y) := f'(z,4%). Then h is a nondegenerate skew-)-

Hermitian form on V’. For all 7,5 € V', we have h(z¥,5%) = h(z,5)¥ and h(y,z) =
_h(ja g)w
We define

0

M* = 0

o O O
o = O

—1
For every g € {f’, h} and every k > 1 vectors Zy, To, ..., T, of V', let My(Z1, Zo, ..., Ty) be
the (k x k)-matrix over F’ whose (i, j)-th entry is equal to ¢(z;, z;) (7,5 € {1,2,...,k}).

Lemma 3.11 Let u, Uy, g be three vectors of V'. If M = My (uy,us, u3) and N =
My (uy, g, us), then the matriz My (al,ag,ag,a}”,a;ﬁ,a;") is equal to

M N
As a consequence, {uy, ug,ug,uif,uQ, } is a basis of V' if and only if A is nonsingular.
Proof. Since h(z,7) = f'(Z,y%) and f'(z%,5%) = f'(z,5)? for all Z,5j € V', the matrix

My (i, Uy, Us, 0@y, @5, Gy ) is equal to A. .

Lemma 3.12 Let ul,u2,u3,v1,vg,vg be vectors of V' such that {ul,u2,u3,u1f,u2, } and
{?}177}2,'03,1)1’0,?}2, } are two bases of V'. Put My := My (ty, Ug, Us), Ny 1= Mh(ul,u2,u3),
My = My/(vq, 0o, Ug) and Ny := My (v, 09,03). Then the following holds.
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(1) The element 6 of GL(V') defined by @y — 1, s — Uy, U — U3, G — 07, @4 —

oY, uy — Y is also an element of GL(V).

(2) The element 6 belongs to Sp(V, f) if and only if My, = My and Ny = Ns.

Proof. (1) Since 6 maps the basis {@y 4+ @?, 6ty +0Ya) , ty + T4, 6ty + 0V Y , T3 + T, 0lis +
5Pu¥} of V to the basis {oy + 07, 60y + 6V0Y, 0y + 0, 60y + 6Y0Y, 5 + 0%, 005 + 6VTY } of
V', 6 must be an element of GL(V).

(2) The element 6 belongs to Sp(V, f) if and only if it belongs to Sp(V’, f'). The
matrices representing f’ with respect to the ordered bases (al,az,ag,af,a;”,a;”) and

(01, Vg, U3, 171&, @;" ; 17;”) are respectively equal to
L[ Mmom [ M N
UL =NT oM > | =N MY |-

The element 6 belongs to Sp(V’, f') if and only if A; = A, i.e. if and only if M; = M,
and Nl = NQ. ]

Lemma 3.13 Let uy, g, ug, U1, Vg, U3 be vectors of V' such that {uy, uy, us, al, a;",a;ﬁ’} and
{v1, Vg, U3, 17%,173’, @}f} are two bases of V'. Put My := My (uy, Ug, ug), Ny := My (t1, Ug, us3),
My = Mp/(01,02,03) and Ny := My (01,02,03). Then the two trivectors iy A Us A U3 +
(U Ag Auz)¥ and vy Ay A3+ (0 AV AT3)Y of V' are Sp(V, f)-equivalent if and only if
there ezists a (3 X 3)-matriz A over F' with determinant 1 such that one of the following
holds:

(1) A'Ml'AT:MQ andA'N1'<Aw)T:N2;
(2) A- M1 . AT = (MQ)w and A - N1 . (Aw)T = (Ng)w.
Proof. By Lemma 2.3, the two trivectors uy A g A g+ (g Atz A 'L_l,3>w and 07 A Uy A U3 +

(01 Ay A 03)¥ are Sp(V, f)-equivalent if and only if there exist vectors wy, Wy, ws € V'
and a 0 € Sp(V, f) such that at least one of the following holds:

(1) O(u;) = w; for every i € {1,2,3} and w; A wy A w3 = v A Vg A Us;

(2) 0(a!) = w; for every i € {1,2,3} and @1 A Wy A s = Ty A Ty A Ts.

)

There exist three vectors wy, wq, w3 of V' such that w Ay Awg = U7 AUy A3 if and only if
there exists a (3 x 3)-matrix B with determinant 1 such that [@wy, Wy, W3] = B[y, Uy, U3)7 .
If this is the case, then M (10y, W, w3) = B+ M- BT and Mj,(w,, Wy, ws) = B+ Ny-(BY)T.
The lemma now easily follows from Lemma 3.12, taking into account that M (uy, s, U3) =
My, My (i, Gy, Us) = Ny, Mp(a¥ 4y, a%) = MY and My (@, a4, a5) = NY. "

Lemma 3.14 Let A = (a;;)1<ij<3 be a matriz with determinant 1. Then A-M*- AT = M*
Zf and only ’Lf a;p = 1, 12 = A13 = 0 and 92033 — A230U32 — 1.
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Proof. If a;p = 17 19 = A13 = 0 and A29Q33 — 23039 — 1, then

1 0 0
-1
A7 = | asiaes —agazz  asz  —ass |, (1)
a21G32 — A31Q22 —a32 A2

A-M*= M- (AT and hence AM*AT = M*.

Conversely, suppose AM* AT = M*. Let &, &, f» be vectors of V” such that f'(é;, &) =
f'(e1, f2) = 0 and f'(és, f2) = 1. Let 0,7, U3 be the vectors of V' such that [y, Ty, U3]7 =
A- [él, ég, fQ]T. Since det(A) = 1, we have U1 /\172/\?73 = él/\éQ/\fQ. Since Mf/(17172727?73) =
A My(ey,éq, fo) - AT = AM*AT = M*, we have that f'(v;,09) = f/(v1,93) = 0 and

f'(vg,03) = 1. Since 91 A vy A3 = € A ey A f, we have 1y = m(0y A Uy A 03) =
W(él VANCHWAN f2) = €. Since U1 = a11€1 + a12€9 + CL13f2, we have aijl = 1, 12 = A13 = 0 and
(22033 — (23032 = 1. .

Lemma 3. 15 Let ul,u2,u3,vl,vz,v3 be vectors of V' such that {ul,uQ,u;g,uib,uZ, } and
{v, Uy, U3, 1)1 , Ug ,v3} are two bases of V'. Put My := My (uy, g, us), Ny := Mh(ul,UQ, us),
My == Myp(01,02,03) and Ny = My(0y,02,03). If the two trivectors ty A ts A Us +
(ap A iy A 1i3)Y and Uy A Uy A U3 + (0 A Do A 03)Y of V' are Sp(V, f)-equivalent, then
rank(M,) = rank(Ms) and rank(Ny) = rank(Ns). Moreover, if My = My = M*, then
(N2)ur € {(Ni)11, (N)u)’}-

Proof. The fact that rank(M;) = rank(Ms) and rank(N;) = rank(Nz) is a consequence
of Lemma 3.13. Suppose now that M; = My = M*. Then there exists a (3 x 3)-matrix
A with determinant 1 such that A- M* - AT = M*. By Lemma 3.14, we have a;; = 1,
a1y = a3 = 0 and ageass — agzazs = 1. If we put B := ((A71)¥)T with A~ asin (1), then
A - Ny is equal to either Ny - B or N;p - B, implying that (N3)i; € {(N1)11, (N1)11)?}-

Lemma 3.16 Let | be an arbitrary element of F* and 6 an arbitrary map from F* to F.
If Uy, U, us are three vectors of V' such that {ﬂl,ﬂQ,ag,ﬂﬁp,ﬁg,ﬁg} is a basis of V', then
precisely one of the following cases occurs.
(1) There exist v1,09,03 € V' and hy, ha, hs € F* such that vy A Uy A U3 = Uy A Us A ug,
M0y, 05, T3) = diag(0,0,0) and My, (01,7, 73) = (0¥ — 0) - diag(hy, ha, h3).

(2) There exist v1,02,03 € V' and a k € F* such that v; A\ Uy A U3 = Uy A Uy A s,
Mf/(@l,ﬂg,ﬁg) = .2\4>|< and Mh(?jlﬂjg,@?)) = (51’[1 — (5) . dl(lg(k,(),O)

(3) There exist v1,02,03 € V' and k,h € F* such that v; A\ o N\ U3 = Uy A Uy A s,
Mf/(l_Jl,@Q,’Ug) = ]\4>|< cmd Mh(’l_Jh@Q,@g) = (5¢ — 6) . dzag(k;,h,O)

(4) There exist vy, vy, 03 € V' and k, hy, hy € F* with hyhy(a?+4b) # 1 such that vy Avy A
’l_J3 = ’27/1/\’17/2/\1_63, Mf/(T_)l,’l_JQ,’l_J:;) = M* and Mh<l_}1,@2,1_)3) = ((51/} —(5) ~diag(k,h1, h2)

(5) There exist U1,09,03 € V' and a k € F* such that vy A Uy A U3 = Uy A Uz A us,
0 0 k
Mf/(7717@2,@3) = M* and Mh(®17®2;@3) _ 0 [(5%2,5) 0
—k 0 (V=0)-6(k)
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Proof. Observe that by Lemma 3.15, at most one of the above five cases can occur. Let
f and h denote the respective restrictions of f and h to the subspace U :=< uy, U9, i3z >.

(1) Suppose first that f = 0. We prove that h is a nondegenerate skew-1)-Hermitian
form on U. Suppose T is a vector of U such that ﬁ(f,gj) =0,Vy e U, ie fl(z,9)=0,
Vi € UY =< ﬂlf,u;b,u},f’ >. Since also f(z,y) = 0, Yy € U, we have T = 0 since [’ is
nondegenerate. Hence, i is nondegenerate.
Since h is nondegenerate, there exists a vector v; € U for which h(vl, v1) # 0. Since
h is nondegenerate, the restr1ct10n of h to the subspace vf " is also nondegenerate. So,
there exists a vector Uy € v1 " for which h(vg, U9) # 0. Now, let v5 be the unique vector of
N L for which h(vg, v3) = 0 and 91 AUy A D3 = U1 Atz Az, Since h(vg,vl) = h(’l)g,?}g) =0
and h is nondegenerate, we have h(vs,v3) # 0. Now, put h(;,9;) = (6% — §) - h; for every
i € {1,2,3}. The fact that h is skew-i)-Hermitian implies that hq, ho, hy € F*. Clearly,
Mf/(@l, Vg, 173) = dzag(O, 0, 0) and Mh(ﬁl, 1_)2,733) = (61/J - (5) : diag(hl, hg, hg)

In the sequel, we suppose that f #0. Then @ := 7(uy A g A 13) is a nonzero vector in
Rad(f).

(2) Suppose h(a,a) # 0 and rank[My,(uy, us, u3)] = 1. Then put v, := a and let 05 and o3
be two vectors of a'# such that o, A Uy A U3 = @ A tig A tig. Since rank[My, (v, v, U3)] =
T’Clnk[Mh<l_L1,a2,’a3)] = 1, we have h(@z,@g) = h('l_}3,1_)3> = h(T_)Q,'l_}g) = (. Since U1 =
(i A tig A iz) = m(Uy A Uy A D3), we have f'(7y,03) = 1. Now, put h(a,a) = k(6% — 9).
Then k € F*. Clearly, Mf/(l_)l,l_)g,’l_lg) = M* and Mh(l_)l,l_)g,l_lg) = ((51/’ - 5) : dzag(k,O, 0)
(3) Suppose h(a,a) # 0 and rank[M,(uy,us, u3)] = 2. Then put v; := a, let 75 be an
arbitrary nonzero vector of Rad(h) and let 7, be a vector of @fﬁ such that v1 A U3 A U3 =
Uy A g A tg. Similarly as in (2), we have f/(7,,73) = 1. Now, put h(vy,0;) = (6¥ — 0)k
and h(vy,03) = (0¥ — 6)h. Then k,h € F*, My (vy,09,03) = M* and Mj,(v1, Vg, U3) =
(6% —0) - diag(k, h,0).

(4) Suppose h(@,a) # 0 and rank[M, (@, Uy, @3)] = 3. Then h is nondegenerate. Put
01 := a. Similarly as in (1), we can choose vectors vs,v3 € U such that v; A v A
Us = Uy Al A Us, h(02,02) # 0 # h(v3,03) and h(vy,02) = h(01,03) = h(vs,73) = 0.
Since ¥; = 7(0; A Uy A U3), we have f'(Dq,73) = 1. If we put h(vy,9;) = (6¥ — §)k and
h(@i, ’Di) = (51/’ — 5) -h;_q for every ¢ € {2 3} then k‘, hl, hy € F*, Mf/(@l,ﬁz,@g) = M* and
N := Mj,(vy, 09, 03) = (6¥ —0)-diag(k, hy, hy). By Lemma 3.11, the matrix [ _J\]{[T j\]}* }
is nonsingular. This implies that (a® + 4b)h1h2 = (0¥ — 8)%hihg # 1.

(5) Suppose h(a,a) = 0. Put W :=ats. Thena € W and W # U (W = U would imply
that a € Rad(f') = {0}). We prove that h(b,b) # 0 forallb € W \ < a >. If h(b, b) would
be zero for a certain b € W \ < a@ >, then h(b,b) would be zero for all b € W \ < @ >.
This Would imply that there exists a by € W \ < @ > such that h(b;,¢) = 0, Ve € U.

Then b, " =< W,U" >. On the other hand, since f'(@,y)=0forall j e<U¥ W >, we

-1 = . . .
have b, " = (a¥)*# and hence < b; >=< a@¥ >, an obvious contradiction.
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Now, let b and & be two vectors such that @ AbA ¢ =@, Atig Atis, b € W\ < @ > and
h(b,¢) = 0. As before, since a = 7w(uy A tg A uz) =7m(aAbAc), we have f'(b,¢) = 1. Put
V1= a, Uy 1= u% and U3 := ¢+ poa, where puy € F* and ps € F will be determined later.
Since f'(b,¢) =1 and f'(b,a) = 0, we have f'(vq9,v3) = 1. B

Since h(a, ) # 0 # h(b,b), h(ty,73) = p! - h(@, &) and h(vy, Ty) = %, we can choose
py € F* such that k := h(vy,93) = I(6¥ — 3) - h(¥y,02)" L. Clearly, k € F*. We have
h(v1,01) = h(D1,72) = 0, h(01,03) = k, h(T2,D2) = (0¥ — §)L and h(vs,73) = 0. We
now prove that gy € F can be chosen in such a way that h(vs,v3) = (0¥ — 0) - 0(k).
We have h(Ds, Ds) = h(p€ + pia@, € + p2@) = py " h(e, €) + pp h(€, @) + popf h(a, ) =
(T R(E, @)+ py — kpd . This is equal to (6% —6) - 0(k) if we take p15 equal to k((;i,;d/_é) (((W —
5) - 6(k) — ™ - h(e, a)).

We conclude that 01 A vg A U5 = 1y Atg Atg, My (01, 02,03) = M* and My, (v, U2, 73) =

0 0 k
0 1(51#1;5) 0 ) -

k0 (6Y—08)-0(k)

4 Proofs of Theorem 1.3 and 1.4

4.1 Introduction

Suppose x is a trivector of V' which is GL(V')-equivalent with yj,. Then by Lemmas 3.2
and 3.8, there exist vectors @y, us, a3 € V' such that {uy, s, us, a’f, a;”, a}f} is a basis of
V' and x = 1 A g A U3 + (T A lia Atig)?. So, precisely one of the five cases of Lemma
3.16 occurs.

In this section, we prove the following proposition.

Proposition 4.1 (1) If case (1) of Lemma 3.16 occurs, then x is Sp(V, f)-equivalent
with the trivector x1(hy, he, h3) where hy, hy, hy € F* are as in Lemma 3.16(1). For all
hy, ha, hy € F*, the trivector xi(hy, he, hs) is GL(V)-equivalent with x5 and Sp(V', f')-
equivalent with the trivector & A e; A e+ (6¥ — 6)3hihohs - ff A f5 A fi of V.

(2) If case (2) of Lemma 3.16 occurs, then x is Sp(V, f)-equivalent with the trivector
X2(k) where k € F* is as in Lemma 3.16(2). For every k € F*, the trivector xa(k)
is GL(V)-equivalent with x3 and Sp(V', f')-equivalent with the trivector & A &5 A fy +
k(0¥ —68)- fr Nes A frof V.

(3) If case (3) of Lemma 3.16 occurs, then x is Sp(V, f)-equivalent with the trivector
X3(k, h) where k,h € F* are as in Lemma 3.16(3). For all k, h € F*, the trivector xs(k, h)
is GL(V)-equivalent with X% and Sp(V', f')-equivalent with the trivector fi A &5 A (&5 +
= k(¥ =0d)-esnesNfsof V.

(4) If case (4) of Lemma 3.16 occurs, then x is Sp(V, f)-equivalent with the trivec-
tor x4(k, hi, hy) where k,hy,hy € F* are as in Lemma 3.16(4). If k,hy,he € F* such
that hihy(a® + 4b) # 1, then the trivector x4(k, hi, ho) is GL(V)-equivalent with x3 and
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Sp(V', f')-equivalent with the trivector fi A (€5+e5) A (fs + %]"3) khiho (0¥ —
SP-esneyN fy of V.

(5) If case (5) of Lemma 3.16 occurs, then x is Sp(V, f)-equivalent with the trivector
X5(k) where k € F* is as in Lemma 3.16(5) assuming that | and 0 have been chosen in
such a way that | =1 and 0(x) := i Ve € F*. For every k € F*, the trivector X5(k)
is GL(V)- equwalent with x& and Sp(V', f')-equivalent with the trivector ef A &5 A (fi +
f3) + k(Y —6) - &5 A f3 A(fi +e5) of V.

The following is an immediate consequence of Proposition 4.1.

Corollary 4.2 e Every trivector of Type (E1) of V' is a trivector of Type (C1) of V.
e Fuvery trivector of Type (E2) of V' is a trivector of Type (C3) of V'.
e Fvery trivector of Type (E3) of V is a trivector of Type (C4) of V'.
o Fvery trivector of Type (E4) of V is a trivector of Type (C6) of V'.
e Fuvery trivector of Type (E5) of V' is a trivector of Type (C5) of V.

Theorem 1.3 is an immediate consequence of Proposition 4.1. In this section, we also
prove Theorem 1.4. Observe that if 4,5 € {1,2,...,5} with ¢ # j, then no trivector
of Type (Ei) is Sp(V, f)-equivalent with a trivector of Type (Ej) by Proposition 2.2(1),
Lemma 3.7(2) and Corollary 4.2. This fact can also be derived in an alternative way by
relying on Lemma 3.15.

4.2 Treatment of case (1) of Lemma 3.16

Let x be a trivector of V' which is GL(V)-equivalent with xj and suppose there exist
three vectors 1, Us, 3 € V' such that the following hold:

o\ =iy Alig A iz + (g A g A ti3)Y;

. {al,a2,a3,a%,a;b,a§”} is a basis of V/;

o My (uy, ta, u3) = diag(0,0,0) and My,(ty, us, u3) = (6% —8)-diag(hi, ha, hs) for some
hi, ho, hy € F*.

Let vy, wy, v, we, v3 and w3 be the unique vectors of V' such that
Uy = vy + ow, Uy = Uy + 0o, U3 = U3 + dws.

Since {uy, Uz, U3, Tff, a;", ag/’} is a basis of V', the set {v, w1, U9, Wy, U3, w3} is a basis of V.
Since f’(al,ﬂg) = f/(?_)l +5U_11, 172+51D2) = 0 and h(ﬂl,ﬂg) = f/(7_11+5?1_)1, 1724—51%?)2) = 0,
we have f'(01 + 0wy, 02) = f'(v1 + dwy,w2) = 0 and hence that f'(9y,02) = f'(w1,72) =
f'(v1,w9) = f'(wy,w2) = 0. In a similar way, one proves that f'(v1,v3) = f'(wy,v3) =
f(01,w3) = f'(w1,w3) = ['(V2,03) = [f'(W2,03) = f'(Va, w3) = f'(wW, w3) = 0.
Since (57’0 — 5)h = h(ﬂl,ﬂl) = h(@l + 51[]1‘,77@' + 5'@1) = f/(@i + 5711,',@ + (Sw’lﬂl) =
(6% —6) - f'(v;,w;), we have f'(v;, & " Liy =1 for every i € {1,2,3}.
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SO, (élvf_‘laé%f%é&f_?)) = (@la%a@%%a@i’n%) is a hyperbOhC basis of (V7 f) We
have

Uy ANig Aiy = (&1 + 0hyfi) A (€2 + Shafo) A (€3 + Shsfs)
= e NegANes+6-(hy-fiNeaNes+hy-e A faNes+hg-& Aéx A f3)
+(ad +b) - (hihg - fi A fo ANes+ hihs - fi Aéy A fs+ hohs -1 A fo A f3)
+hihohs - ((a® +b)6 +ab) - fi A fa A fs

and hence

X = @y Atig Alig + (T Alig A Tig)?
= 2N Nés+a-(hi-fiheaNes+hy-e A faAés+hs e Aea A fs)
+(a® +2b) - (hihy - fi A fo N3+ hihs - fi Aey A fs+ hohs - &1 A fo A f3)
+hihaohs(a® 4 3ab) - fi A fa A fa.

So, x is Sp(V, f)-equivalent with xi(hy, he, hs).

Reversing the above discussion, we see that the trivector x;(hi, he, h3) can be written in
the form @ A g A i + (U A Tig A i3)¥, where @y, Uy, U3 are three vectors of V'’ such that
{@y, Uy, U, @¥, WY, @4} is a basis of V', My (i, Uy, Us) = diag(0,0,0) and My (i, s, is) =
(6% —0) - diag(hy, ha, h3). So, x1(h1, b, h3) is GL(V)-equivalent with x3, by Lemma 3.9.
We also have x = & A&y A ey + (6% — 0)3hihahs - fI A fy A fi, where (€}, f1, &), fy, €5, f4)

is the hyperbolic basis (i, (qua)hl,ﬂz, (6¢1i25)h2,a3, (61&235)}13) of (V' f).

If hy, ho, hs, B, Y, by € F*, then by Lemma 3.13, the trivectors xi(hi, he, h3) and x1(h],
Ry, hy) are Sp(V, f)-equivalent if and only if there exists a (3 x 3)-matrix A over F’
with determinant 1 such that A - diag(hy, ho, h3) - (A¥)T is equal to diag(h}, Iy, hy) or
diag(—h}, —hY, —hj%). This proves Theorem 1.4(2).

4.3 Treatment of cases (2), (3) and (4) of Lemma 3.16

Let x be a trivector of V' which is GL(V)-equivalent with xj, and suppose there exist
vectors 1y, ug, U3 € V such that the following hold:

o X = U Alig Alig + (T Atig A 1z)Y;

° {al,a2,a3,a}”,a§,a§b} is a basis of V/;

o Mi(y, Ug, u3) = M* and My, (s, U, U3) = (0¥ —0)-diag(k, hy, he) for some k, hy, hy €
[ satisfying k # 0 and hyhy(a? + 4b) # 1.

Let {1, v, ..., 06} be the basis of V' such that
Uy = U1 + 00s, Up = U3+ 004, Us = Us + 0.

Since h(iiy, u1) = (6% — 6)k, h(tg, tis) = (6¥ — §)hy and h(us, i3) = (6¥ — §)ha, we have
f(01,02) =k,  f(U3,04) = by, f(U5,T6) = ho.
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From 0 = f'(@y,1z) = f'(01 + 002, U3 + 004) and 0 = h(y, ) = /(01 + 00a, U3+ 6V'04),
it follows that f’'(v; 4+ dvg,v3) = f'(v1 + 602, 04) = 0 and hence that

f'(01,03) = f/(02,03) = f'(01,04) = f'(02,04) = 0.
Similarly, from f'(uy,u3) = h(u,u3) = 0, we find that
f1(01,05) = f'(02,05) = f'(01,06) = ['(02,06) = 0.
We have
1= f'(tp, u3) = f'(U3+ 604, U5 + 00) = f’(vg,v5)+5(f’(v4,v5)+f’(v3,v6))+62-f’(v4,1()g;

and

0 = h(iy, is) = f' (034004, U5+0%0g) = f' (T3, U5)+0- ' (Va, U5)+0V- f (03, U6 )+ ' (Ty, Tg).
(3)
From (3), it follows that
f(0a,05) = f'(v3,06), (4)
[ (v3,05) + a- f'(vs,05) — b f'(Vs,06) =

From (2), (4) and the fact that 6% = ad + b, it follows that

)
—~
ot
~—

f/<1_)371_}5) +b- f/(17471_)6> = 1 (6)
2. f'(v4,05) +a- f'(0s,76) = 0. (7)
The equations (5), (6) and (7) determine a linear system of three equations in the un-

knowns f’(vs,Us), f'(04, v5) and f’(04,7g). Since the determinant of this linear system is
equal to —(a? + 4b) # 0, there is a unique solution. We find:

a 2 a® + 2b

J(®1, %) = J'(00, %) = — g SO0%) = G S0 %) = S,

Now, put Wy := ¥y, Wy := Vo, W3 := U3+ hy(avs + (a® + 2b)Vg), Wy = Vg, Wy := 205 + as —
(CL2 + 4b)h2’l74 and Wg ‘= aVs + (a2 + 2b>’l_16 Then Mf/ (U_Jl, Wa, . . . ,w6) is equal to

0 k 0 0 0 0
-k 0 0 0 0 0
0 0 0 01— hiha(a®+4b) 0
0 O 0 0 0 1
0 0 hlhg(a2 + 4b> -1 0 0 0
0 0 0 ~1 0 0

So, there exists a hyperbolic basis (&1, f1, €2, f2, €3, f3) of (V, f) such that w; = é;, Wy =
kfi, W3 = €, Wy = &3, W5 = (1 — hyho(a® + 4b)) fo and we = fs.

17



We have that v = ’lf)l, Vg = Ujg, 273 = Uj3 - hﬂf]ﬁ, Vg = Wy and

1
U= o 4b((a2 + 2b)ws — awg) + (a* + 2b)hyy,
1
@6 = m(—a@; + 21?)6) - CLhQU_J4.
Hence,
Uy ANug ANy = (01 + 009) A (U3 + 604) A (05 + 0Tg)

= (’U_Jl + (51172) A (’11_13 + (SU_J4 - hlu_}g,) A
((a2 +2b — ad)ws + (20 — a)wg) +(a?+2b— aé)h2w4>.

< 1
a? + 4b
After some tedious calculations, we find
X = @g Adig Alig + (T A tig A Tig)?
= Wy Aws AWs + (14 (a® 4 4b)hihg) - W1 A Wy A Wg + Wy A W3 A W + b - Wy AWy A Ws
+a/"lIJ2/\2IJ4/\’lI)6—h1 '@1/\@6/\@5+(a2+4b)h2'@1/\@3/\@4.
= (1 —hiha(a® +4b)) - & Aex A fo+ (1 + hiho(a® +4b)) - e Aes A fs
+k’ <f1AéQAf3—b(1—hlhg(a2+4b))'fl/\fg/\é3+a'f1/\ég/\f3>
—f-hl(l - hth(GQ -+ 4b)) - e A fg A fg + ((12 -+ 4b)h2 - e A €9 VAN é3.

So, x is Sp(V, f)-equivalent with x4(k, hy, ho).

Reversing the above discussion, we see that the trivector x4(k, hq, hy) can be written in
the form u; A g A Uiz + (i A g A Uz)¥, where @y, Uip, U3 are three vectors of V' such
that {ay, Gy, U3, @}, 45,44 } is a basis of V', M/(y, Gy, @) = M* and M,,(a, U, W) =
(6Y —0) - diag(k, hy, ha). So, xa(k, hy, hy) is GL(V)-equivalent with y3 by Lemma 3.9.

If hy # 0 # hy, then x4(k, hi, hy) = fIA(Ey+ER)A(fo+efs)—khiho(0¥—8)3-€| AeyA fy where

(@2 4b)hhz g (&), f1, &, fs, &, f4) is the hyperbolic basis ( u (a®+

_ _ 1
€ = TZT4b)hihs (@@ 4b)hihak(67 —3)°

U ’U,w — —
4b)hihs - U, — G S s (0% — 6)ho - 0y, i + Gy £ (s — (6¥ = 8)hy - @) of
V" f).

If hy = hy = 0, then xo(k) = x4(k,0,0) = & Aey A fy +k(6¥ —0) - fI Aéy A fh, where
i)

(&), 1,8, f5, e, f4) is the hyperbolic basis (uy, ﬁ,ﬂg,ﬂg,ﬂg,ﬁg’) of (V', f).

If hy = 0 and h := hy # 0, then x3(k, h) = xa(k,h,0) = fI A&, A (& + F}) — k(¥ —

5) - €, N ey A fy, where (&), fl, &), fs, &, f4) is the hyperbolic basis (—%,ﬁl, (6% —
a¥ _ _ _

5)h113f, —m, U3, —liy — (0¥ — 5)hu§b) of (V') ).
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Let k, hy, ho, k', hY, hY, be arbitrary elements of F such that k # 0 # k" and (a®+4b)hihs #
1 # (a® + 4b)R\ kY. By Lemmas 3.13 and 3.14, the two trivectors y4(k, hi, he) and
Xa(K', By, hh) are Sp(V, f)-equivalent if and only if there exists a ¢ € {1,—1} and a
(3 x 3)-matrix
1 0 O
B = b by by
b1 b3z bs3
over F’ with determinant 1 such that B - diag(k, hi, hy) = o - diag(k', h', hb) - (B¥)~™H)T.

Since (A (X R R (A
L byyby3 — by by by bgy — b3y by,

(B =0 bé% —gé”z )
0 —by3 by

this implies that by; = b3y = 0, ¥’ = ok and A - diag(hy, hs) - (AV)T = o - diag(h}, h}),

where A is the (2 x 2)-matrix bz bas

bsa b33

So, we conclude that the two trivectors x4(k, hi, ho) and x4(K', b, h}) are Sp(V, f)-

equivalent if and only if there exists a ¢ € {1,—1} and a (2 x 2)-matrix A over ' with

determinant 1 such that k' = ok, A - diag(hy, hy) - (A¥)T = o - diag(h}, hb). We can now
already say the following.

} of determinant 1.

o If k, k' € F*, then the two trivectors x2(k) = x4(k,0,0) and x2(k") = x4(k’,0,0) are
Sp(V, f)-equivalent if and only if k' € {k, —k}.

We will now focus on the trivectors of Type (E3) and (E4).

Lemma 4.3 Let 0 € {1,—1} and suppose that hy # 0 # . Then there exists a (2 x 2)-
matriz A over F' with determinant 1 such that diag(ch’, ohl) = A-diag(hy, hs) - (Aw)T if
and only if hyhy = hyhy and there exist ny,my € F' such that ol =1y hy + 1y hy.

o2
N3 M
= A - diag(hy, hy) - (A¥)T. Calculating the determinants of the matrices at both sides of
the equality, we find that h{h} = hihy. Comparing the elements in the first row and first
column of the matrices at both sides of the equality, we find that oh} = 7 hy + 03 ' hy.

Conversely, suppose that hih, = hihy and that there exist 1,7, € F' such that
nV ™ hy +nY " hy = oh!. Then the system of linear equations

Proof. Suppose the matrix A = [ } has determinant 1 and satisfies diag(ch’, ohl)

mna—1n2-m3 = 1,
myho - na+nihioms = 0,
m 712

N3 T4
1 and one can readily verify that diag(ch),ohy) = A - diag(hy, hy) - (A¥)T. ]

has a unique solution for (n3,n4) € F' x F'. The matrix A := [ } has determinant

Invoking Lemma 4.3, we now immediately see that the following hold.
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o If kL k' h,h € F*, then the two trivectors x3(k,h) = x4(k, h,0) and x3(k',h') =
xa(k', 1, 0) are Sp(V, f)-equivalent if and only if there exists a o € {1, -1} and an
n € T\ {0} such that k' = ok and b/ = on¥** - h.

o If k, k' hy, Y, ho, Yy € F* with (a® + 4b)hihy # 1 # (a® + 4b)W kY, then the two
trivectors x4(k, hq, ho) and x4 (K, b, h%) are Sp(V, f)-equivalent if and only if A} Al =
hihy and there exist 11,7, € F' and a o € {1, —1} such that k¥’ = ok and oh}| =

P+1 P+1
o he+ny T he.

4.4 Treatment of case (5) of Lemma 3.16

Let x be a trivector of V' which is GL(V)-equivalent with xj, and suppose there exist
three vectors uy, us, ug € V' such that the following hold:

o X =1 Alig Atz + (g Atg A tz)Y;

° {al,az,ﬂg,a’f,a;",a;"} is a basis of V’;

0 0 k

° Mf/(ﬂl,ﬂ27ﬂ3) = M* and Mh(ﬂlaa%a?)) = 0 6wk_6 0
B T
a?+4b

The value of the matrix My (uq, Uz, u3) corresponds to the choice [ = 1 and 6 : F* —
F;z — 45 in Lemma 3.16. The reason why we have made that choice is because this
will lead to easier calculations later.

Let {1, ¥, ..., 06} be the basis of V' such that

ﬂl == ?71 + (5’172, ’112 = ’173 + (5174, 113 - ’175 + 5176.

From h(uy,u1) = 0, h(tg, tg) = ‘WT_‘S and h(ug,u3) = kgizg), we find

1 k
fl(01,02) =0, f'(0s3,04) = T f(5,06) = Wz 4

From f'(@y, ) = h(ty,us) = 0, we obtain
f1(v1,73) = f'(01,04) = f(02,03) = f'(Va,04) = 0.

From
0= f'(t,us) = f'(01 + 60a, U5 + 006) = f'(V1,05) + 0 f' (D2, Us) + f' (01, Vg)) + 6> f' (V2, V),
k= h(ty,ts) = f' (01400, U5+6%06) = f'(01,U5)+0f (D2, U5)+6" [ (01, 0) +6Y - ' (2, Tg),
and the facts that § + 0¥ = a and §¥*! = —b, we deduce that
f1(v1,06) — f'(02,05) =
2f'(01,06) + af (02, 06) =
f(01,05) 4+ bf' (02, 06) =
f'(01,05) + af' (01, 06) — bf (02,76) =

> o o o
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We find

ka —2k 2bk

J'(v1,06) = f'(02,05) = PN [(02,76) = PR f'(01,05) = pERTA

Similarly as in Section 4.3, the facts that f'(uq, u3) = 1 and h(ug, u3) = 0 imply that

fe N e N G e oy 2 oo a*+2b
f (U47U5) — f (U37U6) — a2 +4b7 f (U47U6) — a2 +4b7 f ('03,1}5) - a2 +4b
NOW, put Wy = 171, Wy = ’DQ, Wy = 173, Wy = @4, Wy = QU5 — Qbﬁﬁ — k?@g — k’a@4 and
We = 205 + avs — kvg. Then My (wq, Ws, . .., ws) is equal to
[0 0 0 0 0 k]
0o 0 0 0 kO
0 0 0 £+ 00
0 0 —L0 0 0
0 -k 0 0 0 O
|~k 0 0 00 0|

So, there exists a hyperbolic basis (é;, fi, €2, f2, €3, f3) of (V, f) such that w; = &, Wy = &3,
Wy = €1, Wy = %fh ws = kf3 and we = k fo.
We have U1 = ’lIJl, Vg = ZDQ, Vg = wg, Vg = Wy and

_ 1 _ _ _ 2 _
Uy = pEpT: <aw5 + 2bwg + kaws + k(a”® + 26)w4>,
v = (= 25 + aits — 2wy — kauy)
Vg — o2 I b Ws aWeg W3 awy |.
Hence,
o 1 _ _ _ _
Uy Nug Nug = m-(w1+5w2)/\(w3+5w4)/\
<((a — 28)@s + (2b + ad)dg) + k - ((a — 26w + (a® + 2b — ad)w4)>
1
= oo (w1 + 0wg) A (w3 + 0wg) A ((a — 26)ws + (2b + ad)we)

+k - (w7 + 0wy) A w3 A wy.
After some tedious calculations, we find
X = U Alg A+ (U Atlg Atg)?
= u_)l/\1I13/\U_16—?Dl/\w4/\w5—|—a'w1/\w4/\w6—@2/\@3/\@54—@'@2/\@3/\@6
—a - Wy AWy A Ws + (a® 4 b) - Wy AWy AW + 2k - w1 A W3 A Wy + ak - Wy A W3 A Wy,
= flAég/\f3+2-él/\f1/\62—a-fl/\égAf2+a-f1/\ég/\f3+a-él/\f1/\ég
+(a2+b)-f1/\f2/\ég—|—k'(a-él/\fg/\ég—él/\égAfg—Fél/\ég/\fg).
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So, x is Sp(V, f)-equivalent with x5 (k).

Reversing the above discussion, we see that the trivector xs(k) can be written in
the form u; A g A s + (g A U A U3)¥, where 1y, s, U3 are three vectors of V' such
that {, g, Us, @%, Ty, Gy } is a basis of V/, M (@, Gy, Gs) = M* and My, (1, Gs, T3) =

0 0 k

0 &’;5 0 . S0, x5(k) is GL(V)-equivalent with xj by Lemma 3.9. We also
T )
a?+4b 3 3 B 3 B 3 3
have xs5(k) = ey A ey A (f3+ f3) + (6 = 0)k - ey A f5 A (fi +€3), where (€}, f1, €, f3, €5, f3)

o _ .
is the hyperbolic basis (a1, 5+ + 5525, —Mﬂlﬁ —(6% — &)us + kal, — 5525, —kiil) of

(V' f).
If k£, k' € F*, then by Lemma 3.13, the two trivectors xs(k) and x5(k') are Sp(V, f)-

equivalent if and only if there exists a ¢ € {1, —1} and a (3 x 3)-matrix A over F’ with
determinant 1 such that AM*AT = M* and

0 0 k 0 0 k'
Al 0 o D | AT o Dol ®
—k O 2+4b —k/ 0 g a2+4b

If we put 0 = —1 and A = diag(1,—1,—1), then we see that the trivectors xs(k) and
X5(—k) are Sp(V, f)-equivalent.

Conversely, if the two trivectors xs5(k) and y5(k') are Sp(V, f)-equivalent, then taking
the determinants of the matrices at both sides of the equality (8), we see that k' € {k, —k}.
This finishes the proof of Theorem 1.4(6).
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