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Abstract
Meaningful upper bounds for the Fourier transform of polynomial expo-

nential functions are often hard to come by. Regarding Fourier transforms of
rational exponential functions, which are of importance e.g. in Campbell’s
sampling theorem, the purpose of finding significant upper bounds is an even
more demanding exercise. In this paper we propose a new approach in order
to obtain significant upper bounds for Fourier transforms ofgeneral expo-
nential functions. The technique is shown to allow further generalization in
order to deal with Fourier-like integrals and rational exponential integrals.
Keywords : Fourier analysis; Upper bounds; Exponential functions; Sam-
pling theorem;

1 Introduction

Obtaining significant upper bounds for the Fourier transform of exponential func-
tions, even when the exponent is a mere polynomial, is an arduous exercise. To
that effect, promising results were obtained in [1, 2], where judicious useof the
Legendre-Fenchel transform [3] led to meaningful upper bounds. Bounds for
Fourier transforms of even more complex exponential functions, the so-called ra-
tional exponential integrals [4], where the exponent is a rational function, are still
more difficult to obtain. Nonetheless, it happens that Fourier transforms of ratio-
nal exponential integrals are of importance in establishing sampling theorems for
Fourier transforms of distributions with compact support [5, 6]. For instance, the
Campbell sampling theorem can be stated as follows [5] :
Theorem 2 [5] : Let g(ω) be a distribution with support contained in the open in-
terval {ω : |ω| < (1 − q)Ω}, where 0 < q < 1. Let f(t) be the Fourier transform
of g(ω). Then

f(t) =
∑

f
(nπ

Ω

) sin(Ωt − nπ)

Ωt − nπ
S(q[Ωt − nπ]) (1)

where the function S(·)1 is given by

S(y) =

∫ 1
−1 exp[1/(x2 − 1) + ixy] dx
∫ 1
−1 exp[1/(x2 − 1)] dx

(2)

1Referred to as the Campbell function in the sequel
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Note that
∫ 1
−1 exp[1/(x2−1)+ ixy] dx can be interpreted as the Fourier transform

of theC∞[R] function defined as the rational exponential functionexp[1/(x2−1)]
over the compact support[−1, 1] and zero elsewhere.
In this paper we modify and generalize the approach adopted in [1, 2] in order to
obtain significant upper bounds for Fourier integrals under quite general and simple
conditions. Several examples illustrating the technique are given. The present
approach is then further extended in order to deal with Fourier-like integrals with
applications to rational exponential integrals including the Campbell functionS(·)
as a pertinent example.

2 Fourier integrals

Theorem 1 : Consider the Fourier transform

F (ω) =

∫ ∞

−∞

e−f(x)+iωx dx (3)

wheref(z) is a function analytic in a strip|ℑz| < b with b > 0. The functionf(x)
satisfiesf(x) ≥ 0 on the real line andℜf(±∞ + iy) = +∞ for |y| < b. Then

log |F (ω)| ≤ inf
−b<y<b
0<a<1

{−Φ(y, a) − ωy − Z(a)} (4)

where the functionsΦ(y, a) andZ(a) are defined as

Φ(y, a) = inf
x∈R

{ℜf(x + iy) − af(x)} 0 < a < 1 |y| < b (5)

and

Z(a) = − log

∫ ∞

−∞

e−af(x) dx (6)

where the last integral is supposed to be finite for0 < a ≤ 1.2

Proof : From the premises it is seen thatΦ(y, a) > −∞ for |y| < b. It is clear that
F (ω) can be written as

F (ω) =

∫ ∞

−∞

e−f(x+iy)+iω(x+iy) dx for |y| < b (7)

and hence

|F (ω)| ≤
∫ ∞

−∞

e−ℜf(x+iy)−ωy dx for |y| < b (8)

2Note thatZ(1) = − log F (0)
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From the premises this implies that

|F (ω)| ≤
∫ ∞

−∞

e−af(x)−Φ(y,a)−ωy dx for |y| < b 0 < a < 1 (9)

Since this is valid for all admissibley anda, the result follows2.
Remark 1: The minimization problem (4) can be written as

log |F (ω)| ≤ − sup
0<a<1

{

Z(a) + sup
−b<y<b

[Φ(y, a) + ωy]

}

(10)

Whenb = ∞ and−Φ(y, a) is a convex function ofy, the maximization

sup
y∈R

[ωy + Φ(y, a)] (11)

is known as the Legendre-Fenchel transform [1, 2, 3] of−Φ(y, a).
Remark 2: A necessary condition for the minimum in (5) is

ℜf ′(x + iy) − af ′(x) = 0 (12)

This defines the position of the minimumx(y) implicitly and hence

Φ(y, a) = ℜf(x(y) + iy) − af(x(y)) (13)

Supposingb = ∞ the minimum with respect toy in (4) has as necessary condition

0 =
∂Φ(y, a)

∂y
+ ω

= ℜf ′(x(y) + iy)(x′(y) + i) − af(x(y))x′(y) + ω

= −ℑf ′(x(y) + iy) + ω (14)

Equations (12) and (14) together can be neatly written as

f ′(x + iy) = af ′(x) + iω (15)

This determines the values ofx andy in terms ofω. Note that, if we tentatively put
a = 0 in (15) we obtain the equation−f ′(z) + iω = 0, which is the equation for
the saddle point in the well-known steepest descent asymptotic method [7]. But in
our approach the valuea = 0 is of course not allowed sinceZ(0) = −∞. Also, we
endeavor to obtain upper bounds for|F (ω)|, not asymptotic expressions for large
values of|ω|.

2.1 Examples

Let f(x) = x2m wherem is a positive integer.F (ω) is an even entire function of
ω given by the Taylor expansion

F (ω) =
1

m

∞
∑

k=0

(−1)k Γ

(

k

m
+

1

2m

)

ω2k

(2k)!
(16)
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Clearlyb = ∞ andΦ(0, a) = 0. Fory 6= 0 we have

Φ(y, a) = βm(a)y2m (17)

where

βm(a) = inf
t∈R

{

ℜ
{

(t + i)2m
}

− at2m
}

(18)

Note thatℜ
{

(t + i)2m
}

− at2m is an even polynomial int with leading term
(1− a)t2m and hence the minimumβm(a) exists. It is an easy matter to show that

β1(a) = −1, β2(a) = −8 + a

1 − a
(19)

and in generalβm(a) < 0 for 0 < a < 1. This follows from the fact that (18) can
be written, with the change of variablet = cot θ, as

βm(a) = inf
0<θ<π

cos(2mθ) − a| cos θ|2m

| sin θ|2m
(20)

and considering thatcos(2mθ) vanishes2m times in the open interval(0, π). The
functionZ(a) is given by

Z(a) = − log

[

Γ( 1
2m)

m

]

+
1

2m
log a (21)

The logarithmic bound is :

log |F (ω)| ≤ inf
−∞<y<∞

0<a<1

{

−βm(a)y2m − |ω|y − Z(a)
}

(22)

Straightforward minimization with respect toy yields

log |F (ω)| ≤ inf
0<a<1

{

−βm(a)(1 − 2m)

[ |ω|
−2mβm(a)

]2m/(2m−1)

+ log

[

Γ( 1
2m)

m

]

− 1

2m
log a

}

(23)

Form = 1 this leads to the bound

|F (ω)| ≤
√

πe−
ω
2

4 (24)

which is remarkable since form = 1 the functionF (ω) is actually equal to its

bound
√

πe−
ω
2

4 . Form = 2 we have

log |F (ω)| ≤ inf
0<a<1

{

−3

(

8 + a

1 − a

)−1/3 [ |ω|
4

]4/3

− 1

4
log a + log

[

Γ(1
4)

2

]}

(25)
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The best bound is found by solving

(8 + a)4/3(1 − a)2/3

36a
=

[ |ω|
4

]4/3

(26)

for a = â(|ω|) and inserting the result in (25). Note thatâ(0) = 1 andâ(∞) = 0
and â(|ω|) is a strictly decreasing function of|ω|. In Fig. 1 we plot the relative
error bound, defined as

E(ω) =
B(ω) − |F (ω)|

B(ω)
(27)

whereB(ω) is the given upper bound, as a function ofω. It is seen that0 ≤
E(ω) ≤ 1 in general, andE(ω) = 1 at the locations of the real zeros of the func-
tion F (ω).
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Figure 1: Relative error bound for the casem = 2

Of course, working by means of equation (26) is an implicit, not an explicit ap-
proach. For generalm we have no explicit minimization results with respect toa,
but of course (23) implies that

log |F (ω)| ≤
{

−βm(a)(1 − 2m)

[ |ω|
−2mβm(a)

]2m/(2m−1)

+ log

[

Γ( 1
2m)

m

]

− 1

2m
log a

}

(28)
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is valid for all 0 < a < 1. A pertinent sub-optimal bound is found by taking
θ = π

4m in equation (20), yielding

βm(a) ≈ −a
∣

∣

∣
cot
( π

4m

)∣

∣

∣

2m
(29)

Inserting this value forβm(a) in equation (28), and lettinga tend to 1, results in
the bound

log |F (ω)| ≤
{

−(2m − 1)

[ |ω|
2m cot(π/4m)

]2m/(2m−1)

+ log

[

Γ( 1
2m)

m

]}

(30)

This bound is exact forω = 0. Again, form = 1 the functionF (ω) is equal to its

bound
√

πe−
ω
2

4 in formula (30). Note that in [2] the cruder bound

log |F (ω)| ≤
{

−(2m − 1)2−4m2

[ |ω|
2m

]2m/(2m−1)

+
1

2
log(2πe)

}

(31)

was obtained. In Fig. 2 we compare the relative errors for the fine bound(30) and
crude bound (31) as a function ofω for m = 3.
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Figure 2: Relative errors for the fine resp. crude bounds in the casem = 3

3 Generalization

Theorem 2 : Consider the Fourier-like integral

F (ω) =

∫ ∞

−∞

e−f(x)+iωg(x)w(x) dx (32)
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wheref(z), g(z), w(z) are functions analytic in a strip|ℑz| < b with b > 0. We
requiref(x) ≥ 0 andw(x) > 0 on the real line andℜf(±∞ + iy) = +∞ for
|y| < b. The function|ℑg(x + iy)| is required to be bounded for allx ∈ R and
|y| < b. Define the function

Ψ(y, ω, a) = inf
x∈R

{ℜf(x + iy) − af(x) + ωℑg(x + iy)} (33)

for 0 < a < 1 and|y| < b. We suppose thatb is chosen such thatΨ(y, ω, a) > −∞
for |y| < b. We further require that

sup
x∈R

|w(x + iy)|
w(x)

= ζ(y) < ∞ for |y| < b (34)

Then we have the logarithmic bound

log |F (ω)| ≤ inf
−b<y<b
0<a<1

{−Ψ(y, ω, a) + log ζ(y) − Z(a)} (35)

where

Z(a) = − log

∫ ∞

−∞

e−af(x)w(x) dx (36)

Proof : It is clear thatF (ω) can be written as

F (ω) =

∫ ∞

−∞

e−f(x+iy)+iωg(x+iy)w(x + iy) dx (37)

and hence

|F (ω)| ≤
∫ ∞

−∞

e−ℜf(x+iy)−ωℑg(x+iy)|w(x + iy)| dx (38)

implying that

|F (ω)| ≤
∫ ∞

−∞

e−af(x)−Ψ(y,ω,a) w(x)ζ(y) dx (39)

and the result follows2.

3.1 Application: Rational exponential integral

Consider the finite Fourier transform

F (ω) =

∫ 1

−1
e−Q(t)+iωt dt (40)

whereQ(t) is a non-negative rational function over the open interval(−1, 1) with

lim
t↑1

Q(t) = lim
t↓−1

Q(t) = +∞ (41)
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The change of variablet = tanh(x) transforms the finite Fourier transform into
the infinite format

F (ω) =

∫ ∞

−∞

e−f(x)+iωg(x)w(x) dx (42)

where

f(x) = Q(tanh(x)) g(x) = tanh(x) w(x) =
1

cosh2 x
(43)

We have

ζ(y) = sup
x∈R

|w(x + iy)|
w(x)

=
1

cos2 y
(44)

and hence we must require0 < b < π
2 . The functionZ(a) is

Z(a) = − log

∫ 1

−1
e−aQ(t) dt (45)

The functionΨ(y, ω, a) is

Ψ(y, ω, a) = inf
x∈R

{ℜf(x + iy) − af(x) + ωℑ tanh(x + iy)} (46)

= inf
−1<t<1

{

ℜQ

(

t + i tan y

1 + it tan y

)

− aQ(t) + ω
(1 − t2) tan y

1 + t2 tan2 y

}

(47)

The logarithmic bound is

log |F (ω)| ≤ inf
−b<y<b
0<a<1

{−Ψ(y, ω, a) − 2 log cos y − Z(a)} (48)

3.2 Example : The Campbell function

Applied to the functionQ(t) = 1/(1 − t2) we have thatF (ω) is an even entire
function ofω given by the Taylor expansion

F (ω) =
1

e

∞
∑

k=0

(−1)k Γ

(

1

2
+ k

)

U

(

1

2
+ k, 0, 1

)

ω2k

(2k)!
(49)

whereU(·, ·, ·) is the Tricomi confluent hypergeometric function. The relationship
with the Campbell functionS(ω) is the simple scalingS(ω) = F (ω)/F (0).

The functionΨ(y, ω, a) is

Ψ(y, ω, a) = inf
−1<t<1

{

cos2 y − t2 sin2 y − a

1 − t2
+ ω

(1 − t2) tan y

1 + t2 tan2 y

}

(50)
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In order thatΨ(y, ω, a) > −∞ we must requirecos 2y > a. In other wordsb is a
function ofa given by

b =
1

2
arccos(a) <

π

4
(51)

Another requirement is thaty must have the same sign asω, but sinceF (ω) is even
we may consider only non-negative values ofω andy. Tedious calculations result
in the explicit expression

Ψ(y, ω, a) =
1

4

(

(1 − 4a sin2(y) − cos(4y)) + (3 + 4 cos(2y) + cos(4y))

×
√

ω(cos(2y) − a) sec6(y) tan(y)
)

(52)

Also, after some algebraic manipulations, the functionZ(a) is found to be

Z(a) = − log
{

ae−a/2 [K1(a/2) − K0(a/2)]
}

(53)

were theK·(·) are the MacDonald Bessel functions. The logarithmic bound

log |F (ω)| ≤ −Ψ(y, |ω|, a) − 2 log cos(y) − Z(a) (54)

is valid for0 < y < 1
2 arccos(a) and0 < a < 1.This can be written as

log |F (ω)| ≤ −A(y, a) −
√

|ω|B(y, a) (55)

where

A(y, a) =
1

4
(1 − 4a sin2(y) − cos(4y)) + 2 log cos(y) + Z(a) (56)

B(y, a) =
1

4
(3 + 4 cos(2y) + cos(4y))

√

(cos(2y) − a) sec6(y) tan(y)(57)

SinceZ(0) = − log 2 > −∞, the maximum ofB(y, a) is obtained fora tending to
0 andy = π/8. From the maximum valueB(π/8, 0) = 1 we obtain the particular
bound

log |F (ω)| ≤ min

(

−1

4
− log

[

2 +
√

2

8

]

−
√

|ω| , κ
)

(58)

where

κ = −1

2
+ log

[

K1

(

1

2

)

− K0

(

1

2

)]

(59)

Of course, other bounds can also be obtained by inserting different allowable val-
ues ofy anda in the expression (55). In Fig. 3 we plot the relative error bound as
a function ofω.
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Figure 3: Relative error bound for the Campbell function
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