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SUMMARY

Orthonormal Vector Fitting is a robust method for broadband macromodeling of frequency domain
responses. The use of orthonormal rational basis functions makes the conditioning of the system equations
less sensitive to the initial pole specification when compared to the classical Vector Fitting procedure. This
paper presents a time domain generalization of the technique to compute broadband rational macromodels
from transient input-output port responses. The efficacy of the approach is illustrated by two numerical
examples. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reliable synthesis of compact transfer function models is of crucial importance for accurate system-
level simulations [1]. The identification of such macromodels from frequency domain measurements
or simulations is not a trivial task, even when linear systems are considered [2, 3, 4, 5]. Nevertheless,
there is an ongoing need for robust and efficient macromodeling techniques that are able to fit
resonant frequency responses with a high model order [6]. Vector Fitting (VF) is one of the most
popular methods, and has been widely applied in the power systems community [7, 8, 9, 10].
Essentially, it minimizes a weighted linear cost function by iteratively relocating a prescribed set of
transfer function poles using a Sanathanan-Koerner iteration [11, 12, 13]. Numerical ill-conditioning
is avoided by using a set of partial fraction basis functions, that are based on a well-chosen set of
prescribed poles. Such rational basis functions have the advantage that an implicit weighting scheme
can be applied, as described in [14]. The implicit weighting was found to give more reliable results
if the prescribed poles need to be relocated over long distances, and is therefore preferable.

In [15], it was shown that the method can achieve a higher robustness if the partial fraction
basis is replaced by a set of orthonormal rational functions, leading to the Orthonormal Vector
Fitting technique (OVF). Using these orthonormal rational functions, the conditioning of the
system equations becomes less sensitive to the initial pole specification, and accurate models can
be computed in fewer iterations. This improves the robustness of the method and may lead to
a reduction in the overall computation time. It was shown in [16] that orthonormalization can
resolve rank deficiency problems if some of the poles become relocated arbitrarily close during
the iterations. Such situations occur frequently (although not exclusively) when modeling transfer
functions with poles of higher-order multiplicity [17]. The orthonormalization can also lead to more

∗Correspondence to: Ghent University - IBBT, Dept. of Information Technology, Sint-Pietersnieuwstraat 41, 9000 Ghent,
Belgium

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using jnmauth.cls [Version: 2010/03/27 v2.00]



2 D. DESCHRIJVER, T. DHAENE

accurate results if exact interpolation problems are solved using Gaussian elimination instead of a
rank-revealing QR decomposition [18]. A thorough comparison with the standard partial fraction
basis is reported in [14], and it is concluded is that orthonormalization is preferable since it leads to
comparable or better results at the expense of a negligible additional computational cost.

The use of these orthonormal basis functions has been succesfully adopted in several applications
domains, such as the macromodeling of parameterized frequency responses [19, 20, 21], the
macromodeling of z-domain responses [22, 23, 24, 25, 26], and the modeling and analysis of
underground cables and overhead transmission lines [27]. It can be used in conjuction with various
passivity enforcement schemes [28, 29, 30, 31, 32, 33, 34].

In this paper, a generalization of the OVF approach is presented, which allows the identification
of a broadband transfer function based on transient input-output port responses [35]. The idea
is based on a time domain implementation of the VF technique, as was shown in [36]. This
paper illustrates that the advantages of orthonormalization and time domain identification can be
combined, leading to a novel procedure. It is found that this procedure is robust for a wider range of
initial pole specifications, and that the additional computational cost is negligible when compared
to the standard time domain VF approach. The effectiveness of the proposed technique is illustrated
by several numerical examples [37, 38].

2. MODEL REPRESENTATION

The transfer function R(s) is defined as the ratio of a numerator N(s) and denominator D(s)

R(s) =
N(s)
D(s)

=

P∑
p=1

cpΦp(s, a)

c̃0 +
P∑

p=1

c̃pΦp(s, a)

. (1)

Based on the measured or simulated frequency response {sk,H(sk)}Ks

k=0 of a microwave component,
the coefficients of the macromodel should be estimated in such a way that the least-squares distance
between the macromodel and the data is minimized [39].

arg min
cp,c̃p

Ks∑

k=0

∣∣∣∣
N(sk)
D(sk)

−H(sk)
∣∣∣∣
2

(2)

In the frequency domain OVF technique, it was shown that a numerically robust procedure
is obtained when the numerator and denominator are expanded in a basis of Muntz-Laguerre
orthonormal rational functions Φp(s, a) [40]. These basis functions are based on a prescribed set
of stable poles a = {−ap}P

p=1, which are real or occur in complex conjugate pairs. They are chosen
according to a heuristic scheme [7].

If −ap corresponds to a real pole, then the orthonormal basis functions Φp(s, a) are defined as
follows

Φp(s, a) =

√
2<e(ap)
s + ap




p−1∏

j=1

s− a∗j
s + aj


 , (3)

and a linear combination of two basis functions is formed if two poles−ap = −a∗p+1 form a complex
conjugate pair

Φp(s, a) =

√
2<e(ap)(s− |ap|)

(s + ap)(s + ap+1)

p−1∏

j=1

s− a∗j
s + aj

(4)

Φp+1(s, a) =

√
2<e(ap)(s + |ap|)

(s + ap)(s + ap+1)

p−1∏

j=1

s− a∗j
s + aj

(5)
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It can be shown that these basis functions are orthonormal with respect to the following inner product
(1 ≤ m,n ≤ P )

〈Φm(s), Φn(s)〉s =
1

2πi

∫

iR

Φm(s)Φ∗n(s)ds (6)

3. TRANSFER FUNCTION IDENTIFICATION

3.1. Levi’s Estimator

The goal of the frequency domain identification process, is to identify the coefficients cp and c̃p in (1)
such that the complex fitting error is minimized in a least-squares sense. Levi’s linear approximation
of this non-linear identification problem can be obtained by solving the following set of equations
for all the discrete frequencies {sk}Ks

k=0 [41].

arg min
cp,c̃p

Ks∑

k=0

|N(sk)−D(sk)H(sk)|2 (7)

It is known that Levi’s estimator is biased, and therefore it does not guarantee convergence to the
true solution of the identification problem [39]. In order to relieve the unbalanced weighting, a
Sanathanan-Koerner iteration is applied [11].

3.2. Sanathanan-Koerner Iteration

In successive iteration steps (v = 0, ..., V ), the model coefficients c
(v)
p and c̃

(v)
p can be updated

iteratively by minimizing the Sanathanan-Koerner cost function [11] that uses the previously
estimated denominator as an inverse weight to the least-squares equations. In the first step, (8)
reduces to (7) since D(−1)(s) = 1.

min
c
(v)
p ,c̃

(v)
p

Ks∑

k=0

∣∣∣∣
N (v)(sk)

D(v−1)(sk)
− D(v)(sk)H(sk)

D(v−1)(sk)

∣∣∣∣
2

(8)

In the classical Sanathanan-Koerner formulation, the coefficients c
(v)
p and c̃

(v)
p of N (v)(s) and

D(v)(s) are estimated, provided that each equation of the least squares matrix is given an explicit
frequency-dependent weighting 1/D(v−1)(s) as shown in (9) and (12). The VF and OVF algorithm
perform this weighting in an implicit way, by estimating the coefficients d

(v)
p of N (v)(s)/D(v−1)(s)

and the coefficients d̃
(v)
p of D(v)(s)/D(v−1)(s) instead, as shown in (11) and (14). It follows that

multiplication by an explicit frequency-dependent weighting using the initial poles is equivalent to
iterative pole relocation without weighting. Unstable poles are flipped into the left half plane by
inverting the sign of their real parts.

N (v)(s)
D(v−1)(s)

=
1

D(v−1)(s)

P∑
p=1

c(v)
p Φp (s, a) (9)

=

P∏
p=1

(s + ap)
P−1∏
p=1

(s + z(v)
p,n)

P∏
p=1

(s + z
(v−1)
p,d )

P∏
p=1

(s + ap)

(10)

=
P∑

p=1

d(v)
p Φp

(
s, z

(v−1)
d

)
(11)
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D(v)(s)
D(v−1)(s)

=
1

D(v−1)(s)

(
c̃
(v)
0 +

P∑
p=1

c̃(v)
p Φp (s, a)

)
(12)

=

P∏
p=1

(s + ap)
P∏

p=1

(s + z
(v)
p,d)

P∏
p=1

(s + z
(v−1)
p,d )

P∏
p=1

(s + ap)

(13)

= d̃
(v)
0 +

P∑
p=1

d̃(v)
p Φp

(
s, z

(v−1)
d

)
(14)

It was shown in [14] that implicit weighting often provides a better numerical conditioning if the
weighting factor 1/D(v−1)(s) has a large dynamic variation over the frequency range of interest.
The reason is that the conditioning usually improves in successive iterations as the poles are being
relocated to better positions. It is also noted that some additional improvements are obtained by
scaling each column of the least-squares equations to unity length as in [18]. The convergence of
this pole-relocation process is typically obtained in a few iterations provided that the initial set of
prescribed poles a is well-chosen [7].

3.3. Partial Fraction Representation

In the final iteration (v = V ), the transfer function can be defined as the ratio of (11) and (14)

R(T )(s) =

P∑
p=1

d(V )
p Φp

(
s, z

(V−1)
d

)

d̃
(V )
0 +

P∑
p=1

d̃(V )
p Φp

(
s, z

(V−1)
d

) (15)

It is clear that (15) can be simplified by cancelling out the relocated basis function poles z
(V−1)
d .

Therefore, it follows that the poles of the transfer function are essentially the zeros of (14) at iteration
step V . Based on the minimal state-space realization of D(V )(s)/D(V−1)(s),

sX(s) = AX(s) + BU(s) (16)
Y(s) = CX(s) + DU(s)

the poles z
(V )
d of the final transfer function R(V )(s) can then be found by solving the eigenvalues of

A− BD−1C [42]. More details about the construction of this realization are well described in [14].
Once the poles are known, the transfer function can easily be represented as a pole-residue model,
by solving the residues γp as a linear approximation problem.

min
γp

Ks∑

k=0

∣∣∣∣∣
P∑

p=1

γp

sk + z
(V )
p,d

−H(sk)

∣∣∣∣∣

2

(17)

Such rational function representation can easily be realized as a SPICE equivalent circuit [43, 44].
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4. TIME DOMAIN ALGORITHM

4.1. Time domain cost function

It is seen that the nonlinear cost function (2) can be written in terms of an input signal U(s) and the
corresponding output signal Y (s), leading to the following equivalent expression

arg min
cp,c̃p

Ks∑

k=0

∣∣∣∣
N(sk)
D(sk)

− Y (sk)
U(sk)

∣∣∣∣
2

(18)

= arg min
cp,c̃p

Ks∑

k=0

∣∣∣∣
N(sk)U(sk)
D(sk)U(sk)

− D(sk)Y (sk)
D(sk)U(sk)

∣∣∣∣
2

. (19)

The time domain identification algorithm minimizes a different nonlinear cost function [36]

arg min
cp,c̃p

Ks∑

k=0

∣∣∣∣
N(sk)
D(sk)

U(sk)− Y (sk)
∣∣∣∣
2

(20)

= arg min
cp,c̃p

Ks∑

k=0

∣∣∣∣
N(sk)U(sk)

D(sk)
− D(sk)Y (sk)

D(sk)

∣∣∣∣
2

. (21)

Nevertheless, it turns out that (21) is a good choice for time domain identification : if one transforms
it to the time domain using the inverse Laplace transformation

f(t) = L−1F (s) =
1

2πi

∫ σ+i∞

σ−i∞
F (s) estds (22)

then it becomes clear that this alternative cost function (21) minimizes the difference between the
output signal y(t) and the transient response of the model, due to the injected input signal u(t)

arg min
cp,c̃p

Kt∑

k=0

∣∣∣∣L−1

(
N(s)
D(s)

)
? u(tk)− y(tk)

∣∣∣∣
2

. (23)

It is noted that (21) is nonlinear in terms of the model coefficients, and therefore a similar
iterative procedure is used as in the frequency domain. In the first iteration step (v = 0), a linear
approximation of (21) is obtained by assuming that D(sk) = 1 in the denominator. In successive
iteration steps (v = 1, ..., V ), the previously estimated denominator is used as an inverse weight to
the least-squares equations. This leads to a linear cost function that is similar, but not equivalent, to
Levi’s (7) and Sanathanan-Koerner’s (8) cost function in the frequency domain, since the weighting
factor 1/U(sk) is omitted

min
d
(v)
p d̃

(v)
p

Ks∑

k=0

∣∣∣∣
N (v)(sk)U(sk)

D(v−1)(sk)
− D(v)(sk)Y (sk)

D(v−1)(sk)

∣∣∣∣
2

. (24)

It can easily be transformed to the time domain by applying the inverse Laplace transform to (24)

min
d
(v)
p d̃

(v)
p

Kt∑

k=0

∣∣∣∣L−1

(
N (v)(s)

D(v−1)(s)

)
? u(tk)− L−1

(
D(v)(s)

D(v−1)(s)

)
? y(tk)

∣∣∣∣
2

(25)

If φp(t, z
(v−1)
d ) denotes the Inverse Laplace Transform of Φp(s, z

(v−1)
d ), then (25) is equivalent to

min
d
(v)
p d̃

(v)
p

Kt∑

k=0

∣∣∣∣∣
P∑

p=1

d(v)
p

(
u ? φp

(
tk, z

(v−1)
d

))
−

P∑
p=1

d̃(v)
p

(
y ?φp

(
tk, z

(v−1)
d

))
− d̃

(v)
0 y (tk)

∣∣∣∣∣

2

(26)
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Table I. Maximum absolute fitting error of transient response in successive iterations (υ = 0.01)

Iteration VF OVF
1 0.0030 0.0030
2 0.0020 0.0020
3 0.0011 0.0011
4 0.0010 0.0010
5 0.0008 0.0008

The fact that no explicit expression is provided for these basis functions is of no consequence,
because (26) only needs the convolution of these functions with the input and output signals u(t)
and y(t). To compute the filtered signals u ? φp (t) or y ? φp(t), the state space realization of the
orthonormal basis functions Φp are simulated with input u(t) or y(t) (using MATLAB’s function
lsim) respectively. The application of (26) to the time domain samples {tk, u(tk), y(tk)}Kt

k=0 leads to
a set of equations which are linear in terms of the coefficients d

(v)
p and d̃

(v)
p . Using these coefficients

and the state-space realization of the basis functions φp (which is equivalent to the realization of Φp),
the transfer function (15) can be constructed [15]. Based on (15), the poles z

(T )
d of the frequency

domain transfer function are found by solving an eigenvalue problem. Once the poles are known,
the final transfer function is obtained by solving the coefficients γp as a linear problem.

min
γp

Kt∑

k=0

∣∣∣∣∣
P∑

p=1

γp

(
u ? e−z

(T )
p,d tk

)
− y(tk)

∣∣∣∣∣

2

(27)

4.2. Orthonormality considerations

In the time domain, the basis functions φp(t) are orthonormal with respect to the time domain inner
product (1 ≤ m,n ≤ P )

〈φm (t), φn (t)〉t =
∫ ∞

0

φm(t)φn(t)dt (28)

Since the Laplace transform is a unitary transformation from the time domain to the frequency
domain, this implies that

〈Lφm (t),Lφn (t)〉s = 〈φm (t), φn (t)〉t (29)

and
〈L−1Φm(s),L−1Φn(s)〉t = 〈Φm(s),Φn(s)〉s (30)

It is noted that the basis functions (3)-(5) are obtained by a Gram-Schmidt orthonormalization on
a set of partial fractions {1/(s + ap)}P

p=1, provided that the poles {−ap}P
p=1 are all stable (i.e.

located in the left half of the complex plane). Therefore, a Gram-Schmidt orthonormalization on
the set of exponentials {e−apt}P

p=1 in the time domain, will yield the inverse Laplace transform of
the frequency domain basis functions (3)-(5). It follows that the relevant orthonormal time domain
functions φp(t) are obtained by applying the inverse Laplace transform to Φp(s), as in (26) [45].

5. EXAMPLE : POWER BUS STRUCTURE

The time domain identification algorithm is applied to calculate the transfer function of a passive
power bus structure [46], based on the transient input and output signal as partially shown in Figure
1. The system is excited with a Gaussian pulse, which is centered at t = 0.6 ns, with a width of 0.2
ns and a height of 1 in normalized units. Figure 2 shows the frequency response as a parametric
curve in function of the frequency variable s (Smith Chart).
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0 5 10 15 20 25 30
−0.05

0

0.05

0.1

Time [ns]

 

 

Output signal y(t)
Input signal u(t)

Figure 1. Power bus : Input and output signal of data over interval [0 ns - 30 ns]

Figure 2. Power bus : Complex frequency response shown in a Smith Chart.

5.1. Numerical results

A suitable set of 100 starting poles is chosen as proposed in [14]

− ap = −αp + βpi,−ap+1 = −αp − βpi

αp = υβmax (31)

where the imaginary parts βp are linearly distributed over the frequency range [0 − 3 GHz], and
υ = 0.01. The parameter υ is chosen sufficiently small such that the initial poles result in a well-
conditioned least-squares matrix. The distribution of the poles over the entire frequency range
reduces the probability that poles must be relocated over long distances. It is clear that other
prescribed pole-location schemes are also possible, however they often require more pole-relocation
iterations.
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Table II. Maximum absolute fitting error of transient response in successive iterations (υ = 0.05)

Iteration VF OVF
1 0.0120 0.0032
2 0.0035 0.0021
3 0.0022 0.0010
4 0.0013 0.0011
5 0.0009 0.0008

0 5 10 15 20 25 30
−0.05

0

0.05

0.1

Time [ns]

Output signal − Data
Output signal − OVF

Figure 3. Power bus : Transient response of data and model over interval [0 ns - 30 ns].

Using the set of prescribed poles (31), the weighted linear cost function (25) is solved iteratively,
and updated estimates of the model coefficients are obtained. The poles, which define the time
domain basis functions, are calculated in each iteration by solving an eigenvalue problem that is
based on the estimated coefficients d̃

(v)
p . This process is repeated until the poles are converged. In

the final iteration, the time domain basis functions are based on the converged set of relocated poles,
and the overall transfer function is calculated by minimizing the cost function (27). Table I shows
the evolution of the maximum absolute fitting error in successive iteration steps for the time domain
VF and OVF algorithms, and it is found that both methods are reliable and lead to satisfactory results
in about 5 iterations.

Due to the robustness of the orthonormal basis functions, the time domain OVF technique is
less sensitive to the initial pole specification than the time domain VF technique presented in [36].
As an example, the real part of the basis function poles is chosen to be non-negligible such that
υ = 0.05, and the algorithm is allowed to perform only 1 single iteration. Figure 3 shows that
the OVF technique provides a highly accurate approximation of the time domain response, since
there is no visible difference between the data and the transient response of the model. As can be
seen from Figure 4, the maximal absolute error corresponds to 0.0032. If the same calculations are
performed using the VF approach, then the maximal absolute error corresponds to 0.0120, which
results in significant time domain discrepancies. As a means of validation, the OVF-calculated
transfer function is simulated in the frequency domain and compared to the reference spectral
response. Figures 5 and 6 confirm that an overall good approximation is obtained, both in terms
of the magnitude and the phase. Table II illustrates that both approaches eventually converge to
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Figure 4. Power bus : Abs. fitting error over interval [0 ns - 30 ns] : 1 iter, υ = 0.05
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Figure 5. Power bus : Magnitude response of model and reference data

better, comparable results if additional iterations are performed. This results from the fact that the
initial poles, (which are selected in a non-optimal way) lead to a poor numerical conditioning in the
first iterations. As more iterations are performed, the poles are relocated to a better position, and
the accuracy of the fitting model improves gradually. Figure 7 shows the evolution of the maximum
absolute fitting error in a single iteration, if the number of starting poles is varied between 50 and 150
using υ = 0.05, and it is seen that the improvement holds for an arbitrary number of poles. Figure 8
shows the same results using υ = 0.01, and it is found that both algorithms give comparable results.
It is seen that OVF is still somewhat more accurate if the number of poles is chosen very high, but
this difference has little importance, since it is only observed if the number of poles is chosen much
higher than the “correct” model order. It can be resolved by choosing υ = 0.001 a bit smaller than
the recommended value, in which case both algorithms give a comparable result, as shown in Figure
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Figure 6. Power bus : Phase response of model and reference data
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Figure 7. Power bus : Maximum absolute fitting error vs. number of starting poles in a single iteration
(υ = 0.05)

9. These figures show that the choice of starting poles is of crucial importance to ensure accuracy
of the results in the first iterations. In general, it is found that the OVF approach is numerically
more robust towards the initial pole specification and leads to either comparable or better results,
depending on the choice of υ.

6. EXAMPLE : ELLIPTIC LOWPASS FILTER

In this example, the same identification procedure is applied to calculate a macromodel of an elliptic
lowpass filter. A commercial full-wave electromagnetic simulator [47] is used to characterize a state-
space model of the filter over the frequency range of interest [0 − 3 GHz]. This filter is excited with
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Figure 8. Power bus : Maximum absolute fitting error vs. number of starting poles in a single iteration
(υ = 0.01)
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Figure 9. Power bus : Maximum absolute fitting error vs. number of starting poles in a single iteration
(υ = 0.001)

a Gaussian pulse that is centered at t = 0.6 ns, with a width of 0.2 ns and a height of 1 in normalized
units. Based on the output signal of the filter, a 16-pole time domain macromodel is computed by
the proposed OVF algorithm. The starting poles are chosen according to the heuristic scheme (31)
with υ = 0.01, and the poles are relocated in 3 successive iteration steps. Figure 10 compares the
transient response of the filter (solid line) and the response of the OVF model (dotted) up to 100 ns.
It is clear that a good agreement is observed. Also, the frequency response of the filter is compared
to the frequency response of the OVF model, and it is seen from Figures 11 and 12 that an excellent
agreement is obtained.

As an additional validation test, the frequency response of the filter is subjected to the frequency
domain OVF algorithm as reported in [15], and a 16-pole frequency domain macromodel is
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Figure 10. Lowpass filter : Output signal of data over interval [0 ns - 100 ns]
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Figure 11. Lowpass filter : Frequency response of model and reference data

calculated. Figure 13 visualizes the converged poles of the time domain OVF macromodel (×)
and the converged poles of the frequency domain OVF macromodel (◦), and it is seen that both
algorithms relocate the starting poles to the same position. This confirms that the time domain
identification is reliable and robust.

7. CONCLUSIONS

A time domain generalization of the Orthonormal Vector Fitting technique is proposed for accurate
broadband macromodeling from transient port responses. It combines the use of a Sanathanan-
Koerner iteration and an orthonormal set of basis functions to improve the numerical conditioning.
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Figure 12. Lowpass filter : Phase response of model and reference data
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Figure 13. Lowpass filter : Transfer function poles of time domain and frequency domain model

It is shown that the method is less sensitive to the initial pole specification when compared to
the standard time domain Vector Fitting technique. Several examples illustrate the robustness and
accuracy of the technique.
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