Cascadable excitability in microrings
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Abstract: To emulate a spiking neuron, a photonic component needs
to be excitable. In this paper, we theoretically simulate and experimen-
tally demonstrate cascadable excitability near a self-pulsation regime in
high-Q-factor silicon-on-insulator microrings. For the theoretical study we
use Coupled Mode Theory. While neglecting the fast energy and phase
dynamics of the cavity light, we can still preserve the most important
microring dynamics, by only keeping the temperature difference with the
surroundings and the amount of free carriers as dynamical variables of
the system. Therefore we can analyse the microring dynamics in a 2D
phase portrait. For some wavelengths, when changing the input power, the
microring undergoes a subcritical Andronov-Hopf bifurcation at the self-
pulsation onset. As a consequence the system shows class II excitability.
Experimental single ring excitability and self-pulsation behaviour follows
the theoretic predictions. Moreover, simulations and experiments show that
this excitation mechanism is cascadable.
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1. Introduction

On-chip optical computation has the potential to outperform electronics in speed, bandwidth
and power use. However, nonlinear photonic components still do not reach the high yield stan-
dards of their electronic counterpart, the transistor. One way of circumventing this problem, is
shifting the computational paradigm. Instead of using a photonic version of the standard Von
Neumann architecture, one can, for example, try to emulate neural networks on-chip [1]. The
computational power of spiking neural networks (SNNs), a neural network type in which in-
formation is encoded in pulses, is comparable with a Turing machine [2]. A SNN consists of
spiking neurons, i.e., excitable (nonlinear) dynamical systems [3]. As some photonic compo-
nents are excitable [4, 5], they can be used to implement a spiking neuron in hardware.

In this paper, we focus on a simple Silicon-On-Insulator (SOI) microring. Due to heating and
the thermo-optic effect, for sufficiently high input powers, bistable behaviour is obtained when
the wavelength of the input signal is close to the resonance wavelength of the cavity. High Q-
factor rings can even start to self-pulsate, as light will generate free carriers which will change
the refractive index [6]. Similar to [4, 7], we will demonstrate how this self-pulsation is linked
with excitability.

In literature the mechanism behind this self-pulsation (or excitability) in microrings, microdisks
and similar passive cavities is often explained using Coupled Mode Theory (CMT). Time-
domain simulations in this formalism show a good correspondence with experiments [8, 9, 10].
Moreover, the steady-state equations are still analytically solvable, both for varying power and
wavelength of the input light. For SOI microdisks no hysteresis in the threshold of the input
wavelength for the onset of oscillations is found, which indicates a supercritical Andronov-
Hopf (AH) bifurcation [9]. In such a supercritical AH, a stable fixed point (FP) bifurcates to
an unstable FP together with a stable limit cycle (LC), as opposed to a subcritical AH, where
an unstable FP bifurcates into a stable FP together with a stable LC (with an unstable LC in-
between) [3]. Both subtypes correspond to class II excitability in which the order of magnitude
of the nearby self-pulsation period will be relatively unsensitive to the power or wavelength of
the pump signal.

Moreover, the CMT-equations can be rewritten into the mean-field model used in [4, 7]. Using
the steady-state curves and corresponding 2D projections of nullclines of this model, the class
I excitability of a 2D Indium Phosphide (InP) Photonic Crystal (PhC) can be explained [7].
There as well, a sweep of the input wavelength indicates an AH bifurcation. Similar behaviour
appears in PhC nanocavities [4].

As the computational properties of the microring in a spiking neuron usage are linked to the rel-
evant bifurcation types [3], we will focus on the bifurcation type at the onset of self-pulsation,



for varying input power and fixed input wavelength. This takes into account that, on a photonic
chip, information is encoded in the amplitude and phase of the light, while the wavelength
rather corresponds with the choice of channel the information is transferred in. Classifying this
bifurcation allows us to predict how the microring can be excited by input signals [3]. This
helps to understand how it could process information in a (photonic) spiking neural network.
Furthermore we focus on the cascadability of these optical spiking neuron units.

The rest of this paper is structured as follows. We first write down the CMT-equations for a
microring, as this formalism allows to incorporate the contributions of all the relevant physi-
cal effects in a very intuitive way. We then show how the relevant nullclines for this system
can be obtained using phase-plane analysis which is a useful tool to investigate the dynam-
ics of neurons [3]. Using the resulting phase portraits, we demonstrate how we can simplify
the CMT-equations, while still preserving the relevant physics of the problem. Moreover, we
use the phase portraits to identify the exact bifurcation type at the oscillation onset. Subse-
quently, we analyse some time-traces to illustrate how the microring can be excited. We then
demonstrate that this excitability is cascadable and conclude with some experimental results
which confirm the predictions from the simulations. In the appendices we provide numerical
and mathematical details about the simulations. All the time-traces in this paper are simulated
with Caphe, a nonlinear component circuit simulator which we developed [11].

2. Microring: nonlinear behaviour

Optical bistability and self-pulsation in a SOI-microring has experimentally been demonstrated
[6]. To explain this behaviour we use the CMT-description of a microring in which we include
several physical effects. A first important effect in bulk silicon is two photon absorption (TPA),
which generates free carriers. These free carriers are then able to absorb light by free carrier
absorption (FCA). In addition, the presence of free carriers causes a blueshift in the wavelength
by free carrier dispersion (FCD). In SOI microrings also (linear) surface state absorption at
the silicon-silica interface is present, and at the same time some light is lost due to surface
scattering and radiation loss [6]. The absorbed optical energy is mainly lost by thermalization,
which generates heating. Due to the thermo-optic effect this heat results in a redshift in the
resonance wavelength. The free carriers typically relax at least one order of magnitude faster
than the temperature.

When the backscattering in the microring is neglected, the dynamics of the ring can be
described in CMT with one complex variable (the mode amplitude a = |a|e/?, with |a|? the
energy in the cavity and ¢ the phase), and two real variables (the mode-averaged temperature
difference with the surroundings AT and the amount of free carriers N). In this paper, we study
an All-Pass (AP) filter with one input: a single ring coupled with only one bus waveguide. The
CMT-equations are then [9, 10, 12]:

dCl ),
dar |:j(wr+60)nl_w)_ Tos a—i—Ks,-n, (l)
dr 2
dAT AT T 2
_ AT, TYanslal” @)
dr Th PsiCp.siVin
dN N TrcaPsic?lal* 3
@ Vi v
fe OVieany
Sout = ej‘p(.sin + Ka, S

with s;, the amplitude of the input light (input power P,, = \s,-n|2), Sour the amplitude of the
output light (output power P, = |Sour |2), ¢. the phase propagation in the bus waveguide, k the



coupling from waveguide to ring, @, = the resonance frequency of the cavity and @ = 2/’1”

the frequency of the input light. 7, and ’cjc are the relaxation times for resp. the temperature and
the free carriers. f3g; is the constant governing TPA, ¢, 5; the thermal capacity, ps; the density of
silicon and ny is the group index. We neglect dispersion and take n, = ng;, with ng; the refractive
index of bulk silicon. We also use the effective volumes V,, and confinements I'y, corresponding
with a physical effect a defined in [9]. In Egs. (1) and (2) Y5, and Y,ps are resp. the total loss
and absorption loss in the cavity, with:
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where we have introduced the coupling loss into the waveguide Yeoup (With K = j\/Yeoupe/?%)
and the radiation loss J,,4. In the ring we have absorption by linear surface absorption, TPA
and FCA :
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os; is the absorption cross section of FCA and Y, ix the linear absorption constant. In SOI
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effect and FCD both cause a relevant shift in the resonance frequency ,, while the shift caused

by the Kerr-effect is negligible. In first order perturbation theory, this gives:
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=~ 0.4 [6, 12], so we use this value throughout the paper. The thermo-optic
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Setting the derivatives to zero in Egs. (1)-(3) results in the steady-state equations. These can be
solved analytically. From Eq. (3) N is easy calculable if we know |a|, which can, together with
|a|, be used to calculate AT . If we keep the input wavelength A fixed and put ﬁ—‘t‘ =0in Eq. (1),
we can rewrite the result as:

[ (@ + 80 (AT N)) — @) = 2§ g — —ics;, )

If we now take the square of the modulus of both sides we get, independent of ¢:
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As P, = |s,~,,|2, the right hand side of Eq. (9) is linear in the input power. Given that Eq. (6) and
7 are linear in AT and N, the left hand side is a quadratic function of AT and N and a higher
order polynomial in |a|?. To obtain the steady-state curves we can thus simply parameterize AT,
N and P,, as a function of |a|>. When we substitute those values in Eq. (8), we can calculate ¢.
In high Q-rings (Q > 2 — 3 x 10%) TPA generates enough free carriers to make FCD prominent
for sufficiently high input powers. We will illustrate the concepts of this paper with simulations
for such a SOI 4 pm-radius microring with 540nm x 220nm cross section waveguides. This
ring has a resonance width A3, = 25pm at the resonance wavelength A, = 1552.770nm. We
consider a critically coupled ring with Yeoup = Yabs,lin + Yraa- Details can be found in Appendix
A.

Figure 1 shows the relation between input and output power, where we clearly see bistable
behaviour. This bistability is mainly caused by the thermo-optic effect, while free carrier effects
rather influence the appearance of self-pulsation. Indeed, as the light energy both heats up the
cavity and generates free carriers, and the thermo-optic and FCD have an opposite influence
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Fig. 1. For detuning A — A, = 62pm, P, (P,;,) is bistable (left figure), for P, > 191 uW
the lower P,,;-branch becomes unstable, which is an indication of self-pulsation. For P, =
0.6mW and (a,AT,N)(t=0)=(0,0.7,0) this gives the self-pulsation time-traces on the right.

on the effective resonance wavelength (and thus the amount of light coupled into the cavity),
self-pulsation is possible with a mostly asymmetric pulse shape, caused by the difference in
timescale between the fast free carrier generation and absorption of optical power and the slow
relaxation of the temperature in the cavity. For lower input powers, in the bistability region,
there can be two stable FPs in combination with an unstable one (P, = 167 — 191 uW) or one
stable FP together with two unstable FPs and a stable LC (P;, > 191 uW, LC not included in the
figure). For higher input powers there are no stable FPs and the ring will always self-pulsate.

3. Phase-plane analysis

Similar to [7], to gain more insight in the CMT-equations, we now construct 2D-phase portraits,
which will be used in the subsequent paragraphs. Therefore, we project the (a,AT,N)-time-
traces for a given input power and wavelength onto the (A7 ,N)-plane. Moreover, we calculate
the d(AT,N)/dt =0, d(AT,a)/dt = 0 and d(N,a)/dt = 0 nullclines (details in Appendix B).
Where the three curves intersect we have steady-state FPs. d(N,a)/dt = 0 and d(AT,a)/dt =0
only intersect in the (AT ,N)-plane in those FPs (Fig. 2, proof given in Appendix C).

Moreover, both the temperature time constant (7;; = 65ns) and the free carrier relaxation
time (7. = 5.3ns) are bigger than the time constants governing the dynamics of the light
(MtinTabs,lin = Teoup = 2/ Yeoup = 205 ps, and the detuning of the light corresponds with a
time constant of the same order of magnitude). After a very short transient period = 100 ps
da/dt = 0, the (a,AT ,N)(¢) solutions are then converged to the da/dt = 0 surface. We can thus
use the projections of the d(AN,a)/dt = 0 and d(AT,a)/dt = 0 nullclines to the (AT ,N)-plane
to do standard 2D phase-plane analysis.

Time-traces follow both the d(AT,N)/dt directions on the da/dt = O-surface and the corre-
sponding direction changes indicated by the nullclines (Fig. 2). As N reacts faster than AT,
the time-traces often relax towards the d(N,a)/dt = 0 nullcline. Consequently, during the self-
pulsation the ring makes steep transitions in-between the upper and lower d(N,a)/dt = 0-
branch.
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Fig. 2. On the phase portrait for P, = 0.6mW and a 62pm detuning, the d(N,a)/dt =0,
d(AT,a)/dt = 0 nullclines only intersect at the three FPs (orange circles). In corre-
spondence with Fig. 1 two of those FPs are unstable (open circle), while one is stable
(filled circle). The example time-trace from Fig. 1 (black line) clearly follows both the
d(AT,N)/dt directions on the da/dt = O-surface (grey arrows) and the corresponding di-
rection changes indicated by the nullclines. Moreover, (grey) contour lines of da/dt =0
for |a|> = 1] — 311J are elliptic and do not overlap (Appendix C).

4. 2D approximation

In section 3 we have explained why we can do phase-plane analysis in the (AT ,N)-space. The
same arguments can now be used to do a dimensionality reduction, by doing an adiabatic elim-
ination of the field variable a (a basic center manifold projection technique [13]). To simplify
the equations we neglect the TPA-contribution in ¥, in Eq. (6) (details included in Appendix
D). In this system we still see self-pulsation (Fig. 3), so at longer timescales (above 100 ps) the
most relevant physics is conserved.

This 2D system can be used to calculate the separatrix of the microring (discussed in section
3), by starting close to the unstable saddle and integrating backwards in time (Fig. 3).

This reduction in the number of variables not only simplifies the phase-plane analysis, but
in addition allows a speed-up of simulations of huge circuits containing these microrings. By
eliminating the fast timescale from the system, the integration step can increase without relevant
accuracy loss. In addition, fewer variables need to be stored. Finally, this 2D-approximation is
an extra justification for our 2D phase-plane analysis. Although qualitatively similar results are
obtained with this 2D-approximation, the simulations in the body of this paper are still done
with the full 4D-system.

5. Bifurcation analysis of the onset of bistability and the onset of self-pulsation

For a given input power the microring can have one, two or three FPs (Fig. 1 and Fig. 4). The
microring undergoes a Saddle-Node bifurcation (SN) if it has two FPs. If it has three FPs, at
least one (at low |a|) is stable.When two of the three FPs are unstable, there is a stable LC
around the high |a|-FP. The middle FP will always be unstable, and is a saddle-node. It has an
unstable manifold which ends at the low |a| stable FP and, if there is one, at the upper LC, or
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Fig. 3. The phase portrait obtained by neglecting the TPA-contribution in 7, in Eq. (6),
looks similar to Fig. 2 and still explains (approximately) the dynamic behaviour of the
time-trace of the 4D-system from Fig. 1 (black line). Furthermore, the time-trace with a
corresponding initial condition in the 2D-approximation (dashed magenta lines) follows
qualitative the 4D-behaviour, both in phase-plane and in time-domain, although the shape
of the limit cycle (LC) is slightly different. The yellow line is the separatrix of the simplified
system.
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Fig. 4. At the red side of the resonance (e.g., left: 64 = 62pm) the Andronov-Hopf (AH)
bifurcation (blue dot) tends to be supercritical, while it can be subcritical at the blue side
of the resonance (e.g., right: A = —16pm). FPs (black) and the extreme values of the
LCs (magenta) in a AT (P;,)-bifurcation diagram, calculated using PyDSTool [14], illus-
trate this. Moreover, at 8A = 62pm the ring is bistable in-between two Saddle-Node (SN)
bifurcations (red dots), while at 64 = —16pm a stable and unstable LC annihilate in a
LC Fold bifurcation at P, = 2.836 mW (black dots). Relevant P;,;-values used in the other
figures are indicated.

else, at the high |«| stable FP. A stable manifold or separatrix divides the basins of attraction of
the lower FP and the higher |a| FP/LC. If there is only one FP and it is unstable, then there is a
stable LC around it.



For some wavelengths, the onset of oscillation shows hysteresis in the input power, which is
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Fig. 5. For some input powers and wavelength settings the LC encloses a stable FP (filled
circle) in the (AT, N) phase-plane. This indicates a subcritical AH bifurcation. We illustrate
this here for P, = 2.85mW and 64 = —16pm. Depending on the initial conditions, the
trajectory will converge to the LC (black curve (AT,N)(t=0) = (1.5K,8e16cm™3) ) or to
the FP (magenta curve (AT,N)(t=0) = (1.2K,8el6cm™3)).

a sign of a subcritical AH bifurcation, in contrast to the regions without this hysteresis which
correspond to a supercritical AH bifurcation. Given the previous ring parameters, if the input
light is detuned towards the blue, where there is no bistability, typically a subcritical AH bifur-
cation appears. However, if the input light is detuned towards the red, in the bistability region,
a supercritical AH bifurcation appears (this corresponds to the supercritical AH bifurcation re-
ported in [9]). In the case of the subcritical AH bifurcation, a stable LC coexists with a stable
FP centered in this LC. This can be proved explicitly with time-traces for, e.g., P, = 2.85mW
at a A = —16pm detuning, where we have one stable FP and a stable LC. By choosing the
initial conditions within a subregion of the region defined by the LC on the da/dt = 0 surface
we can end in the central FP or in the LC (Fig. 5). The basin of attraction of the stable FP is
determined by an unstable LC (not included in figure) in-between the stable LC and this FP.
The stable and unstable LCs annihilate in a fold LC bifurcation for lower input powers (e.g., at
P, =2.836mW for 64 = —16pm in Fig. 4).

6. Excitability

In the wavelength region where the self-pulsation hysteresis is present, the microring is ex-
citable if the input power is below, but close to, the fold LC bifurcation (Fig. 6, with a 7;, = 2ns
long power increase of P, from 1.8mW to 2.9mW as perturbation, modelled by making s;,
time dependent in Eq. (1)). For these input settings a small perturbation will kick the ring out
of its rest state, into a ’ghost’ of a LC pulse, whereafter the system will return to the initial
rest state. In this power region there does not yet exist a stable LC, but the phase-plane already
incorporates similar dynamics, as we are close to the bifurcation point. A look at the pulse-
trajectory in the phase-plane clearly illustrates this similarity (Fig. 6). Being near to an AH
bifurcation, similar to the excitability reported in [4], this is class II excitability [3].
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Fig. 6. A temporary increase from P, = 1.8mW to 2.9mW at 64 = —16pm, during 2ns,
triggers an excitation. Although for this input power no LC is present, the excitation can be
seen as a reminiscent of the nearby LC from Fig. 5.
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Fig. 7. The excitability-threshold power P esn0ia i more A than P, dependent. Trigger
pulses are 73 = 10ns long and have been send in the opposite direction as the pump light.

6.1. Threshold

Characteristic for this kind of excitability is that the precise shape of the perturbation is rather
unimportant. As long as the perturbation is strong enough, the shape of the ring’s excitation is
not influenced by the input-pulse shape. For a given 7;, = 10ns we can determine the threshold
Pinreshola 1n the trigger power P,.. Below this threshold no excitation will be triggered (and the
response on the perturbation will be trigger pulse dependent), above this threshold the ring is
excited. We simulate this by sending pulses with varying F,-height, with the trigger wavelength
Asr = A, in the opposite direction of the pump light (this simplifies the comparison of Py esnora
for different P;,). This can be easily modelled by incorporating an extra version of Eq. (1) for
the counterpropagating mode in the ring [10]. We neglect backscattering in the ring.

To approximate Pesnorqd, We calculate the peak temperature after a pulse, i.e. h = max(AT (1 >
t,mlse)), and keep track for which P;,-value dh/dP,, is maximum. This approximation is based
on the observation that perturbations above threshold induce a remarkable stronger temperature



increase than sub-threshold perturbations. In the low P;,-region there is no ‘real’ excitability, as
the shape of the system’s output pulse again becomes dependent on F;,.. However, as this transi-
tion between excitability and no excitability is rather smooth, the used threshold-approximation
algorithm can still detect a "threshold’, which apparently slightly increases. For small detunings
high P;, generate a stable LC, we therefore exclude those points from the graphs.

In principle, Piresnoia should increase if the distance with the LC fold bifurcation increases.
This effect is rather negligible for a fixed A if P, decreases, but is present for a fixed P, if A
decreases (Fig. 7). The more A is detuned from A,, the higher the input power needed to reach
this bifurcation point, and thus the higher the threshold.

6.2. Refractory time
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Fig. 8. The refractory time 7, is the time after a pulse during which the ring is insensitive
to a second perturbation (a). It is on the order of magnitude of 7;;,, and is not much power
dependent for A = —35pm (b), while there is a clear wavelength dependency for P, =
1.8mW (c). The refractory time can be predicted by looking at the time needed for AT (r)
to relax to the rest state (7,f predicr.)- Moreover, the width of the pulse 7,4, is proportional
to the rise time of the temperature, i.e., the time needed to reach the maximum temperature
after a pulse. In the phase portrait we indicate the trajectory the ring makes during the
external perturbations with cyan, while we use black for the rest of the response.

If, after an excitation, the microring did not yet relax to the rest state, it is insensitive to new
excitations (Fig. 8). The refractory time 7, is the time during which an excitable system is
insensitive to new pulses after an excitation. 7, is rather insensitive to P;,, but increases with
decreasing A. As AT (¢) is the slowest variable of the system, we can link the order of magnitude
of T,¢ to the thermal relaxation time 7;: after an excitation, the ring is only sensitive to new
perturbations if its temperature has sufficiently decreased, so it is close enough to its rest state.
Consequently, 7, can be predicted by the time needed for a ring to return to the initial rest state
after a pulse (7;f, predict.)- Moreover, the pulse width 7,4, seems to be proportional to the rise
time, i.e., the time the temperature needs after an excitation to reach the maximum value (Fig.



8). We do not see the proportionality of T,y with T4, measured in PhC nanocavities [4].
6.3. Cascadability
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Fig. 9. If a ring is excited by a trigger signal, this excitation can excite another ring. To
demonstrate this we send a CW pump signal with P, = 1.8mW and §4 = — 16 pm through
the common bus of a series of two AD filters. By exciting the first ring via the drop port
(with a 10ns trigger with P, = 250uW, A, = A) we guarantee that the external trigger
pulse never reaches the second ring. The second pulse in the circuit’s output, which corre-
sponds to the second ring’s excitation, is thus triggered by the first pulse, originating from
the first ring. In contrast to the perturbation of the first ring (caused by the trigger), the
second ring is initially perturbed (by the first ring) towards lower AT and N (right phase
portrait). This causes the delay between the two excitations to be bigger than the delay
between the trigger and the first pulse (time-trace bottom left).

Since the precise shape of the trigger pulse is less important, the output pulse of a ring can
serve as a trigger pulse of another ring. If the trigger pulse is on the common bus waveguide,
it is impossible to distinguish whether the last ring is excited by the input trigger or by the first
ring’s excitation. To circumvent this problem we use a circuit with two Add-Drop (AD) filters
with common bus waveguide and excite the first ring in such a way that the input pulse never
reaches the second ring. The two rings have identical settings, and the extra coupling section
has the same 7., as in the previous simulations. In this setup the first ring clearly excites
the second one, which makes this excitability mechanism cascadable (Fig. 9). Moreover, the
second ring is perturbed in a different manner than the first one: the trajectory is initially kicked
towards lower AT and N (phase portrait Fig. 9). This results in a longer time-lapse between this
pulse and its perturbation (the first ring’s excitation) than the time-lapse between the first ring’s
pulse and its perturbation (the external trigger). Other (not included) simulations indicate that
for this pump signal the resonance wavelength of both rings can differ slightly (~ 0.26 A345.4p).

7. Experimental verification of simulation results
7.1. Measurement setup

To test the previous single ring simulation results we designed an AP ring with a 550nm X
220nm cross section, a 4.5 um radius, a 250nm gap, with a bus waveguide bended with the
same curvature as the ring. This ring has a resonance at 1530.708 nm with 6 345 ~ 20pm (with
resonance splitting 64, =~ 20pm) and an 8 dB extinction ratio. A temperature controller, which
guarantees the chip temperature deviations to be below +0.03K, is used to prevent drift of the
resonance wavelength (Fig. 10). Light of a tunable laser (TL) is coupled in and out the chip via
grating couplers. The ring output is measured with a 10 GHz photodiode and visualized with a
1 GHz real-time scope, as we expect a ~ 10 MHz signal. A similar setup is used in the double
ring experiments.
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Fig. 10. Schematic of the setup for a single ring measurement. Light of a tunable laser
(TL), polarized with polarization controllers (PC) is coupled in and out the chip via grating
couplers (GC). The ring output is measured with a 10 GHz photodiode and visualized with a
1 GHz real-time scope. In the excitability experiment a second TL is used, mostly coupled
in the opposite direction via a circulator. The pulses are created using a signal generator
(SG) and a pulse pattern generator (PPG) and an electro-optical modulator (EOM). At the
bottom, spectral details of both the single ring (left figure) and double ring resonances (right
figure), used in this paper, are included.

7.2.  Single microring self-pulsation
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Fig. 11. Both the input power and wavelength clearly change the pulse shape and period of
the self-pulsation in an AP ring with a 550 nm x 220 nm cross section, a 4.5 ym radius, near
the resonance wavelength at 1530.708 nm. (a) Input power sweep with pump wavelength
detuning 64 = A — A, = 40pm. Power values are those at the output of the laser. Due to
the grating coupler the on-chip input power of the ring is expected to be ~ 6dB lower.
(b) Detuning sweep of the same ring with 5.0dBm output power at the TL laser. The self-
pulsation period is in the order of ~ 50ns.

Both the input power and wavelength clearly change the pulse shape and period of the self-
pulsation (Fig. 11). The self-pulsation period is in the order of ~ 50ns, which is a little bit



faster than the period in our simulations. We thus expect 7;;, to be slightly smaller. The on-chip
powers for these self-pulsation traces are in the order of ~ 0.6 — I mW, as predicted by our
simulations. These input powers are thus comparable with those needed for self-pulsation in
PhC nanocavities, while this ring self-pulsates one order of magnitude faster [4].

The experimental pulse shape differs slightly from the simulated one due to a different ring
geometry and pump setting, adapting the simulation parameters to the experimental chip design
can eliminate this difference [9, 10]. Furthermore, the limited range of the self-pulsation period,
which is finite at the self-pulsation onset confirms the presence of the AH-bifurcation.

7.3.  Single microring excitability
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Fig. 12. (a) If the trigger power is sufficiently high (> 7dBm@TL) the ring excites with a
fixed pulse shape, while for lower trigger powers subthreshold oscillations are visible. The
4dBm pump light is detuned at A = —4pm from the A, = 1530.708 nm resonance. The
trigger light is tuned 84;, = 9pm near another ring resonance at A,» = 1550.671nm. (b)
The refractory time is on the order of magnitude of the self-pulsation period. The pump
settings are similar to (a), while the trigger pulse settings are §4;, = 9pm and P, = 5dBm.
Mentioned power values are those at the output of the lasers, due to GCs and EOM the on-
chip input power of the ring is expected to be ~ 6dB lower for the pump light and ~ 14dB
lower for the trigger signal.

To verify the excitability of the rings we detune the pump wavelength with an input power
near the self-pulsation onset. If we are too close to this onset, excitations triggered by noise
can be perceived, but the purpose is to trigger the excitations by an external optical signal.
For instance, sending rectangular trigger pulses with a 15.625ns width and 250ns period at a
wavelength ’close’ to one of the resonances of the ring can excite the ring (in this paper we
trigger at another ring resonance, as this allows to filter out the trigger light, but triggering at
the same resonance also works). To create these trigger pulses another TL is modulated with an
electro-optical modulator (EOM), we therefore generate a 16-bit signal (a single 1 and 15 0’s,
unless otherwise mentioned) with a pulse pattern generator (PPG) of which the clock is fixed
by a signal generator (SG) at 64 MHz. Although the pulse width of the trigger signal is rather
big compared to the thermal timescale, experiments show that the pulse shape is independent
of this width. The on-chip pulse-energy threshold for excitability is ~ 3 pJ (Fig. 12(a)).

If the delay between two trigger pulses (T.14y) is too small, the second pulse does not excite the
ring (Fig. 12(b), the second pulse is created by putting an extra bit to 1 on the PPG). Therefore
we can infer the refractory time to be somewhere around 60ns, i.e. on the order of magnitude



of the self-pulsation period. This all confirms the initial assumption in our simulations that 7,
is ~ 60ns. It is difficult to measure this refractory time more accurately with this setup, as noise
makes the ring response ambiguous: e.g., at a 62.5ns delay the second pulse can sometimes
excite the ring, but sometimes fails to do this.

In 12(b) an extra optical tunable filter with passband at 1530nm is placed before the photodi-
ode, comparison to 12(a) confirms that reflection of the trigger pulses in the circulator to the
photodiode can be neglected.

7.4. Cascadable microring excitability
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Fig. 13. If the resonances of two identical AP rings with common bus waveguide are close
enough to each other they will show self-pulsation (a) and excitability (b) for the same
pump wavelength and power. Both rings have a 5.0 um radius. The self-pulsation is meas-
ured at 10.5dBm@TL (this starts at ~ 1529.120nm and ends around 1529.260nm in hys-
teresis with single ring self-pulsation), the excitability with the pump at A = 1529.007 nm
and P, = 13.60dBm, while P;, = 12.00dBm. Trigger pulse and pump light are now co-
directional. On-chip powers are therefore expected to be resp. 10.00dB and 18.00dB lower,
as ~ 4dB is lost in a splitter used to combine pump and trigger signals.

To experimentally investigate the cascadability of ring excitability, we did similar measure-
ments of two identical AP rings with a 550nm x 220nm cross section, a 5.0 um radius,
and a 225nm gap, connected to the same bus waveguide. The spacing of the ring reso-
nances at ~ 1529nm is 52 pm, while Az4p ~ 30pm (Fig 10). Similar rings on this chip some-
times had a > 1nm spacing, as this value is determined by the process variation statistics.
For some pump settings the rings self-pulsate in a synchronized way, with one fixed period
(A =1529.130 — 1529.170nm in Fig 13(a)). Moreover, for some pump settings they are both
excitable for the same input power and wavelength (e.g., over a ~ 90 pm A;,-region in the upper
three curves in Fig 13(b)). Indeed, given the small (compared to the refractory time) and rather
fixed time-lapse between the two pulses, comparison to the single ring excitability experiments
suggests that the second pulse is not triggered by noise and the two pulses thus have to originate
from different rings. This illustrates the experimental feasability of the simulation result from
Fig. 9, where an AD ring circuit is used.

However, in contrast to the AD-configuration from Fig. 9, in the currently measured AP-
configuration it is impossible to unambiguously trigger the first ring without directly perturbing
the second one, even if we change the wavelength of the trigger pulse. Indeed, both rings have



nominally the same radius and thus the same free spectral range. Therefore, if the excitability
regions and regions where the ring is sensitive to trigger pulses overlap at one resonance, they
also overlap at all the other resonances. Subsequently, it is nontrivial to identify to which rings
the resonances belong and trigger them individually. A difference in ring radius or the usage of
AD rings can circumvent this problem.

The second ring thus feels both the external trigger pulse and the excitation of the first ring.
From Fig. 9 we know that the external trigger will result in an initial AT and N increase, while
the first ring’s excitation kicks the second ring’s trajectory initially towards lower AT and N,
which results in a longer time-lapse between the two excitations. The ~ 15 —20ns delay be-
tween the excitations in the upper three curves from Fig. 13(b) indicates that the excitation of
the first ring is strong enough to perturb the trajectory of the second ring sufficiently to induce
this longer time-lapse, clearly showing the cascadable transfer of information from the exci-
tation of the first ring to the second ring. Indeed, the 47.1 um center-to-center distance of the
rings results in a 0.7 ps latency between the two rings, so if the last ring was only perturbed by
the trigger pulse the two excitations should almost coincide.

Furthermore, we can simulate a similar trigger situation by cascading two AP rings and trigger
them with a small P, perturbation through the common bus (Fig. 14). The trigger pulse ex-
cites both rings, but the excitation of the first ring kicks the trajectory of the second ring back
to lower N. Consequently, the excitation of the second ring is delayed and therefore does not
coincide with the first ring’s excitation.

If the trigger wavelength is in a < 10 pm region around 1547.121 nm (bottom curve Fig. 13(b)),
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Fig. 14. Triggering two cascaded AP rings through the common bus with a 5ns power
increase from 1.8 mW to 2.59mW at §4 = —16pm results in a similar time-lapse between
two pulses in the time-trace (left) as in Fig 9. The phase-plane (right) clearly illustrates
how the excitation of the first ring delays the excitation of the second ring, by kicking its
trajectory towards lower N.

only one pulse is visible. This pulse can correspond to a single ring excitation (the trigger ex-
cites only one ring), or with a coincident double ring excitation (the trigger excites both rings
directly and the first ring had no influence on the second one). Further research is needed to
explain this time-trace more thoroughly, but in all likelihood the trigger signal is detuned too
far from resonance for the excitability to be cascadable.

Measurements of similar ring pairs with a > 100pm resonance spacing reveal regions with
synchronized self-pulsation, but no regions with coexisting excitability. Measurements of ring
pairs with a > 1 nm resonance spacing even fail to show synchronized self-pulsation.



8. Conclusions

A high Q microring self-pulsates for certain input power and wavelength settings, which can
be described with CMT, using three variables: the complex mode amplitude a of the light in the
cavity, the temperature difference with the surrounding AT and the amount of free carriers N.
Neglecting the fast energy and phase dynamics of the light allows a 2D phase-plane analysis.
Furthermore, this dimensionality reduction provides a manner to construct two new equations
of motion for AT and N, which still capture the most important dynamics.

For some wavelengths, when changing the input power, the microring undergoes a subcriti-
cal Andronov-Hopf bifurcation at the self-pulsation onset. As a consequence the system shows
class II excitability. This thorough understanding of the excitability mechanism will allow a cor-
rect characterization of the computational properties of a microring, used as a photonic spiking
neuron.

Simulations show that this excitation mechanism is cascadable. Experimental single ring ex-
citability and self-pulsation behaviour follows the theoretic predictions. Moreover, two identi-
cal rings can be excitable or self-pulsate for the same pump power and wavelength, if only their
resonance spacing is sufficiently small (< 100 pm). Ring pair circuits are proposed in which the
trigger pulse can address only one ring directly, without perturbing the other one.

Appendices
A. Numerical details of the simulations

The ring geometry in our simulations is inspired by the one measured in [6]. The effective
volumes and confinements are calculated using Meep FDTD [15], while the other material
parameter values are based on [6, 9, 12]. This results in the parameter values in Table 1. For the
AP filter we assume critical coupling, while the AD filter has two coupling sections which both
have the same 7.,,, as coupling section in the AP filter.

B. Calculation of the nullclines

For d(AT,N)/dt = 0 we can use the same parameterization of AT and N as a function of |a| as
for the steady-state case. When calculating d(N,a)/dt = 0 we use Eq. (3) to parameterize N as a
function of |a|, substitute this in Eq. (9) and solve the quadratic equation for AT. d(AT,a)/dt =
0 can be obtained by solving Eq. (2) to AT (which is then dependent both on |a| and N),
substituting this in Eq. (3) and solving the corresponding quadratic equation for N (which gives
us N(|a|)) and resubstituting this in the expression for AT (finally only dependent on |a|). In all
three cases it is thus possible to find a suitable parameterization of both AT and N as a function
of |a].

C. Proof of the bijection between (AT ,N)-plane and da/dt = O-surface

That d(N,a)/dt =0 and d(AT,a)/dt = 0 only intersect in the (AT ,N)-plane in the FPs can be
intuitively understood by considering the projection of the da/dr = 0 surface on the (AT ,N)-
plane. Eq. (9) is quadratic both in AT and N, and defines an ellipse for each |a|-value. As the
coefficients for AT?, N> and ATN are all proportional to |a|?, the orientation of the principal
axes is independent of |a|. However, the center of this ellipse and the global scaling factor
of the axes both are monotonically |a|-dependent, so the size of the ellipse, e.g., shrinks for
higher |a|2. Apparently, in Fig. 2, this dependence is in such a way that ellipses corresponding
with different |a|-values do not overlap. This has as a consequence that the projection of the
da/dt = 0 surface on the (AT ,N)-plane is a bijection. Both d(AT,a)/dt =0 and d(N,a)/dt =0
lie on the da/dt = 0 surface and only intersect in the FPs. The intersections of their projections




Table 1. Values of the parameters used in the simulations.

Parameter Value Magnitude
Bsi 8.4 x 10712 m-W1
dny 1.86x 1074 K
dng; —27 3

i —-1.73x 10 m

Oy 10~ m?

Psi 2.33 g- em ™3
Cp.Si 0.7 J-gil-Kf1
ng = ng; 3.476

MNiin 0.4

A 1552.770 nm
APring: A3 25 pm
ADring: A3qp 37.5 pm
Tabs,lin = 'yahilin 727(1)3 ps

TC()Mp = ﬁ 205 ps

Th 65 ns

Tfe 53 ns

Iy, 0.9355

I'rpa 0.9964

Trca 0.9996

Vin 3.19 pum?
VTPA 2.59 /J.m3
VFCA 2.36 /.Lm3

thus uniquely correspond to those FPs. From Eq. (9) it can be proved that this bijection is
valid for general P, and @ settings. Indeed, for a given (AT,N) pair, Eq. (9) is a third order
equation in |a|?>. Applying, e.g., Descartes’ rule of signs, on the coefficients of this third order
|a|>-polynomial one can determine that, independent of P, and @, there always exist just one
single real positive root, which implies that the projection of da/dt = 0 on the (AT ,N)-plane is
indeed a bijection. Consequently, we can, for general P, and @ settings, identify the FPs only
by looking at the intersections of d(N,a)/dt = 0 and d(AT,a)/dt = 0 in the (AT ,N)-plane.

D. Calculation details of the 2D approximation

Most of the time da/dt =~ 0, and |a| is completely determined by the instantaneous value of AT
and N. From Appendix C we know that, for a given (AT ,N) pair, Eq. (9) has only one positive
real root, such that this third order equation can be solved unambiguously to |a|. However,
in this paper we simply neglect the TPA-contribution in Y,s in Eq. (6), as its effect on the
broadening of the resonance width is 1 — 2 orders of magnitude smaller than the other relevant
physical effects. This makes Eq. (9) linear in |a|?. If we substitute |a| in Eq. (2) and (3) with
this approximative |Zz| (AT,N), we get a 2D dynamical system as a function of AT and N.
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