
Automatic computation of quantum-mechanical bound

states and wavefunctions

V. Ledoux,1,∗, and M. Van Daele

Vakgroep Toegepaste Wiskunde en Informatica, Ghent University, Krijgslaan 281-S9,

B-9000 Gent, Belgium

Abstract

We discuss the automatic solution of the multichannel Schrödinger equation.
The proposed approach is based on the use of a CP method for which the step
size is not restricted by the oscillations in the solution. Moreover, this CP
method turns out to form a natural scheme for the integration of the Riccati
differential equation which arises when introducing the (inverse) logarithmic
derivative. A new Prüfer type mechanism which derives all the required infor-
mation from the propagation of the inverse of the log-derivative, is introduced.
It improves and refines the eigenvalue shooting process and implies that the user
may specify the required eigenvalue by its index.

Keywords: Schrödinger, eigenvalue, coefficient approximation

PROGRAM SUMMARY
Program Title: MATCAS
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: Matlab
Computer: Personal computer architectures.
Operating system: Windows, Linux, Mac (all systems on which Matlab can be in-
stalled).
RAM: Depends on the problem size.
Keywords: Schrödinger, eigenvalues, eigenfunctions, shooting, CP method
Classification:
4.3 Differential Equations
Nature of problem:
Computation of eigenvalues and eigenfunctions of multichannel Schrödinger equations
appearing in quantum mechanics.
Solution method:
A CP-based propagation scheme is used to advance the R-matrix in a shooting process.

∗Corresponding author, email Veerle.Ledoux@UGent.be
1Postdoctoral Fellow of the Research Foundation-Flanders (FWO)

Preprint submitted to Computer Physics Communications October 18, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55755847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The shooting algorithm is supplemented by a Prüfer type mechanism which allows the
eigenvalues to be computed according to index: the user specifies an integer k ≥ 0,
and the code computes an approximation to the kth eigenvalue. Eigenfunctions are
also available through an auxiliary routine, called after the eigenvalue has been deter-
mined.
Restrictions:
The program can only deal with non-singular problems.
Additional comments:
Along with the program’s source code, we provide several sample configuration files.
Running time:
The running time depends on the size n of the problem and the number of eigenval-
ues/eigenfunctions computed. For a small problem the runtime should not exceed a
few seconds.

1. Introduction

The matrix-vector Schrödinger equation arises in various scattering and
bound-state problems in physics and chemistry [1, 11, 22, 35]. It may arise
for instance, as a result of applying the so-called coupled channel approach
which separates the radial coordinate from the rest of the variables in a mul-
tidimensional Schrödinger equation (see [11, 35]). The resulting system of n
coupled Schrödinger equations may be written in matrix form as

d2Y

dx2
= [V(x) − EI]Y(x), (1)

where Y is a matrix function of order n, I is the n × n unit matrix, and V is
the symmetric n × n potential matrix with elements Vij(x).

We suppose that equation (1) is supplemented by appropriate (bound-state)
boundary conditions in the endpoints of the integration interval [a, b]. In the
regular case, we write these boundary conditions in the following general form:

A1Y(a) + A2Y
′(a) = 0

B1Y(b) + B2Y
′(b) = 0 (2)

where A1,A2,B1,B2 are real n by n matrices satisfying the conjointness con-
ditions

AT
1
A2 − AT

2
A1 = 0

BT
1
B2 − BT

2
B1 = 0, (3)

and the rank conditions rank(A1|A2) = n, rank(B1|B2) = n. Here (A1|A2)
denotes the n × 2n matrix whose first n columns are the columns of A1 and
whose (n + 1)st to 2nth columns are the columns of A2. The objective of a
bound-state eigenvalue calculation is to locate energies Ek for which there exist
solutions of (1) that satisfy the bound-state boundary conditions. Only for
the scalar case n = 1, it is guaranteed that all the eigenvalues are simple and

2

distinct. For n > 1 however, any of the eigenvalues may have a multiplicity as
great as n.

Solving systems of coupled channel Schrödinger equations, poses some chal-
lenging computational problems: (i) the efficient propagation of the oscillatory
solution on the integration domain, (ii) instabilities in the presence of closed
channels (Vjj > E), (iii) the determination of the eigenvalues, their multiplici-
ties and their indices, (iv) the construction of the normalized wave functions,....

The highly oscillatory behavior of the solutions corresponding to high eigen-
values forces a naive integrator to take increasingly smaller steps. However,
some classes of methods do exists which allow the computationally efficient
propagation of the solution for higher E values. In section 2, we briefly revisit
the CP methods, a class of methods which has been described in detail by Ixaru
in [13] and still proofs to be very succesful for the numerical solution of the
Schrödinger equation. For these methods, the step size is not restricted by the
oscillations in the solution and the cost can be bounded independently of the
eigenparameter E. Moreover a CP method is well suited to be used in a shoot-
ing approach, where the system is repeatedly integrated for different trial values
of the eigenvalue.

When using an oscillation-proof CP-based method to solve multichannel
Schrödinger equations in the presence of closed channels, one needs to ad-
dress simultaneously problem (ii), which is a well-known difficulty in the theory
of close-coupled equations [7, 24], and is symptomatic of solution techniques
which propagate the wavefunction explicitly. In section 3 we describe an invari-
ant imbedding method, in which the propagated quantity is not the wavefunc-
tion matrix but its inverse logarithmic derivative. The idea of using invariant
imbedding in the context of Schrödinger equations has found broad applica-
tion, especially for large coupled-channel calculations, and dates back at least
to [18, 19, 23, 29]. In the present paper, we will show that a CP method forms
a natural scheme for the integration of the Riccati differential equations which
arise when introducing the inverse logarithmic derivative.

In section 4, we consider the solution of the eigenvalue problem, which has
attracted much less attention in literature than the scattering problem. In
order to improve and refine the eigenvalue shooting process, we supplement our
procedure with a new Prüfer transform type mechanism which derives all its
required information from the propagation of the inverse logarithmic derivative.
The Prüfer algorithm allows to determine eigenvalue indices and multiplicities.
This also implies that the user may specify the required eigenvalue by its index
and does not need to provide any initial guess.

Section 5 describes the implementation of the different algorithms in the
automatic software code in greater detail. In section 6 we look at some results
generated by this software package.

2. Constant Perturbation (CP) methods

Methods which are succesful in the presence of high oscillation are often
based on some form of coefficient approximation (see e.g. [12]). The coefficient

3

functions in the differential equation are approximated and the corresponding
solution is constructed analytically. In the context of the Schrödinger equation,
coefficient approximation translates into the (piecewise) approximation of the
potential function. Many references on approximate potential algorithms e.g.
[4, 5, 23, 25, 26, 31], confine themselves to piecewise constant approximation
for which the approximating problem can be integrated explicitly in terms of
trigonometric or hyperbolic functions.

Let us review how this piecewise constant approximation method can be
used to propagate the solution of the coupled channel initial value problems
which arise in an eigenvalue shooting process. The bound-state wavefunction
satisfying the boundary conditions in a and b, can be represented as a column
vector with n components. However, if the boundary conditions are applied
at only one end of the range, there are n linearly independent solution vectors
that satisfy the Schrödinger equation, so that until both boundary conditions
are applied it is actually necessary to propagate an n× n wavefunction matrix.
So we think of Y as an n × n matrix here.

A partition of [a, b] is introduced, with the mesh points x0 = a, x1, x2, ..., xN =
b. In each interval [xi, xi+1], hi = xi+1 − xi, the solution and its first derivative
are advanced by a blockwise propagation algorithm:

[

Y(xi+1)
Y′(xi+1)

]

=

[

U(hi) W(hi)
U′(hi) W′(hi)

] [

Y(xi)
Y′(xi)

]

. (4)

The elements of the transfer matrix, U(δ) and W(δ) are the n × n solutions of

P′′ = (V(xi + δ) − EI)P, δ ∈ [0, hi] (5)

corresponding to the initial conditions P(0) = I, P′(0) = 0 and P(0) = 0,
P′(0) = I, respectively. To determine U and W the potential matrix is approx-
imated by a constant matrix,

V(xi + δ) ≈ V0. (6)

The symmetric matrix V0 is then diagonalized and let D be the orthogonal
diagonalization matrix, i.e. V0 = DVD

0 DT . We can then write Eq. (5) as

DT P′′D =
(

DT V0D − EI
)

DT PD, (7)

or in the D representation

PD′′

=
(

VD

0 − EI
)

PD. (8)

The diagonalization process transforms the system into one in which there is no
coupling. The resulting set (8) of n one-dimensional Schrödinger equations can
then be solved analytically. That is, (8) is solved for UD and WD; the initial
conditions are the same as in the original representation. Let the functions ξ(z)
and η0(z) (as in [13]) be defined as follows:

ξ(z) =

{

cos(|z|1/2) if z ≤ 0 ,

cosh(z1/2) if z > 0 ,
η0(z) =

sin(|z|1/2)/|z|1/2 if z < 0 ,

1 if z = 0 ,

sinh(z1/2)/z1/2 if z > 0 .

4

The propagators UD(δ) and WD(δ) are then diagonal matrices:

UD = (WD)′ = ξ(Z(δ)) (9)

δ(UD)′ = Z(δ)η0(Z(δ)) (10)

WD = δη0(Z(δ)) (11)

where
Z(δ) = (VD

0 − EI)δ2, (12)

and ξ(Z), η0(Z) are diagonal matrices of functions with diagonal elements
ξ(Zk), η0(Zk) with Zk(δ) = (V D

0kk
−E)δ2. Once the values at hi of the UD, WD

matrices and of their derivatives have been evaluated, they are reconverted to
the original representation to obtain the desired entries of the transfer matrix in
(4). The diagonalising transformation is energy independent. In a bound-state
problem which involves calculations at a number of ‘trial’ and ‘iterated’ energies
this is clearly a good feature.

The method based on a constant approximation of the potential, is only sec-
ond order. To obtain higher-order coefficient approximation methods, piecewise
polynomial approximations of higher degree should be used [13]. In fact, it can
be shown that piecewise polynomial interpolants V(m) of degree m through the
Legendre nodes, give rise to a method of order 2m+2. It is, however, difficult to
obtain analytic expressions for the solution of the approximating problem when
m > 0. Fortunaly, a higher order polynomial approximation still retaining the
nice property of having explicit integration in terms of trigonometric/hyperbolic
functions, can be realized using a perturbation approach by Ixaru [13, 14, 16]
leading to the so-called CP methods. The idea is to derive correction terms from
the perturbation V(m)(xi + δ)−V0 and add these to the second order method
(9)-(11) to obtain more accurate approximations for the propagator matrices
U, W and their first derivatives. We refer to [14, 20] for more details on the
perturbative procedure and for the formulae of some higher order schemes.

3. Invariant imbedding

The CP schemes propagate the wavefunction matrix and its derivative ex-
plicitly. However, wavefunction propagation methods are subject to a classical
numerical instability. In many bound-state calculations originating from quan-
tum physics, all channels are locally closed (V > E) near the origin or at large
distance, and it is often necessary to include channels that are closed at all x
to get converged results. The wavefunction component Yj for a locally open
channel (Vjj < E) is an oscillatory function of x, but the Yj for a locally closed
channel (Vjj(x) > E) is made up of exponentially increasing and decreasing
components. If there are both locally open and locally closed channels over any
range of x, there is a tendency for the closed channel components to grow so
quickly that because of numerical rounding errors the linear independence of
the different solutions in the wavefunction matrix is lost.

5

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

x

Ψ
1,1

(x)=Ψ
2,2

(x)

Ψ
1,2

(x)=Ψ
2,1

(x)

(Y(Y’)−1)
1,1

(x)

(Y(Y’)−1)
1,2

(x)

det(Y’(x))

Figure 1: Illustration of how Ψ(x) is integrated through the singularities by a CP method.

In e.g. [8, 9, 14, 36], stabilizing transformations were applied during prop-
agation to prevent overflow and to maintain the linear independence of the n
solution vectors. The drawback with such transformations is that they are ex-
pensive and should be applied across the entire integration range when strongly
closed channels are included. A more satisfactory solution is to form a CP
propagator that is stable in the presence of closed channels. That is, we use the
knowledge of the components of the transfer matrix in (4) to construct a propa-
gation algorithm for the inverse of the log-derivative Ψ = Y(Y′)−1, sometimes
called the R-matrix, see e.g. [11]:

Ψ(xi+1) = [W(hi) + U(hi)Ψ(xi)][W
′(hi) + U′(hi)Ψ(xi)]

−1. (13)

Apart from the fact that no stabilising transformation is needed, Ψ contains the
minimum amount of information needed for the determination of the bound-
state eigenvalues. Since Ψ is symmetric for all x, the 2n2 storage locations
required in the (Y,Y′) representation can be reduced to n(n + 1)/2 for calcu-
lations in the Ψ representation.

There is however one complication in propagating Ψ. The matrix Ψ =
Y(Y′)−1 has a singularity whenever the determinant of Y′ vanishes. By in-
troducing Ψ, the system of coupled equations is recast into a matrix Riccati
differential equation (see [2, 5])

Ψ′ = I − ΨT [V − EI]Ψ. (14)

One of the properties of Riccati type differential equations is indeed the exis-
tence of solutions with singularities. General numerical methods are incapable
of integrating through these singularities and specific computational approaches
should be used, see [5, 33] and references therein. It is known that one can in-
tegrate through singularities of the (inverse) log-derivative Riccati equation by
changing coordinates and e.g. switch between the log-derivative and its inverse
[30, 34]. A new observation, however, is that when CP propagation algorithms
of the form (13) are used, changing coordinates is not required. Figure 1 shows
the entries of Ψ for the testproblem described in [17] which has known analytic
expressions for the eigenvalues and eigenfunctions. Although, the Ψ curves have

6

singularities when det(Y′(x)) is zero, they coincide with the entries of Y(Y′)−1

which were obtained by subdividing the known value of the wavefunction matrix
at some x-values by its first derivative. The explanation of this good behaviour
of the CP methods can be found in [33]. In [33], Schiff and Shnider proposed
so-called Möbius schemes (since they use generalized Möbius transformations)
for the numerical integration of a Riccati differential equation. Möbius schemes
are natural schemes for the integration of Riccati differential equations from a
geometric viewpoint and can accurately pass through singularities in the solu-
tion. The CP scheme (13) can actually be seen as a Möbius scheme. Indeed
the formula (13) expresses the fact that Ψ(xi+1) is obtained from Ψ(xi) by a
Möbius transformation which is independent of the value of Ψ(xi).

4. Shooting

Our objective is to apply the CP integration schemes (13) in a shooting
procedure to locate the eigenvalues of the boundary value problem. We associate
with the system the left and right-hand matrices ΨL and ΨR. These are n by
n matrix functions satisfying the initial conditions

ΨL(a) = A2A
−1
1

, ΨR(b) = B2B
−1
1

. (15)

The matching condition can be expressed very simply in terms of Ψ:

D(E) = det
(

ΨL(c) − ΨR(c)
)

= 0. (16)

where c ∈ [a, b] is the matching point. So the basis for our numerical procedure
is to integrate Ψ from the ends to c for some trial value of E, evaluate D(E) and
take this as the mismatch. If the mismatch is not zero, E is not an eigenvalue
and the procedure is repeated for an adjusted value of E.

There are however some complications we need to deal with when we want to
use this approach in automatic software. The mismatch function is an oscillating
function in which singularities may appear, which is inconvenient for rootfinding.
Moreover, the mismatch function does not change sign as E passes through an
eigenvalue of even multiplicity. This latter issue would be avoided when using
the alternative approach (see [11]) of using the smallest eigenvalue in absolute
value of the matching matrix ΨL(c) − ΨR(c) as mismatch, in which case the
number of zero eigenvalues of the matching matrix gives us the multiplicity of
the eigenvalue. An additional problem, however, is that the mismatch function
does not give any way of determining the index of the eigenvalue once it has
been found.

In the scalar case, the problems are resolved by enhancing the algorithm with
a Prüfer method which counts the zeros of the solution as part of the integration
for each trial E value (see [3, 31, 32]), and which allows the computation of a
particular eigenvalue of given index, without the prior computation of all the
preceding eigenvalues. In the multichannel case, the index of an eigenvalue is
determined by the number of times the determinant of the solution vanishes or

7

more precisely by the number of times the wavefunction matrix has a zero eigen-
value and the multiplicity of this eigenvalue. We introduce a new Prüfer-like
procedure for the multichannel problem counting the number of zero eigenvalues
and their multiplicities. This procedure will allow us to construct an indexing
function I(E), such that I(E) equals the number of eigenvalues that are less
than E. If we can calculate this function from shooting data, we are able to
determine whether a trial value of E is “near” the eigenvalue Ek we are looking
for and whether it is too high or too low.

Before proceeding to the multichannel case, it is instructive to consider first
the Prüfer approach in the single-channel Schrödinger case.

4.1. The classical (scalar) Prüfer method

In a shooting process, the one-dimensional equation

y′′(x) = [V (x) − E] y(x), x ∈ [a, b], (17)

is integrated from left to right, with initial values y(a) = A2, y
′(a) = −A1, to

obtain a left solution yL, y′

L; and integrated from right to left, with initial values
y(b) = B2, y

′(b) = −B1, to obtain a right solution yR, y′

R. The main idea of the
Prüfer method is to introduce polar coordinates (ρ, θ) in the phase plane:

y = ρ sin θ, y′ = ρ cos θ. (18)

The phase angle θ is defined (modulo π) by the equation

tan θ =
y

y′
. (19)

Using (17) and (18) it can be shown that θ = θ(x) satisfies (see [32]):

θ′ = cos2 θ − [V (x) − E] sin2 θ, a < x < b. (20)

Equation (20) has a left-solution θL(x), with θL(a) = θ0(a); and a right-solution
θR(x), with θR(b) = θ0(b), where θ0(a) and θ0(b) are defined by

tan θ0(a) =

(

−A2

A1

)

, 0 ≤ θ0(a) < π, (21)

tan θ0(b) =

(

−B2

B1

)

, 0 < θ0(b) ≤ π. (22)

From equation (20) we see that if θ(x̄) = mπ (where m is an integer), then
θ′(x̄) = 1 > 0. This shows that θL(x) increases through multiples of π as x
increases. Similarly θR(x) decreases through multiples of π as x decreases. Since
y = 0 just when θ is a multiple of π, the number of zeros of y on (a, c) is then
the number of multiples of π (strictly) between θL(a) and θL(c). Analogously
the number of zeros of y on (c, b) is the number of multiples of π through which
θR decreases going from b to c. Since the index k of an eigenvalue equals the

8

number of zeros of the associated eigenfunction y(x) on the open interval (a, b),
we can use these results to formulate the function I(E). Let

θL(c, E) − θR(c, E) = n(c, E)π + ω(c, E) (23)

where n(c, E) is an integer and 0 ≤ ω(c, E) < π. I(E) can then be defined as
I(E) = n(c, E) + 1 or

I(E) =
1

π
[θL(c, E) − θR(c, E) − ω(c, E)] + 1. (24)

The function I(E) is a piecewise constant with jumps at the eigenvalues.
In practical implementations, one often uses a scaled version of the Prüfer

method
y = S−1/2ρ sin θ, y′ = S1/2ρ cos θ, (25)

where S is a scaling function chosen to give good numerical behaviour (see
[32]). For instance, the software package SLEDGE [31], which implements the
second order coefficient approximation method for the scalar (Sturm-Liouville)
problem, uses the fact that

arctan
τiyi+1

y′

i+1

= arctan
τiyi

y′

i

+ τihi mod π, τi =
√

E − V0 (26)

when E − V0 > 0, to determine the number of zeros in the interval (xi, xi+1) as
the number of integers in the interval (Θ/π, (Θ+τihi)/π) where Θ = arctan τiyi

y′

i

.

When E − V0 < 0, the zero count is kept by noting that y has a (single) zero in
(xi, xi+1), if and only if yiyi+1 < 0.

4.2. Indexing in the matrix case

We try to generalize the Prüfer idea to a system of equations by decoupling
the system into n scalar ones to which the simple Prüfer method can be applied.
This means that we try to obtain a problem in diagonal form. In order to
derive a direct generalization of the scalar Prüfer approach, we will work here
with the matrix function Ψ(x) = Y(x)Y′(x)

−1
, whose scalar equivalent appears

in (19). The matrices ΨL(x) and ΨR(x) are symmetric for all x ∈ [a, b] (see
[2]). The matrix Ψ can consequently be diagonalized to a matrix having the
eigenvalues of Ψ on the diagonal. These diagonal elements are then, as for
the scalar case, used to devise a monotone increasing integer-valued indexing
function. Our approach owes a lot to the work of Atkinson [2] who developed a
Prüfer method for the vector Sturm-Liouville system, and to Marletta [26, 27]
who sharpened Atkinson’s method by finding an integer-valued function which
jumps at each eigenvalue. However in contrast to Atkinson and Marletta, we
will not introduce the matrix Θ(x) = (Y′ + iY)(Y′ − iY)−1. Instead we will
show that sufficient information can be derived for our purpose here from the
propagation of Ψ(x). Moreover, by introducing a SLEDGE-like node count
algorithm, the new approach is more robust.

The matching condition (16) gives us the following lemma, which also forms
the basis of the eigenvalue determination process described in [11]:

9

Lemma 4.1. E is an eigenvalue of (1) when det(ΨL(c) − ΨR(c)) = 0. This
is equivalent to zero being an eigenvalue of ΨL(c) − ΨR(c). Moreover the mul-
tiplicity of 0 as an eigenvalue of ΨL(c) − ΨR(c) is equal to the multiplicity of
E as an eigenvalue of (1).

Let us denote the eigenvalues of ΨL and ΨR by {γL
j |j = 1, . . . , n} and

{γR
j |j = 1, . . . , n}, respectively. Analogously to the scalar case, the phase angles

φL
j , φR

j are then defined (modulo π) by

tan φL
j = γL

j , tan φR
j = γR

j

and uniquely determined functions when normalized by the conditions

φL
1 ≤ φL

2 ≤ · · · ≤ φL
n ≤ φL

1 + π (27)

φR
1 ≤ φR

2 ≤ · · · ≤ φR
n ≤ φR

1 + π (28)

0 ≤ φL
j (a) < π, 0 < φR

j (b) ≤ π. (29)

Choose c ∈ [a, b] and let the eigenvalues of [ΨL(c)−ΨR(c)][I +ΨL(c)ΨR(c)]−1

be tan ωj where the ωj are normalized by the condition

0 ≤ ωj < π. (30)

We can now formulate the indexing function for the matrix case.

Theorem 4.2. The function I(E) defined as

I(E) =
1

π

n
∑

j=1

φL
j (c) −

n
∑

j=1

φR
j (c) −

n
∑

j=1

ωj(c)

+ n

is an integer valued increasing step function of E whose points of increase are
the eigenvalues of the problem (1). When E increases through an eigenvalue of
multiplicity m, I increases by m.

Proof : Let us use the notations

S(ΨL(x)) =
n
∑

j=1

φL
j (c), S(ΨR(x)) =

n
∑

j=1

φR
j (c). (31)

By definition of the ωj ,

n
∑

j=1

ωj(c) = S
(

[ΨL − ΨR][I + ΨLΨR]−1
)

mod π.

Also, using the arctangent addition formula,

S
(

[ΨL − ΨR][I + ΨLΨR]−1
)

= (S(ΨL) − S(ΨR)) mod π.

10

Combining these we have

n
∑

j=1

ωj(c) = (

n
∑

j=1

φL
j (c) −

n
∑

j=1

φR
j (c)) mod π, (32)

which shows that I is integer valued.
Since each φL

j and φR
j is a continuous function of E, the only way that I can

change value is if a ωj passes through a multiple of π and jumps because of the
normalization (30). When this happens, 0 is an eigenvalue of ΨL(c)−ΨR(c) or
equivalently (by Lemma 4.1) E is an eigenvalue of (1).

It remains to show that I increases by m when E passes through an eigen-
value of multiplicity m. Having Lemma 4.1, it is sufficient to show that each ωj

can only increase through π with increasing E, thus jumping down to 0 again
and causing I to increase. Theorem 10.2.3 in [2] says that

∂ΨL(c;E)

∂E
= [(Y′

L
T
)(c;E)]−1

∫ c

a

YT
L(t;E)YL(t, E)dt [Y′

L(c, E)]−1, (33)

and

∂ΨR(c;E)

∂E
= −[(Y′

R
T
)(c;E)]−1

∫ b

c

YT
R(t;E)YR(t, E)dt [Y′

R(c, E)]−1. (34)

The right hand side of (33) is positive definite and the right hand side of (34)
is negative definite. From Theorem V.2.3 in [2], we know that this means that
the eigenvalues of ΨL(c) are increasing functions of E and that the eigenvalues
of ΨR(c) are decreasing functions of E. From (32) it then follows that each ωj

increases through π with increasing E.
The value of I(E) − n for E < E0 is equal to −n, independent of the potential
matrix V and the boundary conditions. This is clear for the trivial case of a
diagonal potential matrix, where the system reduces to a superposition of n
scalar problems. For general potential matrices, this result can be derived from
the close connection between the I(E) function defined here and the indexing
function M(E) proposed by Marletta in [26, 27].

As their scalar equivalents θ, the phase angles can never decrease through a
multiple of π:

Lemma 4.3. The ‘phase angles’ φL
j and φR

j can only increase through multiples
of π with increasing x.

Proof : This is equivalent to showing that the derivative of the matrix function
Ψ is positive definite when applied to eigenvectors of Ψ(x) associated with a
zero eigenvalue (see [2]). Supposing that for some x one or more of the γj(x) is
zero, we consider any column matrix w such that

Ψ(x)w = 0 wT w > 0.

Then
wT Ψ′w = wT (I − ΨT (V − EI)Ψ)w = wT w > 0.

11

This proves that the eigenvalues γj(x) can only increase through 0. Thus the
functions φj(x) are strictly increasing when they are multiples of π.

How can we now compute I(E) numerically? We need to integrate ΨL from
x = a to x = c, and ΨR from x = b to x = c, while following the quantities
S(ΨL(x)), S(ΨR(x)) continuously and count the number of multiples of π in
each. We assume that the matrix function V = V0 is piecewise constant and
use the second order coefficient approximation method for the integration of
the Ψ matrix, be it ΨL or ΨR, across a mesh interval [xi, xf] in the case ΨL

or [xf , xi] in the case ΨR, with initial values known at xi. As a first step, we
consider again the diagonalization process. Since

D−1ΨD = D−1YDD−1(Y′)
−1

D = YD(Y′D)
−1

= ΨD

we know that the eigenvalues of Ψ are precisely the same as those of ΨD. So
we may forget about Ψ and think in terms of ΨD, which is given by

ΨD(x) =
[

δη0 + ξΨD(xi)
] [

ξ + (Z/δ)η0Ψ
D(xi)

]−1
,

where δ = x − xi, ξ = ξ(Z(δ)), η0 = η0(Z(δ)) and Z(δ) = (VD

0 − EI)δ2.
In order to compute S(ΨD) correctly, and not just modulo π, we need to

know the number of times that some angle φj passes through a multiple of π as
x moves from xi to xf . To help us in this process we introduce the matrix Ω

Ω(x) =
[

ξ − δη0Ψ
D(xi)

]−1 [
ξΨD(xi) + δη0

]

(35)

=
[

I − δξ−1η0Ψ
D(xi)

]−1 [
ΨD(xi) + δξ−1η0

]

(36)

Lemma 4.4. 0 is an eigenvalue of Ω if and only if 0 is an eigenvalue of ΨD.

Proof : 0 is an eigenvalue of ΨD if and only if 0 is an eigenvalue of ξ−1ΨD =
(δξ−1η0 + ΨD(xi))(ξ + (Z/δ)η0Ψ

D(xi))
−1 and of its transpose ΨDξ−1 = (ξ +

ΨD(xi)(Z/δ)η0)
−1(δξ−1η0 +ΨD(xi)). 0 is an eigenvalue of ΨDξ−1 if and only

if 0 is an eigenvalue of (δξ−1η0 + ΨD(xi)) and consequently also of Ω.
We will use the matrix Ω in order to compute S(ΨD(x)) from S(ΨD(xi)).

Let the eigenvalues of ΨD be tan φj and those of Ω be tan ϕj , and suppose that,

φj = πnj + ρj , ϕj = πmj + τj ,

where nj and mj are integers and ρj and τj lie in [0, π). Then we can write

S(ΨD) = S(Ω) +

n
∑

j=1

(ρj − τj) + π

n
∑

j=1

(nj − mj). (37)

The τj and ρj are easily computed directly from Ω and ΨD, because the number
of multiples of π is unambiguous. The quantity S(Ω) can be computed correctly
using the identity

S(Ω) = S(ΨD(xi)) + S(δξ−1η0) (38)

12

which is based on the arctangent addition formula. The term S(δξ−1η0) in
(38) is computed by applying a Prüfer transformation to each diagonal term
in turn. Note that δξ−1η0 equals the R-matrix ΨD(xi + δ) one obtains after
one constant coefficient approximation propagation step when starting from the
initial values Y(xi) = 0,Y′(xi) = I and thus ΨD(xi) = 0. Therefore, for each
j let yj be the solution of the initial value problem

−y′′

j + djyj = 0, yj(xi) = 0, y′

j(xi) = 1,

where the dj are the elements of the diagonal matrix EI − VD

0 . The Prüfer
transformation

yj = ρj sin θj , y′

j = ρj cos θj

is applied. Then θj satisfies the initial value problem

θ′j = cos2 θj + dj sin2 θj , θj(xi) = 0

which means that

tan θj(xi + δ) = δη0(−djδ
2)/ξ(−djδ

2) (39)

Suppose that
θj(xi + δ) = sjπ + κj

with κj in [0, π). Then we may compute

S(δξ−1η0) =

n
∑

j=1

θj =

n
∑

j=1

κj +

n
∑

j=1

sjπ

The value κj is given by (39) and
∑n

j=1 sj can be obtained by applying the
same procedure as described at the end of the previous section using (26). That
is: sj equals the number of integers in the interval (0,

√

djhi/π) when dj > 0.
When dj ≤ 0, sj equals zero. In this way no multiples of π in θj are missed.
This is an improvement with respect to the procedure used in [26] and [21],
where each eigenvalue of the wavefunction matrix is supposed to pass through
zero not more than once when integrating over a mesh interval.

The only remaining unknown quantity in (37) is
∑n

j=1(nj − mj). When
x = xi, this sum vanishes. We will show that the same is true for all x. We
know that a nj can only change when the corresponding φj passes through a
multiple of π, and when this happens then there will be some ϕk passing through
a multiple of π as well (by Lemma 4.4), so mk will also change. In fact, there
will be just as many mk’s changing as there are nj ’s changing. From lemma 4.3
we can deduce that nj can only increase. It only remains to show that also mk

can only increase. Let us define x̂ ∈ [xi, xf] as the x position where φj and ϕk

pass through a multiple of π. To show that the angle ϕk is increasing in x̂, we
define first the matrix Υ:

Υ(x) = ΨD(xi) + F(δ), with F(δ) = δξ−1(Z(δ))η0(Z(δ))

13

which has a zero eigenvalue if and only if Ω (or ΨD) has a zero eigenvalue.
Since Υ′(x) = I − (VD

0 − EI)F(δ)2 is a positive definite diagonal matrix, the
eigenvalues of Υ are increasing through zero. Now suppose that as x increases
through x̂, some ‘angle’ of Υ called ϑi increases through a multiple of π. Let ϕk

be the angle which is closer to ϑi (modulo π) than any other ϕj , for all x close
to x̂. If ϕk does not increase through a multiple of π as x increases through x̂,
then for all sufficiently large x < x̂, we will have

ϕk(x) ≥ mπ, ϑi(x) < lπ,

where ϕk(x̂) = mπ, and φi(x̂) = ϑi(x̂) = lπ. Let us now define

Ω̄(x; ǫ) =
[

I − F(δ)ΨD(xi)
]−1 [

ΨD(xi) + F(δ) + ǫ(I + F(δ)2)
]

,

Ῡ(x; ǫ) = ΨD(xi) + F(δ) + ǫ(I + F(δ)2)

where ǫ is a small positive parameter close to 0. The derivative

∂Ῡ(x; ǫ)

∂ǫ
= I + F2

is positive definite, and consequently ϑ̄i is an increasing function of ǫ. This
means that in the neighbourhood of x̂ the angle ϑ̄i of Ῡ(x; ǫ) will be just a bit
larger than the angle ϑi of Υ(x) = Ῡ(x; 0). If we define the column vector w

such that Ω(x̂)w = 0 or equivalently ΨD(xi)w = −F(δ̂)w. Then

wT ∂Ω̄(x̂; ǫ)

∂ǫ
w = wT

[

I − F(δ̂)ΨD(xi)
]

−1 [

I + F(δ̂)2
]

w

= wT
[

I − F(δ̂)ΨD(xi)
]

−1 [

I − F(δ̂)ΨD(xi)
]

w = wT w > 0

and the (zero) eigenvalue of Ω̄(x; ǫ) increases with ǫ in x̂. As a consequence
the angle ϕ̄k of Ω̄(x; ǫ) will be larger than ϕk of Ω(x) = Ω̄(x; 0) in a small
neighbourhood of x̂. For an arbitrarily small positive value of ǫ there exists
thus an x-value close to x̂ such that

ϕ̄k(x) > mπ, ϑ̄i(x) = lπ.

But this contradicts the fact that Ῡ(x; ǫ) has a zero eigenvalue whenever Ω̄(x; ǫ)
has a zero eigenvalue. Thus ϕk can only increase through multiples of π and
mk increases by one whenever nj increases by one.

We have then finally the following result

Theorem 4.5. Let the eigenvalues of ΨD be represented as tan(ρj) and the
eigenvalues of Ω as tan(τj), for j = 1, . . . , n, where

0 ≤ ρj < π, 0 ≤ τj < π (40)

Then

S(ΨD(x)) = S(ΨD(xi)) + S(δξ−1η0) +

n
∑

j=1

(ρj − τj).

And since S(Ψ(x)) = S(ΨD(x)), this result allows us to count the number of
multiples of π in S(Ψ(x)) as we integrate across an interval.

14

Algorithm 1 Shooting for the eigenvalue Ek

1: Input: a trial value E, a mesh a = x0 < x1 < · · · < xN = b, with stepsizes
hi = xi+1 − xi.

2: Choose a meshpoint c = xm, 0 ≤ m ≤ N as the matching point.
3: Set up initial values for ΨL and ΨR satisfying the BCs at a and b resp.
4: repeat
5: for i = 0 to m − 1 do
6: Compute U(hi),W(hi),U

′(hi),W
′(hi) by a CP method.

7: Propagate ΨL over the interval [xi, xi+1]:
ΨL(xi+1) = [W(hi) + U(hi)ΨL(xi)][W

′(hi) + U′(hi)ΨL(xi)]
−1

8: end for
9: for i = N down to m + 1 do

10: Compute U(hi),W(hi),U
′(hi),W

′(hi) by a CP method.
11: Propagate ΨR over the interval [xi−1, xi]:

ΨR(xi−1) = [−W(hi) + W′(hi)ΨR(xi)][U(hi) − U′(hi)ΨR(xi)]
−1

12: end for
13: Adjust E to solve the equation det(ΨL(c) − ΨR(c)) = 0.
14: until E sufficiently accurate (e.g. until the difference between two subse-

quent E values is smaller than some user input tolerance)
15: Compute the multiplicity of E as the number of zero eigenvalues in ΨL(c)−

ΨR(c).

5. The automatic solution of coupled-channel Schrödinger systems

We discuss here the procedures as they were implemented in a software
package for the automatic solution of the Schrödinger equation. The software
package is implemented in Matlab version 7 and therefore available as platform
independent source code from: http://www.nummath.ugent.be/SLsoftware.
The package consists of a set of Matlab functions and some example driver
scripts. We refer to the user manual provided with the package, for details on
the structure and use of the code.

5.1. Eigenvalue computations

Algorithm 1 shows the shooting procedure in which a CP method is used to
propagate the left-hand and right-hand Ψ matrices. In our implementations we
used a sixth order CP method for this propagation. A Newton-Raphson iteration
procedure can be used to obtain a new and better trial value for the eigenvalue
since the CP algorithms allow a direct evaluation of the first derivative of U,W
and U′,W′, and consequently of Ψ, with respect to E, see [16, 14]. A good
initial guess is needed as input for the Newton-Raphson procedure, this is where
the Prüfer procedure from section 4.2 comes in. We use the Prüfer procedure to
generate reasonably tight upper and lower bounds for the eigenvalue Ek sought,
i.e. a bracket [Ê, Ē] is determined such that I(Ê) = k and I(Ē) = k + 1 or
Ē − Ê < tol. E = (Ê + Ē)/2 is then passed to Algorithm 1 as the initial trial
value for the eigenvalue Ek. From the Prüfer based indexing function I(Ê), we

15

can also deduce the multiplicity of the eigenvalue. As indicated in Algorithm
1, this multiplicity can, however, also be obtained by examining the number of
zero eigenvalues in the matching matrix.

Our invariant imbedding approach allows matching anywhere in the integra-
tion domain. However a well-considered choice for the matching position can
reduce the work required to locate an eigenvalue when it delivers us well-behaved
forms of the mismatch function and consequently faster convergence of the New-
ton iteration. In our implementation, we chose as matching point a meshpoint
in the region of the potential minimum [6],i.e. c is the right endpoint of the mesh
interval where VD

0 reaches its smallest value. Extra care (and a different match-
ing point) may be needed when for certain E values singularities appear close to
the matching point and interfere with the Newton-Raphson process. This situa-
tion can be detected using a second mesh, which we call the reference mesh and
which is also used for error control (see further). The finer reference mesh with
stepsizes h1/4, h1/4, (h1 +h2)/4, (h1 +h2)/4, (h2 +h3)/4, (h2 +h3)/4, . . . , hN/4
is constructed from the original mesh which has stepsizes h1, h2, h3, ..., hN . In
this way the reference mesh has (approximately) twice as many meshpoints and
its meshpoints do in general not coincide with the ones from the original mesh.

Remark 1. The numerical Prüfer procedure introduced in section 4 to compute
I(E) assumes that the matrix function V is piecewise constant. The numerical
computation of I(E) returns us thus the number of eigenvalues smaller than E
of the problem where the potential V has been replaced by the constant matrix V0

over each mesh interval. Note that this “second order” Prüfer procedure is only
used to obtain a first crude approximation for an eigenvalue and that for this
purpose it is in many cases sufficient to apply the Prüfer process over a “coarse”
mesh, e.g. a mesh corresponding to the higher order CP method. Difficulties are
only expected when one deals with a problem with close eigenvalues. By making
use of the reference mesh, these difficulties can be detected. When the results
obtained on the finer reference mesh do not agree (within some input tolerance
tol) with the results on the original mesh, computations need to be repeated on
a finer mesh.

5.2. Eigenfunctions

We assume that the eigenvalue has already been found to a high level of
accuracy, and we attempt now to find an associated eigenfunction. Suppose that
we have available the left-hand solution matrices YL and Y′

L and the right-hand
solution matrices YR and Y′

R. Any eigenfunction may be represented as

yk(x) =

{

YL(x,E)wL (a ≤ x < c)

YR(x,E)wR (c ≤ x ≤ b)
(41)

where wL and wR are appropriate non-zero vectors. In fact, wL is any non-
trivial vector such that

(Y′

R
T
YL − YT

RY′

L)(c, E)wL = 0,

16

and wR has to satisfy

wT
R(Y′

R
T
YL − YT

RY′

L)(c, E) = 0T .

For a simple eigenvalue, there is just one wL (up to scaling), and a correspond-
ing wR. If the eigenvalue in question has, however, multiplicity m ≤ n then
one can find m linearly independent vectors which can fulfill the role of wL,
and correspondingly, m different wR. Moreover any linear combination of valid
wL’s yields another valid wL, and similar for wR. We have to be careful to
match the left-hand half of an eigenfunction with the right-hand half of the
same eigenfunction and to obtain the correct normalisation. We used the pro-
cedure described in [26] for this purpose. This procedure assumes, however,
the knowledge of the matrices YL and YR. In our approach, not the matrices
Y and Y′ are propagated but Ψ. The invariant imbedding variable Ψ is not
sufficient to recover the eigenfunction values. We also need to have Y′ in order
to obtain the wavefunction matrix as Y = ΨY′. The matrix Y′ is propagated
by the following relation:

Y′(xi+1) = (U′(hi)Ψ(xi) + W′(hi))Y
′(xi).

The quantity U′(hi)Ψ(xi)+W′(hi) is an n×n matrix which is already calculated
in propagating Ψ. Note that Y′ needs to be propagated only when computing
an eigenfunction associated to an eigenvalue, i.e. only for the last energy value
resulting from the shooting iteration process.

The eigenfunction (41) can be multiplied by a scalar to achieve the appro-
priate eigenfunction normalization. We have

∫ b

a

yT
k (x)yk(x)dx = wT

L

(∫ c

a

YT
L(x)YL(x)dx

)

wL+wT
R

(

∫ b

c

YT
R(x)YR(x)dx

)

wR

which means that we need to compute the two integrals in the right hand side.
It can be shown that (see [15] for the scalar case)

∫ c

a

YT
L(x)YL(x)dx = Y′T

L (c)Ψ
(E)
L (c)Y′T

L (c)

and
∫ b

c

YT
R(x)YR(x)dx = −Y′T

R (c)Ψ
(E)
R (c)Y′T

R (c).

Thus the knowledge of the first derivative of Ψ with respect to E, allows the
computation of the eigenfunction norm. As mentioned earlier, this derivative
can be simultaneously propagated by the CP algorithm.

5.3. Stepsize selection and error control

A very important property of the CP methods is that their errors are bounded
with respect to the energy E. An implication is that the mesh needs to be gener-
ated only once (before the actual shooting process) and can be used to generate

17

multiple eigenvalue approximations. An automatic stepsize selection for CP
methods applied on systems of Schrödinger equations has been presented in
[20]. It constructs a mesh with non-equal steps whose lengths are consistent
with a preset tolerance tol by controlling the local error in the propagation ma-
trix. A similar procedure is used here where we use all the terms in the formulae
for the sixth order algorithm which are supplementary to the terms to be used
in a (weaker) fourth order method, to construct the local error estimate.

The matlab package also returns an estimation of the error in each eigen-
value approximation. These error estimates are obtained by calculating for each
eigenvalue an associated reference eigenvalue on the reference mesh. The error
estimate is then the difference between the eigenvalue and the more accurate
reference eigenvalue.

6. Some numerical results

As a first testproblem for the automatic eigenvalue computation and the
stepsize selection procedure, we consider the problem from [17] which has known
eigenvalues and solutions. The 2 × 2 matrix potential for x ≥ 0, is given by

V1,1(x) = V2,2(x) = VPT(x; 45, 1) + VPT(x; 39/2, 1/2) (42)

V1,2(x) = V2,1(x) = VPT(x; 45, 1) − VPT(x; 39/2, 1/2) (43)

where VPT is the Pöschl-Teller potential

VPT(x; ν, α) = −ν/ cosh2(αx).

The wavefunction tends to zero when x → +∞. In our experiments the infinite
integration interval x ≥ 0 has been cut at x = 30. Table 1 shows the results
obtained by the Matlab package for two different user input tolerances tol. One
can observe that the generated eigenvalue approximations have accuracies which
are in agreement with tol and that the error estimate is adequate.

As a second testproblem, we consider the following system of coupled differ-
ential equations which originates from applying separation of variables to the
Schrödinger equation in R

2 [26]

d2yi

dx2
=
∑

j

[Vij(x) − Eδij]yj(x). (44)

When we choose the set of orthonormal functions

Φj(θ) =

(2π)−1/2, j = 0

π−1/2 sin((j + 1)θ/2), j odd

π−1/2 cos(jθ/2), j even,

and the potential V̂ (x, θ) of the R
2 problem of the form

V̂ (x, θ) = V̄ (x)π−1/2

(

1√
2

+
2 cos θ − 1

(2 cos θ − 1)2 + sin2 θ

)

= V̄ (x)

∞
∑

k=0

1

2k
cos(kθ),

18

Table 1: Some results obtained for the first testproblem when applying the procedure with
two different input tolerances tol. The real absolute error and the estimated error are shown.
Ek is the exact eigenvalue and nsteps is the number of steps in the mesh generated by the
stepsize selection algorithm.

k Ek tol = 10−6 tol = 10−9

Err ErrEst Err ErrEst
0 −64 2e-7 2e-7 3e-10 3e-10
1 −36 1e-6 1e-6 8e-10 8e-10
2 −30.25 1e-8 1e-8 5e-12 5e-12
3 −20.25 2e-8 2e-8 2e-11 2e-11
4 −16 2e-6 2e-6 1e-9 1e-9
5 −12.25 5e-8 5e-8 2e-11 2e-11
6 −6.25 9e-8 9e-8 3e-11 3e-11
7 −4 1e-6 1e-6 7e-10 7e-10
8 −2.25 1e-7 1e-7 4e-11 4e-11
9 −0.25 1e-7 1e-7 4e-11 4e-11
nsteps 68 263

the matrix V in (44) is then given by

Vij(x) = V̄ (x)Qij

with

Qi+1,j+1 =
∞
∑

k=0

1

2k

∫ 2π

0

Φi(θ)Φj(θ) cos(kθ)dθ.

The entries of this matrix Q can be evaluated explicitly. The vector y is trun-
cated to have n elements and for the function V̄ (x) we choose a Woods-Saxon
potential

V̄ (x) = −50

(

1 − 5t
3(1+t)

1 + t

)

, t = e(x−7)/0.6.

The boundary conditions imposed on the wave functions yj are

yj(0) = 0, yj(xmax) = 0, 0 ≤ x ≤ xmax = 15.

For some E-values in the spectrum some channels will be closed and others will
be open over part of the domain. The closed channels cause numerical insta-
bilities when using a wavefunction propagation algorithm. This is illustrated in
Figure 2 which shows the determinant of the matrix functions YL, YR, ΨL and
ΨR for n = 4 and E equal to the eigenvalue E8 = −53.43922418. A CP scheme
was used to propagate YL and ΨL outwards from x = 0 to x = 15 with initial
conditions YL(0) = 0,Y′

L(0) = I and YR and ΨR inwards from x = 15 to x = 0
with initial conditions YR(15) = 0,Y′

R(15) = I. Where det(ΨL) and det(ΨR)
vanish in both endpoints and consequently match in both directions onto the
boundary conditions, this is clearly not the case for det(YL) and det(YR).

19

0 5 10 15
10

−50

10
0

10
50

10
100

10
150

x

|det(Y
L
(x))|

|det(Y
R
(x))|

0 5 10 15
−0.1

−0.05

0

0.05

0.1

x

det(Ψ
L
(x))

det(Ψ
R
(x))

Figure 2: Illustration of the unstable propagation of Y and the stable propagation of Ψ for
the second testproblem with n = 4 and E = E8.

We calculated the eigenvalues E0 to E25 for n = 4 and n = 8 at a tolerance
of 10−6 using the procedure from section 5. The results are shown in Table
2. Only the correct digits are shown, i.e. the ones which agree with the digits
obtained with a tol = 10−12 computation. Some values obtained with eigenvalue
calculations based on finite difference discretization are also provided. The
finite difference method with nsteps mesh intervals results in a n(nsteps− 1)×
n(nsteps − 1) matrix eigenvalue problem. One Richardson extrapolation step
was used. The finite difference computations with one extrapolation step then
results in nsteps+nsteps/2 evaluations of the potential matrix. The sixth order
coefficient approximation method uses 3 potential matrix evaluations per mesh
interval.

Table 2: Eigenvalue computations for the second testproblem, obtained with the CP procedure
with input tolerance tol = 10−6 and finite differences (FD).

k n = 4 n = 8
CP FD CP FD

0 -65.42657004 -65.427 -82.43582467 -82.44
1 -64.03484348 -64.03 -80.97081456 -80.97
2 -62.0689567 -62.07 -78.90949840 -78.9
3 -59.61523778 -59.62 -76.3408597 -76.3
4 -56.7257918 -56.73 -73.3178863 -73.3
5 -55.1994967 -55.20 -71.98401865 -71.98
10 -49.5863494 -49.59 -66.0559592 -66.1
25 -32.0936608 -32.1 -43.9683184 -44.0
nsteps 72 4000 76 2000

The results generated by the implemented code show the power of our gen-
eralized Prüfer representation, and (once again) the practical usefulness of CP
methods.

20

7. Conclusion

We discussed a shooting algorithm which approximates the eigenvalues and
eigenfunctions of the coupled-channel Schrödinger equation. The method is
based on the approximation of the potential matrix function and the quantity
that is propagated is the R-matrix. The exponential build up of the wavefunc-
tion in the classically forbidden regions is therefore cancelled, and the method is
inherently stable. Among the novel results presented in the paper, we can men-
tion the observation that CP-based propagation algorithms can accurately pass
through singularities in the flow associated to the R-matrix and that changing
coordinates is consequently not required. We also introduced new algorithms to
derive the node count from the knowledge of the R-matrix. This node count is
immensely valuable when trying to find all the eigenvalues of the coupled equa-
tions that lie in a particular energy range or with a specific index. Supplemented
with a stepsize selection algorithm and error control, the proposed algorithms
were shown to be very well suited for the implementation in automatic soft-
ware. A robust CP-based software package for the automatic computation of
the eigenvalues and eigenfunctions of coupled channel equations was presented.

References

[1] M.H. Alexander, D.E. Manolopoulos, J. Chem. Phys. 86 (1987) 2044.

[2] F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic
Press, 1964.

[3] P.B. Bailey, P.B. Everitt, A. Zettl, ACM Trans. Math. Software 21
(2001) 143.

[4] J. Canosa, R. G. De Oliveira, J. Comput. Phys., 5 (1970) 188.

[5] C.C. Chou, R.E. Wyatt, Int. J. Quantum Chem. (2008) 238.

[6] A.M. Dunker, R.G. Gordon,J. Chem. Phys. 64 (1976) 4984.

[7] S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Physical Review C 84 (2011)
064308.

[8] R.S. Friedman, M.J. Jamieson, S.C. Preston, Comput. Phys. Commun.
58 (1990) 17.

[9] R.G. Gordon, J. Chem. Phys. 51 (1969) 14.

[10] L. Greenberg, M. Marletta, ACM T. Math. Software 23 (1997) 453.

[11] J.M. Hutson, Comput. Phys. Commun. 84 (1994) 1.

[12] A. Iserles, BIT 44 (2004) 473.

21

[13] L.Gr. Ixaru, Numerical Methods for Differential Equations and Appli-
cations (Reidel, 1984).

[14] L.Gr. Ixaru, Comput. Phys. Commun. 174 (2002) 834.

[15] L.GR. Ixaru, H. De Meyer, G. Vanden Berghe, J. Comput. Appl. Math.
88 (1997) 289.

[16] L.Gr. Ixaru, H. De Meyer, G. Vanden Berghe, Comput. Phys. Commun.
118 (1999) 259.

[17] L.Gr. Ixaru, Phys. Rev. A 77 (2008) 064102.

[18] B.R. Johnson, J. Comput. Phys. 13 (1973) 445.

[19] B.R. Johnson, J. Chem. Phys. 69 (1978) 4678.

[20] V. Ledoux, M. Van Daele, G. Vanden Berghe, Comput. Phys. Commun.
174 (2006) 357.

[21] V. Ledoux, M. Van Daele, G. Vanden Berghe, Comput. Phys. Comm.
176 (2007) 191.

[22] V. Ledoux, M. Rizea, M. Van Daele, G. Vanden Berghe, I. Silisteanu,
J. Comput. Appl. Math. 228 (2009) 197.

[23] J.C. Light, R.B. Walker, J. Chem Phys. (1976) 4272.

[24] D.E. Manolopoulos, S. K. Gray, J. Chem. Phys. 102 (1995) 9214.

[25] D. E. Manolopoulos,J. Chem. Phys. 85 (1986) 6425.

[26] M. Marletta, Numer. Algorithms 4 (1993) 65.

[27] M. Marletta, Theory and Implementation of Algorithms for Sturm-
Liouville Computations. PhD thesis, Royal Military College of Science,
Shrivenham, UK, 1991.

[28] M. Marletta, J.D. Pryce, J. Comput. Appl. Math. 39 (1992) 57.

[29] F. Mrugala, D. Secrest, J. Chem. Phys. 78 (1983) 5954.

[30] P. Nelson, A.K. Ray, G.M. Wing, J. Math. Anal. Appl. 65 (1978) 201.

[31] S. Pruess, C.T. Fulton, ACM Trans. Math. Software 19 (1993) 360.

[32] J.D. Pryce, Numerical Solution of SturmLiouville Problems (Clarendon
Press, 1993).

[33] J. Schiff, S. Shnider, SIAM J. Numer. Anal., 36 (1999), 1392.

[34] M. R. Scott, Invariant Imbedding and its Applications to Ordinary Dif-
ferential Equations-An Introduction (Addison-Wesley, Reading, Mass.,
1973).

22

[35] I.J. Thompson, Comput. Phys. Rep. 7 (1988) 167.

[36] L.D. Tolsma, G.W. Veltkamp, Comput. Phys. Commun 40 (1986) 233.

23

