
Some remarks on the Finslerian version ofHilbert's fourth problemM. CrampinDepartment of Mathematial Physis and AstronomyGhent University, Krijgslaan 281, B{9000 Gent, BelgiumJuly 22, 2008AbstratThe Finslerian version of Hilbert's fourth problem is the problem of �nd-ing projetive Finsler funtions. �Alvarez Paiva (J. Di�. Geom. 69 (2005)353{378) has shown that projetive absolutely homogeneous Finsler fun-tions orrespond to sympleti strutures on the spae of oriented lines inRn with ertain properties. I give new and diret proofs of his main re-sults, and show how they are related to the more lassial formulations ofthe problem due to Hamel and Raps�ak.1 IntrodutionFrom the point of view of Finsler geometry, Hilbert's fourth problem is usuallyregarded as the problem of �nding projetive Finsler funtions, that is, Finslerfuntions on T ÆRn (the tangent bundle of Rn with zero setion removed) whosegeodesis, as point sets, are straight lines. As initially formulated, the problem wasto �nd metris (in the topologial sense) on Rn with the property that the shortesturve joining two points is the straight line segment between them. The Finslerianversion is more spei� in that di�erentiability properties are assumed, but alsomore general in that Finsler funtions do not de�ne genuine metris. A generalFinsler funtion, one whih is merely positively homogeneous of degree one in theveloity variables, de�nes a distane funtion whih has two of the properties ofa metri (it is positive and satis�es the triangle inequality) but laks the third,symmetry. For the latter property to hold the Finsler funtion must be absolutely1
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homogeneous. The strit Finslerian version of Hilbert's fourth problem is to �ndprojetive absolutely homogeneous Finsler funtions. This paper deals with boththe strit and the more general forms of the problem.There are in fat many projetive Finsler funtions (see for example [6, 7℄ and refer-enes therein), so that `�nding' them, at least in the sense of listing them, beomesrather a tall order. In fat this paper is onerned with ways of haraterizing pro-jetive Finsler spaes, or to be more preise with two apparently rather dissimilarapproahes to the problem of doing so; indeed one of its aims is to reonile theseapproahes.The �rst approah, whih might be alled lassial, is the reformulation of Hilbert'sfourth problem by Hamel in the early 20th entury, and the related work ofRaps�ak. Hamel's onditions will be rederived below, but for some bakgroundand a more extensive disussion with referenes see [8℄.Muh more reently, a new approah to the problem using sympleti geometryand Crofton formulae has been developed by �Alvarez Paiva [1℄. �Alvarez Paiva dealsentirely with the strit version of the problem. One aim of the present paper is toshow that most of �Alvarez Paiva's results an be derived by rather more elementarymethods than he uses. Of ourse one pays a prie in loss of elegane; on the otherhand, one gains some di�erent insights, and in partiular one sees that there is alose link between �Alvarez Paiva's haraterization of projetive Finsler spaes, inthe ase of absolute homogeneity, and that of Hamel.One unfortunate but unavoidable feature of the approah adopted here is that therequirement of a Finsler funtion that it be strongly onvex has to be treated sep-arately from the rest of the problem. Moreover, it turns out to be more onvenientto deal diretly with the Finsler funtion than with its energy, whereas in mosttreatments the ondition for strong onvexity is stated in terms of the energy. Ibegin therefore, in Setion 2, with a general disussion of strong onvexity adaptedto the needs of the paper; some of the ontents of this setion are, I believe, new,and interesting in their own right.In Setion 3 I disuss Raps�ak's and Hamel's ontributions to the problem, andin Setion 4 I give a restatement of Hamel's onditions in terms of the existeneon T ÆRn of a 2-form with ertain properties. This is a half-way stage to theformulation of the problem in terms of sympleti geometry, whih will be foundin Setion 5. 2



2 Strong onvexityA Finsler funtion F on a slit tangent bundle T ÆM is required to be strongly onvex.The ondition for strong onvexity is usually given in terms of the Hessian of theenergy E = 12F 2 (`Hessian' will always mean `Hessian with respet to the natural�bre oordinates'); it is that for eah (x; y) 2 T ÆM the symmetri bilinear form onTxM whose omponents aregij = �2E�yi�yj = F �2F�yi�yj + �F�yi �F�yjis positive de�nite. For the purposes of this artile, however, it will be more usefulto state the ondition diretly in terms of the Hessian of F . (Of ourse the Hessianof F is, apart from a fator of F , the angular metri; but this identi�ation doesnot seem to be partiularly helpful here.)One preliminary observation is neessary. As is pointed out in [2℄ for example,from this onventional de�nition it follows that if a funtion F on T ÆM is positivelyhomogeneous and strongly onvex then it is never vanishing, so that when de�ningwhat it is for a funtion to be a Finsler funtion it is enough to require that thefuntion is nonnegative. In the following disussion this point has to be treatedwith a ertain amount of are.Sine F is positively homogeneousyi �2F�yi�yj = 0:I will say that the Hessian of F is positive semide�nite at (x; y) if for all u 2 TxM ,�2F�yi�yj uiuj � 0; �2F�yi�yjuiuj = 0 if and only if ui = �yifor some salar �. Similar terminology will be used for ertain other bilinear formsthat our later, but always with the understanding that at (x; y) it is y that isthe `null' vetor.Lemma 1. If F is positively homogeneous and nonnegative then F is strongly on-vex at (x; y) if and only if F (x; y) > 0 and the Hessian of F is positive semide�niteat (x; y).Proof. Suppose that F is strongly onvex. Then from the formula above for gij interms of F we have gijyj = F (x; y)�F�yi; gijyiyj = F (x; y)2;3



from the latter we see that F (x; y) is positive. Then for any u 2 TxM we may setui � 1F (x; y) �uk �F�yk� yi = vi;v an be thought of as the omponent of u tangent to the level set of F in whih(x; y) lies. It is easy to see that�2F�yi�yj uiuj = gijvivjF (x; y):So the left-hand side is nonnegative, and is zero only if v = 0, in whih ase u is asalar multiple of y.Conversely, if F (x; y) > 0 and the Hessian of F is positive semide�nite at (x; y),then for any u gijuiuj = F (x; y) �2F�yi�yjuiuj +�uk �F�yk�2 � 0:Moreover, gijuiuj = 0 if and only if both terms on the right-hand side are zeroindividually. Then ui = �yi from the �rst, and then0 = �yk �F�yk = �F (x; y);so � = 0. So F is strongly onvex at (x; y).In general one annot dedue from positive-semide�niteness of the Hessian of Fthat F is nonvanishing. The following simple example is quite instrutive. Themost obvious projetive Finsler funtion is the Eulidean length funtion, F (x; y) =jyj =pÆijyiyj. Then �2F�yi�yj = 1jyj3(jyj2Æij � yiyj)where yi = Æijyj. Consider now F̂ (x; y) = jyj + �iyi, where � is any onstantovetor. The Hessian of F̂ is evidently idential to the Hessian of F . Whethersuh a funtion F̂ is a Finsler funtion or not depends on j�j: we must have j�j < 1for it to be a Finsler funtion; if j�j � 1 there will be values of y for whih F̂ (y) = 0.That is to say, one annot tell in general from onsiderations of the Hessian alonewhether or not F̂ is nonvanishing. It is worth remarking that the Eulidean lengthfuntion is uniquely distinguished in this lass of positively homogeneous funtionsby the fat that it is absolutely homogeneous; and it of ourse is nonvanishing. Iwill return to this point at the end of the setion.4



Returning to the general ase, we an evidently regard the Hessian of F at (x; y)as de�ning a symmetri bilinear form on TxM=hyi, whih is positive de�nite if andonly if the Hessian itself is positive semide�nite. More generally, if F is positivelyhomogeneous at (x; y) its Hessian de�nes a symmetri bilinear form on TxM=hyi,whih I all the redued Hessian (and again the same terminology will be usedwithout omment in other situations later on). I will be interested below onlyin suh funtions F for whih this form is nonsingular: a positively homogeneousfuntion whose redued Hessian is everywhere nonsingular but not neessarily pos-itive de�nite will be alled a pseudo-Finsler funtion. I will refer to the signatureof the redued Hessian of a pseudo-Finsler funtion F as the signature of F . Thesignature of F at (x; y) is also the signature of the restrition of the Hessian of Fto any subspae of TxM whih is omplementary to hyi. For F (x; y) > 0, one suhsubspae is the tangent spae to the level set of F in whih (x; y) lies.The following result is due to Lovas [5℄. Lovas's proof uses gij ; here, in keepingwith my earlier remarks, I prove the result using only the Hessian of F .Lemma 2. A pseudo-Finsler funtion whih takes only positive values is a Finslerfuntion.Proof. I show that at any x 2 M there is a point of T ÆxM , the tangent spae atx with origin deleted, at whih the Hessian of the pseudo-Finsler funtion F ispositive semide�nite. Then sine the signature of F annot hange without theredued Hessian beoming singular, F must be positive semide�nite all over T ÆxM .The argument takes plae entirely within T ÆxM so I will ignore the fat that Fdepends on x and regard it as a funtion just on T ÆxM . I work in oordinates,whih is to say that I identify T ÆxM with Rn � f0g, and I equip the latter spaewith the Eulidean metri.Consider the level set � of F of value 1. It annot ontain any ritial points ofF , sine yi�F=�yi = 1 on �. It is therefore a submanifold of T ÆxM of odimension1, and at eah y 2 T ÆxM it is transverse to the ray f�y : � > 0g. Thus � istopologially a sphere, and in partiular is ompat. The funtion on � whih mapseah y to its Eulidean length jyj ahieves its maximumvalue. At a maximum, sayy0, we have �F�yi (y0) = Æij yj0jy0j2 ;by the method of undetermined multipliers. Now hoose any u 2 Ty0�, and let(t) be a urve in � with (0) = y0, _(0) = u. Thenui�F�yi (y0) = 0; �i(0)�F�yi (y0) + uiuj �2F�yi�yj (y0) = 0:5



From the �rst of these we obtain u � y0 = 0. Now j(t)j has a maximum at t = 0.Thus 0 � d2dt2 (j(t)j)t=0 = 1jy0j(�(0) � y0 + j _(0)j2)= �jy0juiuj �2F�yi�yj (y0) + juj2jy0j :It follows that for every nonzero u 2 Ty0�,uiuj �2F�yi�yj (y0) � � jujjy0j�2 > 0:That is to say, the restrition of the Hessian of F to Ty0� is positive de�nite.I pointed out earlier that one annot in general tell from onsideration of theHessian of F alone whether or not F is nonvanishing, even when the Hessian ispositive semide�nite. However, if F is absolutely homogeneous (so that F (x;�y) =F (x; y)) it is possible to prove that when its Hessian is positive semide�nite it isnonvanishing, and in fat neessarily everywhere positive.Lemma 3. Suppose that the funtion F on T ÆM is absolutely homogeneous and itsHessian is positive semide�nite everywhere. Then F is everywhere positive, and sois a Finsler funtion.Proof. The key point about absolute homogeneity in this ontext is that if F (x; z) =0 for some (x; z) 2 T ÆM then F (x; �z) = 0 for all nonzero salars �. Again, I re-strit my attention to T ÆxM for arbitrary x, and drop expliit mention of x informulae.The �rst point to establish is that F annot be everywhere negative on T ÆxM . Todo this I assume that it is everywhere negative, and argue as in Lemma 2, but withrespet to the level set � of value �1. As before, the Eulidean length funtionahieves its maximum on �, at y0 say; but this time we have�F�yi (y0) = �Æij yj0jy0j2 :But then the ondition that j(t)j has a maximum along the urve (t) at t = 0reads 0 � d2dt2 (j(t)j)t=0 = 1jy0j(�(0) � y0 + j _(0)j2)= jy0juiuj �2F�yi�yj (y0) + juj2jy0j ;6



whih is a ontradition.Thus T ÆxM must ontain points where F is nonnegative. I next show that it mustontain a point where F is positive.The zero set of F in T ÆxM is evidently losed. On the other hand, F annot vanishon an open subset of T ÆxM and still have positive semide�nite Hessian. So the zeroset of F in T ÆxM is losed without interior points, and its omplement (where F isnonzero) is open dense.The following argument is based on the proof of the so-alled fundamental inequal-ity due to Bao et al., [2℄ page 9. Let y be any point of T ÆxM . For any u,F (y + u) = F (y) + ui �F�yi (y) + 12uiuj �2F�yi�yj (y + �u)for some �, 0 � � � 1, by the seond mean-value theorem applied to the funtiont 7! F (y + tu). Suppose that F (y) = 0. Then for any u (if y is a ritial pointof F ), or for any u that is tangent to the level set � of F through y (if not),the seond term on the right-hand side is zero. The third term is nonnegative byassumption, and indeed positive if we ensure that u is not a salar multiple of y.Then if F (y) = 0, we have F (y + u) > 0 for suh u.Next, from the same formula but now with F (y) > 0 it follows that at all pointson the tangent hyperplane to � at y the value of F is positive. Now if F has azero, at z say, then F vanishes on the whole line t 7! tz (exluding the origin);suh a line therefore annot interset the tangent hyperplane. Thus at eah pointy where F (y) > 0 the line t 7! y + tz lies in the tangent hyperplane to the levelset of F through y. That is, zi�F�yi (y) = 0for all y where F (y) > 0. But the set of points y where F (y) > 0 is open, so therelation above holds on an open set. We may therefore di�erentiate with respetto yj to obtain zi �2F�yi�yj (y) = 0(zi is onstant). Clearly z is not a salar multiple of y (beause F (z) = 0 whileF (y) > 0). But this ontradits the assumed positive-semide�niteness of F . Thereare therefore no points z where F (z) = 0. It follows that F is everywhere positive.7



3 Raps�ak's and Hamel's equationsRaps�ak's equations are onditions for the geodesi spray of a Finsler funtion tobe projetively equivalent to a given spray (see for example [6℄ Chapter 12). Theyan be derived rather simply as follows. Let F be an arbitrary Finsler funtion,and onsider the following version of the Euler-Lagrange equations in whih F istaken as the Lagrangian: S��F�yi�� �F�xi = 0;where S is assumed to be a spray. Then sineuj �2F�yi�yj = 0if and only if u is a salar multiple of y, S is determined up to the addition of amultiple of the Liouville �eld C. That is to say, the Euler-Lagrange equations (forthe Finsler funtion rather than the energy), together with the assumption that Sis a spray, determine a projetive equivalene lass of sprays; this lass inludes theanonial spray of F , and thus onsists of all those sprays projetively equivalentto it. Thus (taking F to be given) in order for a spray S to be projetivelyequivalent to the anonial spray of F it is neessary and suÆient that it satis�esthe above Euler-Lagrange equations. For muh the same reasons (but now �xingS and regarding F as the unknown), a Finsler funtion F has the property that itsanonial spray is projetively related to S if and only F satis�es these equations.This is the essential ontent of Raps�ak's equations.Consider in partiular a Finsler funtion F on T oRn (one ould take F to bede�ned just on the slit tangent bundle of some open subset of Rn, but I leave thispossibilty to be understood). Then F has the property that its anonial spray isprojetively related to the standard at spray S, given by yi�=�xi in retilinearoordinates, if and only if yj �2F�xj�yi � �F�xi = 0:These are Raps�ak's equations applied to the ase of a projetive Finsler funtion;they are also one form of Hamel's equations. On di�erentiating again with respetto yj we obtain yk �3F�xk�yi�yj + �2F�xj�yi � �2F�xi�yj = 0:The part of this identity skew in i and j leads to the other Hamel equations, namely�2F�xj�yi = �2F�xi�yj ;8



these are easily seen to be equivalent to the �rst ones, assuming that F is positivelyhomogeneous. The part of the identity symmetri in i and j says that the Hessianof F is invariant under S.I have assumed in the disussion above that F is a Finsler funtion. Thoughwe require F to be positively homogeneous, in fat it is enough that its reduedHessian is nonsingular; so the results hold for a pseudo-Finsler funtion.I summarize the disussion in the following proposition (whih is of ourse well-known: see for example [6℄ Corollary 12.2.10 and [8℄ Corollary 8.1 for other ver-sions).Proposition 1. A pseudo-Finsler funtion F on T oRn is projetive if and only ifit satis�es either of the following equivalent onditions (in retilinear oordinates):yj �2F�xj�yi � �F�xi = 0; �2F�xj�yi = �2F�xi�yj :Further interesting onsequenes an be drawn from the Hamel onditions. Itfollows from the seond version of these onditions that there is a funtion f suhthat �F�yi = �f�xi :Indeed, one an write down an expliit formula for f by adapting the usual formulafor a homotopy operator for the exterior derivative ating on 1-forms:f(x; y) = Z 1t=0 xi �F�yi (tx; y)dt;the fat that f satis�es the required relation is a straightforward alulation usingthe Hamel onditions. The point of giving this formula is that it shows that f maybe hosen to be positively homogeneous of degree zero in y. Addition to this f ofany funtion of y alone will give a new funtion satisfying the given relation, butnot neessarily one whih is homogeneous.Now from the de�ning relation above it follows thatyi �f�xi = S(f) = yi�F�yi = F;where (here and below) S is the standard at spray. This observation may beexpressed in another form. Consider, for �xed x0 and y0, the straight line (t) =x0 + ty0. For this urve F ((t); _(t)) = ddt(f((t); _(t)):9



Thus the length of the line segment with 0 � t � 1 as measured using the Finslerfuntion F is Z 1t=0 F ((t); _(t))dt = f(x0 + y0; y0)� f(x0; y0):That is, f determines the Finslerian distane funtion dF bydF (x1; x2) = f(x2; x2 � x1)� f(x1; x2 � x1):Of ourse, addition of a funtion of y alone to f has no e�et on this formula.In general dF will not be symmetri; but if F is absolutely homogeneous then(appealing again to the homotopy formula) we an hoose f to satisfy f(x;�y) =�f(x; y), and thendF (x2; x1) = f(x1; x1 � x2)� f(x2; x1 � x2)= f(x2; x2 � x1)� f(x1; x2 � x1) = dF (x1; x2):It is worth noting expliitly that�2f�xj�yi = �2F�yi�yj = �2f�xi�yj :Furthermore, yj �2f�xj�yi = 0 = S� �f�yi� ;and it is easy to see that, onversely, if S(�f=�yi) = 0 then�2f�xj�yi = �2f�xi�yj :Conversely, given a funtion f with suh properties, we an �nd a projetive Finslerfuntion.Proposition 2. Let f be a funtion on T oRn whih is positively homogeneous ofdegree zero in y and satis�es �2f�xj�yi = �2f�xi�yj ;where the redued version of the symmetri bilinear form so de�ned is nonsingular:then S(f) is a projetive pseudo-Finsler funtion. If in addition the symmetribilinear form is positive semide�nite and S(f) > 0 then S(f) is a projetive Finslerfuntion. 10



Proof. Set F = S(f) = yi �f�xi :Then F is positively homogeneous of degree 1; furthermore�F�yi = �f�xi + yj �2f�xj�yi = �f�xi + yj �2f�xi�yj = �f�xi ;and so �2F�xj�yi = �2F�xi�yj and �2F�yi�yj = �2f�xi�yj :This result is essentially equivalent to Proposition 8.1 of [8℄.4 The Hilbert forms of a projetive Finsler fun-tionI now onsider the Hilbert 1-form of a projetive Finsler funtion F ,� = �F�yidxi;and the Hilbert 2-form d�. From general onsiderations the Hilbert 2-form has thefollowing properties:1. d� is singular, and its harateristi distribution is spanned by any spray Sprojetively equivalent to the anonial spray of F , and the Liouville �eld C;this distribution ontains the whole projetive equivalene lass of S, and isintegrable by homogeneity;2. sine d� is evidently losed, its Lie derivative by any vetor �eld in its har-ateristi distribution is zero;3. d�(V1; V2) = 0 for any pair of vertial vetors V1, V2.These results hold for any Finsler funtion; but it is quite interesting to see howthey work out in the ase of interest. So suppose that F is a projetive Finslerfuntion, and therefore satis�es the Hamel onditions stated in Proposition 1. Nowonsider the Hilbert forms of F . First of all,d� = �2F�xi�yj dxi ^ dxj + �2F�yi�yj dyi ^ dxj ;11



but the �rst term is zero sine its oeÆient is symmetri in i and j. Thusd� = �2F�yi�yj dyi ^ dxj :Item 3 above follows immediately. We haveC d� = yk ��yk �2F�yi�yj dyi ^ dxj = yi �2F�yi�yj dxj;while S d� = yk ��xk �2F�yi�yj dyi ^ dxj = �yj �2F�yi�yj dyi;where again S denotes the standard at spray yi�=�xi; both are zero by homo-geneity, whene item 1. Item 2 is a diret onsequene, but an also be derivedindependently. In fat LC� = 0 by homogeneity, whileLS� = yj �2F�xj�yidxi + �F�yidyi = �F�xidxi + �F�yidyi = dF:Reall that for any projetive Finsler funtion F we an �nd a funtion f , positivelyhomogeneous of degree 0, suh that�f�xi = �F�yi :The Hilbert 1-form an be expressed in terms of f as � = (�f=�xi)dxi, so thatd� = d� �f�xidxi� = d� �f�xi� ^ dxi:On the other hand, � = df � (�f=�yi)dyi, so that alsod� = �d� �f�yidyi� = dyi ^ d� �f�yi� ;this will turn out to be the more signi�ant formula of the two.I now prove a partial onverse to the statements above about the Hilbert 2-formof a projetive Finsler funtion. This result in e�et restates Hamel's onditionsin terms of the properties of a 2-form on T ÆRn.Proposition 3. Let 
 be a losed 2-form on T oRn, whose harateristi distri-bution is 2-dimensional and is spanned by S, the standard at spray, and C, theLiouville �eld. Suppose further that 
 = 
ijdyi ^ dxj in retilinear oordinates,where 
ij is symmetri in its indies. Then 
 is the Hilbert 2-form of a projetivepseudo-Finsler funtion F on T oRn. 12



Proof. The ondition for the harateristi distribution of 
 to be spanned by Sand C is that 
ijuj = 0 if and only if u is a salar multiple of y.The losure of 
 is equivalent to the onditions�
ij�yk = �
ik�yj ; �
ij�xk = �
ik�xjon its oeÆients. From the �rst, there are funtions �i, globally de�ned for n > 2,suh that 
ij = ��i�yj = ��j�yi(using symmetry). Sine 
ijyj = 0,yj ��i�yj = 0:Set � = �iyi: then ���yi = �i + yj ��j�yi = �i + yj ��i�yj = �i;and therefore 
ij = �2��yi�yj :From the seond losure ondition�3��yi�yj�xk = �3��yi�yk�xj ;so that �2��xj�yk � �2��xk�yj =  jk(x);where  jk, whih is independent of the yi, is skew in its indies. Now� jk�xi + � ki�xj + � ij�xk= �3��xi�xj�yk � �3��xi�xk�yj + �3��xj�xk�yi � �3��xj�xi�yk+ �3��xk�xi�yj � �3��xk�xj�yi= 0:There are therefore funtions �i(x), again globally de�ned, suh that ij = ��i�xj � ��j�xi :13



Now set F = �+ �iyi:Then yi �F�yi = yi ���yi + yi�i = yi�i + yi�i = �+ �iyi = F;so F is positively homogeneous of degree one in the yi. Moreover,�2F�yi�yj = �2��yi�yj = 
ij ;and �2F�xi�yj � �2F�xj�yi= �2��xi�yj + ��j�xi � �2��xj�yi � ��i�xj = �2��xi�yj � �2��xj�yi �  ij = 0:Thus F satis�es the Hamel onditions, and its redued Hessian is nonsingular.Moreover, 
 is the exterior derivative of the Hilbert 1-form of F .If one an �nd a pseudo-Finsler funtion F whih is nonvanishing, then if F iseverywhere positive it is a Finsler funtion, by Lemma 2. If F is everywherenegative then one an simply replae 
 by �
 and start again.Corollary 1. Suppose that there is a pseudo-Finsler funtion F for 
 whih iseverywhere positive. Then F is a projetive Finsler funtion.Notie that aording to Proposition 3, F is determined up to the addition of atotal derivative, that is, a term of the form (��=�xi)yi where � is any funtion onRn.If we start with a Finsler funtion whih is absolutely homogeneous then d� hangessign under reetion; that is to say, if � is the reetion map, �(x; y) = (x;�y),and ��F = F then ��d� = �d� (indeed, ��� = ��). Conversely, suppose that 
satis�es the hypotheses of Proposition 3 and in addition ��
 = �
, or equivalently
ij(x;�y) = 
ij(x; y). Then if F is a pseudo-Finsler funtion for 
, so is �F = ��F ,and so is 12(F + �F ): the latter is absolutely homogeneous. Moreover, the absolutelyhomogeneous solution is unique: for any two solutions di�er by a total derivative;but suh a term is linear in y, and therefore hanges sign under �; so distintsolutions annot both be absolutely homogeneous.In these irumstanes we an also dedue that a pseudo-Finsler funtion is aFinsler funtion by applying Lemma 3. 14



Corollary 2. Suppose that in addition to satisfying the hypotheses of Proposi-tion 3, 
 hanges sign under reetion, and (
ij) is positive semide�nite. Thenthe orresponding absolutely homogeneous pseudo-Finsler funtion F is a projetiveFinsler funtion.5 Path spae and sympleti strutureReall that the Hilbert 2-form of a projetive Finsler funtion F (indeed any Finslerfuntion) has for its harateristi distribution the span of any geodesi spray S ofF and the Liouville �eld C. The distribution hC;Si is integrable, so we an (atleast loally) take the quotient by its leaves. The result is a manifold of dimension2n � 2, eah of whose points represents an unparametrized geodesi of F : it isthe path spae �. It follows from its other properties (as set out in Setion 4)that d� de�nes a 2-form ! on � whih is losed and nonsingular, so is sympleti.Moreover, the set of all geodesi paths through any �xed point x0 determines an(n � 1)-dimensional submanifold of � whih is Lagrangian. This onstrution isdisussed at length in [3℄, as well as in [1℄.To give a bit more detail in the projetive ase: the ow of the at spray S onT oRn is just (xi; yi) 7! (xi+ tyi; yi), while that of C is (xi; yi) 7! (xi; esyi). In fatwe have a left ation of the aÆne group of the line by (xi; yi) 7! (xi + tyi; esyi);the path spae �, that is, the spae of oriented straight lines in Rn, is the quotientof T oRn under this ation (notie that the zero setion of TRn is pointwise �xedunder the ation of the aÆne group, so must be ut out before taking the quotient).Let � : T oRn ! � be the projetion. Now d� is invariant under the group ation,and so passes to the quotient to de�ne a 2-form on �, that is, a 2-form ! suhthat ��! = d�. Evidently ��d! = 0; but sine � is surjetive it follows that ! islosed. Moreover, sine we have quotiented out the harateristi distribution ofd�, ! is nonsingular. Thus ! is a sympleti 2-form. The form ! has one furtherimportant property: sine d� vanishes when restrited to any �bre of T oRn, !vanishes when restrited to the image of any �bre. The image of T ox0Rn in � is an(n� 1)-dimensional submanifold, whih onsists of all the lines through x0. Thus! has the property that eah submanifold of � onsisting of all the lines througha given point of Rn is a Lagrangian submanifold.One onept of a `solution' to Hilbert's fourth problem, due to �Alvarez Paiva [1℄, is asympleti form on the path spae suh that lines through any point orrespond toLagrangian submanifolds, together with some ondition ensuring strong onvexity.His argument is indiret, involving as it does so-alled Crofton formulas. However,one an work more diretly, as I will show below.15



I �rst examine the sympleti struture obtained from a projetive Finsler funtiona little more losely; in fat the following omments apply equally to a projetivepseudo-Finsler funtion, exept for those that onern positive de�niteness.I will de�ne ertain loal oordinates on path spae �. These are modelled partlyon the oordinates often used for real projetive spae. It is important to notehowever that � onsists of oriented lines, so that the same line (as a point set)traversed in opposite diretions determines two points of �. The map whih takeseah point of � to the diretion of the orresponding oriented line de�nes a �brationof � over an (n�1)-sphere. Without the insistene on oriented lines the base wouldindeed be a projetive spae. In fat, by taking the base to be a metri sphere Sn�1(with respet to the Eulidean metri) one an identify � with TSn�1 (see [4℄ forexample); but I do not use this identi�ation here.We an over � by 2n open sets U�k , where k is an integer, 1 � k � n, and U+konsists of those lines whose diretions y satisfy yk > 0, U�k those whose diretionsy satisfy yk < 0. For oordinates on U+k we take(�1; �2; : : : ; �k�1; �k+1 : : : ; �n; �1; �2; : : : ; �k�1; �k+1; : : : ; �n);where the �i are the omponents of the diretion vetor of the line normalizedwith yk = 1, and the �i are the oordinates of the point where the line meets thehyperplane xk = 0. The oordinates on U�k are similarly de�ned, exept that thenormalized diretion vetor has yk = �1. (The numbering of the oordinates issomewhat unonventional, but this will not ause any problems.) The oordinatetransformation between, for example, U�n and U�n�1 is given by�̂� = (���n�1 � �n�1��)=�n�1; �̂n = ��(�n�1=�n�1);and �̂� = Æ(��=�n�1); �̂n = Æ�(1=�n�1)where (�̂�; �̂n; �̂�; �̂n), 1 � �; � � n� 2, are the ordinates of a point in U�n�1 \ U�nwith respet to U�n�1, (�a; �b), 1 � a; b � n � 1, the oordinates of the same pointwith respet to U�n ; Æ = +1 on U+n�1, Æ = �1 on U�n�1, and � is similarly de�nedfor U�n . (To larify the notation: U�k here stands for either U+k or U�k , so that forexample U�n�1 \ U�n stands for any one of four di�erent sets, and four oordinatetransformations are being dealt with simultaneously, distinguished by the valuesof Æ and �.) Similar formulae hold on the other intersetions of oordinate pathes.On U�n , say, the projetion � has the oordinate representation �(x; y) = (�a; �b)where �a = (xayn � xnya)=yn; �a = ya=jynj;and similarly for the other oordinate pathes.16



Now suppose given a projetive Finsler funtion F . On U�n the homogeneity on-dition may be written �F�yn = 1ynF � yayn �F�ya :Thus �2F�ya�yn = � ybyn �2F�ya�yb ; �2F(�yn)2 = yayn ybyn �2F�ya�yb :Now onsider the Hilbert 2-form d�. On ��1(U�n ) we have ya = ��ayn, xa =�a + ��axn, whenedya � ��adyn = �ynd�a; dxa � ��adxn = d�a + �xnd�a:Now d� = �2F�ya�yb (dya ^ dxb � ��adyn ^ dxb � ��bdya ^ dxn + �a�bdyn ^ dxn)= �2F�ya�yb (dya � ��adyn) ^ (dxb � ��bdxn)= �yn �2F�ya�ybd�a ^ (d�b + �xnd�b) = �yn �2F�ya�ybd�a ^ d�busing the symmetry of the oeÆients. By the general theory, or an easy al-ulation, these must be funtions on the appropriate oordinate neighbourhoodsof �. Let me denote by F� the restrition of F to yn = �1. Then on U�n ,F (yi) = �ynF�(�a), whene easily�yn �2F�ya�yb (yi) = �2F���a��b (�):Like eah omponent of the Hessian of F , the right-hand side is invariant underthe ow of the at spray S. So for eah a, b the right-hand side is a funtion onU�n . Furthermore, from the earlier alulations, for any vi�2F�yi�yj vivj = �2F�ya�yb �va � yaynvn��vb � ybynvn� :By assumption, the left-hand side is nonnegative, and zero only if v is a salarmultiple of y. Thus all of three of the bilinear forms whose omponents are�2F�ya�yb and �2F���a��bmust be positive de�nite (note that �yn = jynj > 0). So the 2-form ! indued on� by d� is given in U�n by ! = �2F���a��bd�a ^ d�b;17



where the oeÆients are the omponents of a positive-de�nite bilinear form. Sim-ilar representations hold on the other oordinate pathes.The reetion map on T ÆRn indues a map of �, also denoted by �, whih sendseah line to the same line (as a point set) traversed in the opposite diretion. Forits oordinate representation, we note that � maps U+k to U�k and vie versa, andin terms of the oordinates on those two sets it is represented by (�; �) 7! (�;��).If F is absolutely homogeneous then F�(��) = F+(�), and so ��! = �!.Finally, let us onsider a funtion f , positively homogeneous of degree zero, suhthat �f�xi = �F�yi :We saw earlier that the Hilbert 1-form of F is given by� = df � �f�yidyi;so that d� = �d� �f�yidyi� :Let me set (�f=�yi)dyi = �. The homogeneity ondition on f givesyi �f�yi = 0; �f�yi + yj �2f�yi�yj = 0:Now S � = 0;C � = yi �f�yi = 0;LS� = yj �2f�xj�yidyi = yj �2F�yj�yidyi = 0;LC� = �yj �2f�yi�yj + �f�yi� dyi = 0:Thus � passes to the quotient �, unlike �, and de�nes there a 1-form, say '. Wehave ��(d') = d� = �d� = ���!; but � is surjetive, so ! = �d'. Thus ! isexat.It is easy to see, by a alulation similar to the one leading to the oordinateformula for !, that the oordinate representation of ' on U�n is' = �f���a d�a18



where f� is the restrition of f to yn = �1.I now begin the proof of a onverse to these properties of !, that is, the demonstra-tion that a suitable sympleti form on path spae determines a projetive Finslerfuntion.Lemma 4. Let ! be a 2-form on � whih vanishes on eah submanifold of �onsisting of all the lines through a point of Rn. Then on U�n , ! takes the form! = Babd�a^d�b, where Bba = Bab (and similarly on the other oordinate pathes).Proof. For x0 2 Rn, the submanifold of � onsisting of the lines through x0 is�(T ox0Rn), the image of the �bre T ox0Rn by the projetion �. Now �(T ox0Rn) onsistsof points (�a; �a) with�a = (xa0yn � xn0ya)=yn; �a = (ya=jynj);with xi0 �xed, yi varying. On eliminating the yi we �nd that �(T ox0Rn) is given by�a + �xn0�a = xa0:Notie that for any point (�a; �a) 2 � and any value of t 2 R we an �nd xa0 suhthat �(T ox0Rn) passes through (�a; �a) and xn0 = t. Now let! = Aabd�a ^ d�b +Babd�a ^ d�b + Cabd�a ^ d�b;where A and C are skew in their indies. Choose any point of �, and take anarbitrary real number t. Take the orresponding point (xi0) 2 Rn suh that�(T ox0Rn) passes through the hosen point of �, and xn0 = t. On �(T ox0Rn) wehave d�a = ��td�a, and so the restrition of ! to that submanifold is(t2Aab + �tBab + Cab)d�a ^ d�b:By assumption, this must be zero. But t may be hosen arbitrarily, and A and Care skew; thus Aab = Cab = 0, Bba = Bab, and! = Babd�a ^ d�b:If ! is sympleti then (Bab) must be nonsingular. A sympleti, or even nonsingu-lar, 2-form with the loal representation desribed in the lemma has a well-de�nedsignature.Lemma 5. If ! takes the form given in Lemma 4 in eah oordinate path, whereeah (Bab) is everywhere nonsingular, then all of the bilinear forms (Bab) have thesame signature. 19



The ommon signature is alled the signature of !.Proof. It is enough to onsider the e�ets of the oordinate transformation betweenU�n and U�n�1. A short alulation leads to the following transformation rule forthe oeÆients Bab:B̂�� = Æ�n�1B��B̂�n = �Æ� �(�n�1)2B�(n�1) � �n�1��B���B̂nn = Æ �(�n�1)3B(n�1)(n�1) + 2(�n�1)2��B�(n�1) + �n�1����B��� :This an be written as a matrix formula B̂ = Æ�n�1JTBJ , where the Jaobian Jis given by J�� = Æ��; J (n�1)� = 0; Jan = ���a:(It is worth notiing that sine the determinant of J is���n�1, whih by assumptionis nonzero, J is nonsingular, and so B̂ is nonsingular if B is.) But sine Æ�n�1 =j�n�1j is positive on the intersetion of oordinate pathes U�n�1 \ U�n , we see thatB and B̂ have the same signature.Now a symmetri matrix annot hange signature without beoming singular; thusB has the same signature everywhere on its oordinate path, and B and B̂ havethe same signature on the intersetion of oordinate pathes; and similarly for alloordinate pathes. So the oeÆient matrix has the same signature everywhere.Theorem 1. Suppose that ! is a sympleti 2-form on � whih vanishes on allsubmanifolds orresponding to lines through a point of Rn. Then1. ��! = 
 satis�es the hypotheses of Proposition 3 and determines a projetivepseudo-Finsler funtion F on T ÆRn whih has the same signature as !, and��! is the Hilbert 2-form of F ;2. if ��! = �! and ! is positive de�nite then there is a unique projetiveabsolutely homogeneous Finsler funtion F on T ÆRn suh that ��! is theHilbert 2-form of F .Proof. Consider the pull-bak of ! from U+n . To �nd an expression for it we justhave to substitute for �a and �a in terms of xi and yi. Atually it is simpler tosubsitute just for �a in the �rst instane. We have �a = (xayn � xnya)=yn =xa � xn�a, whene d�a = dxa � �adxn � xnd�a;20



so that ��! = Babd�a ^ (dxb � �bdxn � xnd�b) = Babd�a ^ (dxb � �bdxn)by symmetry of Bab. Thus��! = (yn)�3Bab(yndya � yadyn) ^ (yndxb � ybdxn);so that ��! takes the desired form: ��! = 
ijdyi ^ dxj where
ab = (yn)�1Bab; 
an = �(yn)�2ybBab = 
na; 
nn = (yn)�3yaybBab:The oeÆients 
ij are symmetri in their indies. Moreover
ajuj = 
abub + 
anun = (yn)�2Bab(ynub � ybun);whih vanishes if and only if u is a salar multiple of y. It is easy to see that asimilar result holds for 
njuj = 0. These results have been established only forone oordinate path; but of ourse 
 is globally well-de�ned (as ��!), and thealulations above represent fairly what happens on eah oordinate path. Finally,d��! = ��d! = 0. So ��! satis�es the onditions of Proposition 3. The remainingresults follow from that proposition and its seond orollary.It would be nie to have an intrinsi de�nition of what it would mean for a sym-pleti form ! on � satisfying the Lagrangian submanifold ondition to be positivede�nite. Aording to �Alvarez Paiva this an be done in terms of 2-planes in Rn,as follows. Let � be a 2-plane in Rn. The set of all oriented lines in � de�nes a2-dimensional submanifold P of �. One then onsiders, for any point l of P (i.e.line l in �), the restrition of ! to TlP . I now show what happens in my formalism.Take a 2-plane � in Rn. This determines a submanifold �̂ of T oRn as follows:(x; y) 2 �̂ if x 2 �, y 2 Tx�. Then �̂ is 4-dimensional, but both S and Care tangent to it, and its projetion into � (whih is P ) is 2-dimensional. Let(x0; y0) 2 �̂. Then � ontains the line s 7! x0+ sy0. Let u 2 Tx0� with u linearlyindependent of y0; then � is the image of the mapR2 ! Rn by (s; t) 7! x0+sy0+tu,and �̂ is the image of the map R4 ! T oRn by(s; t; k; l) 7! (x0 + sy0 + tu; ky0+ lu):The tangent spae to �̂ at (x0; y0) is spanned byyi0 ��xi = S(x0;y0); yi0 ��yi = C(x0;y0); ui ��xi ; ui ��yi :21



I assume that yn0 6= 0. Then without loss of generality I an take xn0 = 0, un = 0. Inext determine T�(x0;y0)P . Using oordinates (�a; �a) orresponding to U+n we have��� ��xa� = ���a ; ��� ��ya� = 1yn � ���a � xn ���a� :Thus with xn0 = 0 and un = 0���ui ��xi� = ua ���a ; ���ui ��yi� = 1ynua ���aSo T�(x0;y0)P is spanned by ua ���a = �; ua ���a = �say. Thus at �(x0; y0) !(�; �) = �Babuaub:The value of ! on any pair of independent vetors in T�(x0;y0)P is a nonzero multipleof Babuaub. (There is no essential di�erene in U�n , though some signs are hanged).Thus if ! never vanishes when restrited to any suh 2-dimensional submanifoldP then (Bab) is de�nite (positive or negative). We annot determine whih on thebasis of these data (sine one an learly hange the sign of ! without disturbinganything else). However, whihever it is, it is the same everywhere. We have thusestablished the following theorem of �Alvarez Paiva (Theorem 3.1 of [1℄, with someneessary modi�ations of the statement).Theorem 2. Let ! be a sympleti form on the spae of oriented lines of Rnwhih has the property that the lines through any given point form a Lagrangiansubmanifold, and whih satis�es ��! = �!. If the pull-bak of ! to the spaeof oriented lines lying on an arbitrary plane never vanishes, then either ! or �!is the sympleti form indued by some projetive absolutely homogeneous Finslerfuntion on its spae of geodesis.AknowledgementsThis paper grew out of disussions with J�oszef Szilasi: I am very grateful for hishelp. I should also like to thank Resz�o Lovas for some valuable omments.I am a Guest Professor at Ghent University: I should like to express my gratitudeto the Department of Mathematial Physis and Astronomy for its hospitality.22
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