REGULARITY OF A FUNCTION RELATED TO THE 2-ADIC LOGARITHM

JAN-CHRISTOPH SCHLAGE-PUCHTA

MSC-Index: 68Q45, 68Q70

For a function $f : \mathbb{N} \to X$ mapping the positive integers to some set X, define the q-kernel $K_q(f)$ as the set of functions $\{f_{k,\ell} : k \in \mathbb{N}, 0 \leq \ell < q^k\}$, where $f_{k,\ell}(n) = f(q^k n + \ell)$. The q-kernel is related to the concept of q-automaticity by the following criterion due to Eilenberg [2] (see also [1, Theorem 6.6.2]).

Theorem 1. A function f is q-automatic if and only if $K_q(f)$ is finite.

The notion of q-regularity generalizes the concept of q-automaticity in the case that X is the set of integers. A function f is called q-regular if $K_q(f)$ is contained in a finitely generated Z-module.

Motivated by work of Lengyel [3] on the 2-adic logarithm, Allouche and Shallit [1, Problem 16.7.4] asked whether the function

(1)
$$f(n) = \min_{k \ge n} (k - \nu_2(k)),$$

where $\nu_2(k)$ is the 2-adic valuation, is 2-regular or not. Here we give a negative answer to this question. More precisely, we show the following.

Theorem 2. The functions $f_{k,0} : n \mapsto f(2^k n)$ are \mathbb{Q} -linearly independent.

For the proof we need the following simple statements concerning f.

Proposition 1. (1) We have $f(n) = n - O(\log n)$.

(2) For $n = (2^{\ell+2} - 3)2^m$ we have $f(n) = \min(n - m, n - m - \ell - 2 + 3 \cdot 2^m)$.

Proof. (1) We trivially have the bound $f(n) \leq n$. On the other hand we have $\nu_2(k) \leq \frac{\log k}{\log 2}$, and hence $f(n) \geq \min_{k \geq n} k - \frac{\log k}{\log 2}$. Since the derivative of the function $t - \frac{\log t}{\log 2}$ is $1 - \frac{1}{t \log 2}$, which is positive for $t \geq 2$, for $n \geq 2$ the minimum is attained for k = n and we conclude $f(n) \geq n - \frac{\log n}{\log 2}$, and the first claim is proven.

attained for k = n and we conclude $f(n) \ge n - \frac{\log n}{\log 2}$, and the first claim is proven. (2) We want to show that as k runds over all integers $\ge n$ the minimum in (1) is attained at k = n or at $k = 2^{\ell+m+2} = n+3 \cdot 2^m$. From this our claim follows by computing the value of $k - \nu_2(k)$ at these two positions. Assume first that $k \ge n$ is not divisible by 2^{m+1} . Then we have $k - \nu_2(k) \ge n - \nu_2(k) \ge n - m$, which is what we want to have. Next assume that $\nu_2(k) > m$ and $k < 2^{\ell+m+2}$. Then $k = (2^{\ell+2} - 2)2^m$, that is, $\nu_2(k) = m + 1$, and we have $k - \nu_2(k) = (n + 2^m) - (m+1) \ge n - m$, which is also consistent with our claim. For $k = 2^{\ell+m+2}$ we have $k - \nu_2(k) = n - m - \ell - 2 + 3 \cdot 2^m$, and thus it remains to consider the range $k > 2^{\ell+m+2} - (\ell + m + 2)$, and hence this range cannot contribute to the minimum. Finally, if $k \ge 2^{\ell+m+3}$, then $k - \nu_2(k) \ge k - \frac{\log k}{\log 2} \ge 2^{\ell+m+3} - (\ell+m+3) > 2^{\ell+m+2} - (\ell+m+2)$, and this range is of no importance as well. Hence, the second claim follows as well. \Box We now turn to the proof of the theorem. Assume the family of functions $(f_{k,0})_{k\geq 0}$ was linearly dependent. Then there exist rational numbers $\lambda_0, \ldots, \lambda_p$, not all 0, such that

(2)
$$\sum_{j=0}^{p} \lambda_j f(2^j n) = 0$$

holds for all integers n. Evaluating this equation asymptotically for $n \to \infty$ we see that the left hand side is $n \cdot \left(\sum_{j=0}^{p} 2^{j} \lambda_{j}\right) + \mathcal{O}(\log n)$. This expression can only vanish identically if

(3)
$$\sum_{j=0}^{p} 2^{j} \lambda_{j} = 0$$

Let j_0 be the least integer satisfying $\lambda_{j_0} = 0$. Then define $\ell = 3 \cdot 2^{j_0} - 1$, and put $n = 2^{\ell} - 3$ into (2). We have

$$n - j_0 > n - j_0 - \ell - 2 + 3 \cdot 2^{j_0} = n - j_0 - 1.$$

On the other hand we have

$$n - j < n - j - \ell - 2 + 3 \cdot 2^{j} = n - j - 1 - (j - j_{0}) + 3 \cdot (2^{j} - 2^{j_{0}})$$

for all $j > j_0$, hence, by the second part of the proposition relation (2) becomes

(4)
$$\lambda_{j_0}(2^{j_0}n - j_0 - \ell - 2 + 3 \cdot 2^{j_0}) + \sum_{j=j_0}^p \lambda_j(2^j n - j) = 0.$$

Finally we put $n' = 2^{\ell+1} - 3$ into (2). The same computation as the one used for n yields the equation

(5)
$$\lambda_{j_0}(2^{j_0}n'-j_0-\ell-3+3\cdot 2^{j_0})+\sum_{j=j_0}^p\lambda_j(2^jn'-j)=0.$$

Note that the difference between (4) and (5) is that n is replaced by n', and -2 is replaced by -3. If we take the difference of (4) and (5), we therefore obtain

$$\lambda_{j_0}(2^{j_0}(n'-n)+1) + \sum_{j=j_0}^p \lambda_j 2^j(n'-n) = 0.$$

If we now multiply (3) by (n - n'), and subtract the result from the last equation, all that remains is $\lambda_{j_0} = 0$. But j_0 was chosen subject to the condition $\lambda_{j_0} \neq 0$. Hence, the initial assumption that not all λ_j are 0 is wrong, and we conclude that there is no linear relation among the functions $f_{k,0}$.

The reader might wonder why we restricted our attention to the functions $f_{k,0}$. Essentially the same method of proof can be used to show that the dimension of the linear span $\langle f_{k,0}, f_{k_1}, \ldots, f_{k,2^{k-1}} \rangle$ tends to infinity with k. However, things become notationally more involved, since these functions are no longer linearly independent. In fact, we have $f_{k,a} = f_{k,a+1}$ for every odd a and many more identities like this, that is, these functions are not even different, and to give a lower bound for the dimension we have to choose a suitable subset.

References

- J.-P. Allouche, J. Shallit, Automatic Sequences, Cambridge University Press, Cambridge, 2003.
 Eilenberg, Automata, Languages, and Machines, Academic Press, New York, 1974.
 T. Lengyel, Characterizing the 2-adic order of the logarithm. Fibonacci Quart. 32 (1994), 397-401.