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Upper bounds for Fourier transforms of exponential
functions

L. Knockaert

Abstract

Meaningful upper bounds for the Fourier transform of polyie expo-
nential functions are often hard to come by. Regarding lEotransforms of
rational exponential functions, which are of importanag én Campbell's
sampling theorem, the purpose of finding significant uppenks is an even
more demanding exercise. In this paper we propose a newaqipio order
to obtain significant upper bounds for Fourier transformg@feral expo-
nential functions. The technique is shown to allow furthengralization in
order to deal with Fourier-like integrals and rational exgitial integrals.
Keywords : Fourier analysis; Upper bounds; Exponentiatfioms; Sam-
pling theorem;

1 Introduction

Obtaining significant upper bounds for the Fourier transform of eeptaal func-
tions, even when the exponent is a mere polynomial, is an arduous exefoise
that effect, promising results were obtained in [1, 2], where judiciousolitiee
Legendre-Fenchel transform [3] led to meaningful upper boundsunBs for
Fourier transforms of even more complex exponential functions, thelsedaa-
tional exponential integrals [4], where the exponent is a rational fumctice still
more difficult to obtain. Nonetheless, it happens that Fourier transfofmagio-
nal exponential integrals are of importance in establishing sampling theooems f
Fourier transforms of distributions with compact support [5, 6]. For m=athe
Campbell sampling theorem can be stated as follows [5] :

Theorem 2 [5] : Let g(w) be a distribution with support contained in the open in-
terval {w : |w| < (1 —¢)Q}, where0 < ¢ < 1. Let f(¢) bethe Fourier transform
of g(w). Then

fy =30 7 () SR (gl — ) )

where the function S(-)* is given by
s(y) = Jmepl/@ 1)+ imy] do
J2yexp[l/(@? = 1)] da

'Referred to as the Campbell function in the sequel

(2)
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Note thatf_l1 exp[1/(x? — 1) +izy] dr can be interpreted as the Fourier transform
of the C,,,[R] function defined as the rational exponential functiep[1/(x? —1)]
over the compact suppdrt1, 1] and zero elsewhere.

In this paper we modify and generalize the approach adopted in [1, 2fer to
obtain significant upper bounds for Fourier integrals under quite geaed simple
conditions. Several examples illustrating the technique are given. Tlserire
approach is then further extended in order to deal with Fourier-like ialggrith
applications to rational exponential integrals including the Campbell funétion
as a pertinent example.

2 Fourier integrals

Theorem 1 : Consider the Fourier transform

F(w) = / e~ f@+iwe g, 3
wheref(z) is a function analytic in a strig3z| < b with b > 0. The functionf (z)
satisfiesf(z) > 0 on the real line ané f (00 + iy) = +oo for |y| < b. Then

log|F(@)| < _inf_{~®(y,0) —wy - Z(a)} @
g

where the function®(y, a) andZ(a) are defined as

By, a) = inf (Rf(z +iy) —af@)} 0<a<l ll<b ()
and
Z(a) = —log /00 e @) qg (6)

where the last integral is supposed to be finitedfer ¢ < 1.2
Proof : From the premises it is seen thaty, a) > —oo for |y| < b. Itis clear that
F(w) can be written as

F(w):/ e fEtw @) g for |yl < b (7)
and hence
F(w)] < / e RICHY Y g0 for |yl < b ®)

Note thatZ (1) = —log F(0)



From the premises this implies that
|F(w)] g/ e~ @=2wa—wy gp for |yl<b O<a<1l  (9)

Since this is valid for all admissiblganda, the result followsz.
Remark 1. The minimization problem (4) can be written as

log |F(w)| < — sup {Z(a) + sup [®(y,a)+ wy]} (10)
0<a<1 —b<y<b
Whenb = oo and—®(y, a) is a convex function ofj, the maximization
sup [wy + ®(y, a)] (11)
yeR

is known as the Legendre-Fenchel transform [1, 2, 3} &f(y, a).
Remark 2: A necessary condition for the minimum in (5) is

Rf'(z +iy) —af'(z) =0 (12)
This defines the position of the minimuniy) implicitly and hence
(y,a) = Rf(z(y) +iy) — af(z(y)) (13)
Supposing = oo the minimum with respect tg in (4) has as necessary condition
0 — a(I)(y7 a) _|_ w
dy
= Rf'(z(y) +iy)(2'(y) + i) — af(2(y)'(y) +w
= —Sf'(2(y) +iy) +w (14)
Equations (12) and (14) together can be neatly written as
'z +iy) = af'(z) +iw (15)

This determines the values efandy in terms ofw. Note that, if we tentatively put
a = 01in (15) we obtain the equation f'(z) + iw = 0, which is the equation for
the saddle point in the well-known steepest descent asymptotic methodufih B
our approach the value= 0 is of course not allowed sincg(0) = —co. Also, we
endeavor to obtain upper bounds féf(w)|, not asymptotic expressions for large
values of|w|.

2.1 Examples

Let f(z) = #?™ wherem is a positive integerF’(w) is an even entire function of
w given by the Taylor expansion

o0 w?k‘
F(w)=— 3 (-1Fr <:1 + 1) o (16)

2m



Clearlyb = oo and®(0, a) = 0. Fory # 0 we have

D(y,a) = B(a)y™™ (17)
where
Bm(a) = inf {R{(t+0)*"} - at™} (18)

Note that® { (¢ +)*"} — at*™ is an even polynomial irt with leading term
(1 — a)t>™ and hence the minimurs,, (a) exists. It is an easy matter to show that

Bila) = -1,  fyla) = —>+° (19)

1—a

and in generab,,(a) < 0 for 0 < a < 1. This follows from the fact that (18) can
be written, with the change of variable= cot 0, as

cos(2mf) — al cos O]>™

Bula) = int (20)

0<f<r | sin 6]2m

and considering thatos(2m#) vanishem times in the open intervdD, 7). The
function Z(a) is given by

[(5 1
Z(a) = —log [ () + —loga (21)
m 2m
The logarithmic bound is :
log|F(@)| < __inf {~Bu(a)y™ ~ lwly — Z(a)} (22)
0<ay<1
Straightforward minimization with respect foyields
‘w| 2m/(2m—1)
< i - — M
g F@)] < int (@1~ 2m) | 5 o]
(L
+ log[ (gm)] - lloga} (23)
m 2m
Form = 1 this leads to the bound
w2
[F(w)] < vae™ 5 (24)

which is remarkable since for. = 1 the functionF'(w) is actually equal to its

r(ﬁ)] }
2

bound./me™ 1. Form = 2 we have
(25)

8+a\ Y31 1
1 < inf — — — -1 1
0g|F(w)\ _Og;<1{ 3(1—(1) [4 4 oga+log




The best bound is found by solving

4/3(1 _ \2/3 4/3
(84 a)°(1 —a)® {w'] (26)
36a 4
for a = a(|w|) and inserting the result in (25). Note thg) = 1 anda(co) =0
anda(|w|) is a strictly decreasing function ¢f|. In Fig. 1 we plot the relative
error bound, defined as

B(w) = [F(w)]

Per=""50

(27)

where B(w) is the given upper bound, as a functionwf It is seen that) <
E(w) < 1ingeneral, andv(w) = 1 at the locations of the real zeros of the func-
tion F'(w).

Rel ative Error Bound (m:2)
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Figure 1: Relative error bound for the case= 2

Of course, working by means of equation (26) is an implicit, not an explicit ap
proach. For generak we have no explicit minimization results with respectto
but of course (23) implies that

|w’ 2m/(2m—1)
log |F(w)| < {_ﬂm(a)(l — 2m) [_QM%(CLJ
+ log [W] B 211n10ga} 9



is valid for all0 < a < 1. A pertinent sub-optimal bound is found by taking
¢ = 4~ in equation (20), yielding

T 2m
Om(a) = —a ’00t (%N (29)
Inserting this value fofs,,(a) in equation (28), and letting tend to 1, results in
the bound
‘w| 2m/(2m—1) F(ﬁ)
< {d = — B _ZamZ
log |F(w)] < { (2m —1) {2mcot(7r/4m) + log -

(30)
This bound is exact fov = 0. Again, form = 1 the functionF'(w) is equal to its
w2
bound,/me™ 1 in formula (30). Note that in [2] the cruder bound
Jwl

:| 2m/(2m—1)

2m

log |F(w)| < {—(2m — 1)2*4m2 [ + 3 10g(27re)} (31)

was obtained. In Fig. 2 we compare the relative errors for the fine b@d)cnd
crude bound (31) as a function offor m = 3.

Rel ative Error Bound (me3)
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Figure 2: Relative errors for the fine resp. crude bounds in therpase3
3 Generalization

Theorem 2 : Consider the Fourier-like integral

F(w):/ e_f(x)““’g(a:)w(x) dx (32)

—00



wheref(z), g(z), w(z) are functions analytic in a strifz| < b with b > 0. We
require f(z) > 0 andw(z) > 0 on the real line an@ f(+oo + iy) = +oo for
ly| < b. The function|Sg(x + iy)| is required to be bounded for atl € R and
ly| < b. Define the function

U(y,w,a) = 3}61{{ {Rf(x +iy) —af(x) +wSg(z +1y)} (33)

for0 < a < 1and|y| < b. We suppose thatis chosen such that(y,w,a) > —oco
for |y| < b. We further require that

up [0+ )

=((y) <oco for |yl <b (34)
z€R u(w)

Then we have the logarithmic bound

log |F(w)] < inf {-¥(y,w,a)+log((y) — Z(a)} (35)
b<y<b

0<a<1

where
Z(a) = —log/ e_af(x)w(ac) dx (36)

Proof : Itis clear thatF'(w) can be written as

F(w) = / h e~ @) riwg@tiv)y, (4 4 jy) da (37)
and hence
Fo) < [ e M-St 4 iy)| da (38)
implying that
F) < [ e IO u)g) do (39)

and the result follows.

3.1 Application: Rational exponential integral

Consider the finite Fourier transform

1
F(w) = / e~ QFit gy (40)
-1

whereQ(t) is a non-negative rational function over the open intefval, 1) with

lim Q(t) = lim Q() = +o0 (41)



The change of variable = tanh(z) transforms the finite Fourier transform into
the infinite format

F(w) = /OO e~ @+ (1) da (42)
where
f() = Qluanh(®)) g(v) = tanh(s) w()= —— (43
We have
B |w(z + iy)| 1
((y) = WD) costy (44)

and hence we must requide< b < 7. The functionZ(a) is

1
Z(a) = —log / e QM) gy (45)
—1

The function¥ (y, w, a) is

U(y,w,a) = in}% {Rf(x+1iy) — af(r) + wStanh(x + iy)} (46)
S
B . t+itany (1 —t%)tany
N —112tf<1 {%Q <1+ittany> aQ(t) +w 1+t2tan Y "
The logarithmic bound is
log |F(w)| < inf {-¥(y,w,a)—2logcosy — Z(a)} (48)
[

3.2 Example: The Campbell function

Applied to the functionQ(¢) = 1/(1 — t?) we have that?'(w) is an even entire
function ofw given by the Taylor expansion

ii ( >U<;+k01> é:; (49)

=0

whereU (-, -, -) is the Tricomi confluent hypergeometric function. The relationship
with the Campbell functioi$ (w) is the simple scaling(w) = F(w)/F(0).
The function¥ (y, w, a) is

U(y,w,a) = inf

cos?y —t?sin’y —a (1 —t?)tany (50)
—1<t<1

1—¢2 wl—i—tQtanQy



In order that¥(y,w, a) > —oo we must requireos 2y > a. In other word9 is a
function ofa given by
b= - arccos(a) < (51)
= — arl —_
5 arccos(a 4
Another requirement is thgtmust have the same sign@sbut sinceF'(w) is even
we may consider only non-negative values.odndy. Tedious calculations result
in the explicit expression

U(y,w,a) = % ((1 — 4asin®(y) — cos(4y)) + (3 + 4 cos(2y) + cos(4y))
x  \/w(cos(2y) — a)secS(y) tan(y) ) (52)

Also, after some algebraic manipulations, the functitin) is found to be
Z(a) = —log {ae™*/? [Ki(a/2) - Ko(a/2)]} (53)
were theK.(-) are the MacDonald Bessel functions. The logarithmic bound
log |F(w)| < =¥(y,|w],a) — 2logcos(y) — Z(a) (54)

is valid for0 < y < 1 arccos(a) and0 < a < 1.This can be written as

log |[F(w)| < —A(y,a) — V/|w|B(y, a) (55)

where
Aly,a) = i(l — dasin®(y) — cos(4y)) + 2log cos(y) + Z(a) (56)
Bly,a) = ;(3+4cos(2y) + cos(4y))v/(eos(2y) — a) secd(y) tan(yX57)
SinceZ(0) = —log 2 > —oo, the maximum ofB(y, a) is obtained for tending to

0 andy = /8. From the maximum valug&(7/8,0) = 1 we obtain the particular
bound

242
8

L[ (1) - ()] -

Of course, other bounds can also be obtained by inserting differenizddle val-
ues ofy anda in the expression (55). In Fig. 3 we plot the relative error bound as
a function ofw.

1
log [F'(w)] < min (—4 — log

—Vwl, n) (58)

where



Rel ative Error Bound
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Figure 3: Relative error bound for the Campbell function
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