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Abstract

The Joseph ideal in the universal enveloping algebra U(so(m)) is the annihilator ideal of
the so(m)-representation on the harmonic functions on R™~2. The Joseph ideal for sp(2n)
is the annihilator ideal of the Segal-Shale-Weil (metaplectic) representation. Both ideals
can be constructed in a unified way from a quadratic relation in the tensor algebra ®g for
g equal to so(m) or sp(2n). In this paper we construct two analogous ideals in ®g and
U(g) for g the orthosymplectic Lie superalgebra osp(m|2n) = spo(2n|m) and prove that they
have unique characterizations that naturally extend the classical case. Then we show that
these two ideals are the annihilator ideals of respectively the osp(m|2n)-representation on
the spherical harmonics on R™2?" and a generalization of the metaplectic representation
to spo(2n|m). This proves that these ideals are reasonable candidates to establish the theory
of Joseph-like ideals for Lie superalgebras. We also discuss the relation between the Joseph
ideal of osp(m|2n) and the algebra of symmetries of the super conformal Laplace operator,
regarded as an intertwining operator between principal series representations for osp(m|2n).
As a side result we obtain the proof of a conjecture of M. Eastwood about the Cartan product
of irreducible representations of semisimple Lie algebras made in [Bull. Belg. Math. Soc.
Simon Steven 11 (2004), 641-651].

MSC 2010 : 17B35, 16532, 58C50
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1 Introduction

Harmonic analysis on manifolds allows to connect and relate various topics in geometrical ana-
lysis, algebra and representation theory. The present article attempts to apply this principle in
describing and characterizing various algebraic structures emerging in harmonic analysis of an
intertwinning operator for orthosymplectic Lie superalgebras, called the super Laplace operator.
In particular, we study the annihilator ideal of the representation on its kernel on a big cell
in the supersphere " 2127 regarded as a super homogeneous space for osp(m|2n). We also
consider the question of an algebraic structure on the space of differential operators preserving
the representation in question. This is done by constructing a Joseph-like ideal for asp(m|2n),
generalizing the Joseph ideal of so(m), appearing in conformal geometry. In doing so, we also
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obtain a second Joseph-like ideal in this Lie superalgebra, which is a generalization of the Joseph
ideal for sp(2n).

The Joseph ideal for a simple complex Lie algebra g, not of type A, is a completely prime
primitive two-sided ideal in the universal enveloping algebra U(g). It can be characterized in
several ways, see [2, 15, 16, 20, 26]. In particular it is the unique completely prime two-sided ideal
such that the associated variety is the closure of the minimal nilpotent coadjoint orbit. It is also
the annihilator ideal of the unitarizable representation of g which has minimal Gelfand-Kirillov
dimension, known as the minimal representation.

The two prominent examples are the Joseph ideals for so(m) and sp(2n). For the orthogonal
case the corresponding minimal representation is the one realized by the conformal algebra
acting on harmonic functions on S™~2, or its flat submanifold R™~2, see e.g. [1, 20, 23] for
explicit descriptions in several signatures. This ideal subsequently plays an essential role in the
description of the symmetries of the Laplace operator, for which its kernel is exactly this minimal
representation, see [11]. The minimal representation for sp(2n) is known as the metaplectic
representation, Segal-Shale-Weil representation or the symplectic spinors, see [18, 24, 31]. This
is a representation of sp(2n) on functions on R".

In [12], based on abstract considerations in [2], a 1-parameter family of nonhomogeneous
quadratic ideals in U(g) for classical Lie algebras g equal to so(m), sp(2n) and sl(n) was stud-
ied in the framework of deformation theory. A certain special tensor emerging in the process
established finite codimension of the ideal except for one special value of the parameter. For
this special value, the ideal is identical to the Joseph ideal for so(m) and sp(2n), which gave
another unique characterization of the Joseph ideal. One of the motivations for the work in [12]
was the Poincaré-Birkhoff-Witt theorem in [2, 32] for quadratic Koszul algebras. There, the
special tensor responsible for deformation theory of this class of algebras, was identified as an
obstruction class in a Hochschild cohomology.

For a classical simple Lie superalgebra g, the universal enveloping algebra U(g) never contains
a completely prime primitive ideal, different from the augmentation ideal, unless g is isomorphic
to the orthosymplectic Lie superalgebra osp(1|2n), see [28]. In spite of the geometric origin of
osp(m|2n) as a conformal Lie superalgebra on R™2127_the previous argument implies that there
is no direct counterpart of the Joseph ideal of classical Lie algebras. So one has to relax the
demanded properties. In particular it follows that not every characterization of the classical case
can be extended to the category of superalgebras. As we will show, the approach of [12] does
extend very naturally to the Lie superalgebra osp(m|2n). As a side result we also prove that the
obtained ideals are also uniquely characterized by an analogue of the elegant characterization of
the Joseph ideal in [16].

The Lie superalgebra osp(m|2n) has two preferred positive root systems, one is logically
identified with the osp(m|2n)-interpretation and the other with the spo(2n|m)-interpretation of
this Lie superalgebra, from now on denoted by g. Corresponding to these two choices a different
application of the procedure in [12] (or the characterization in [16]) emerges, which leads to two
different ideals in the universal enveloping algebra U(g). These two ideals can be identified with
generalizations of the Joseph ideals of so(m) and sp(2n).

In [5, 8] the super Laplace operator on R? 27 and its kernel were studied. In the current paper
we prove that for m = p + 2, this kernel constitutes an osp(m|2n)-representation, for which the
annihilator ideal in the universal enveloping algebra is exactly the first Joseph-like ideal we
constructed, if m — 2n > 2. In [6, 33] a spinor-representation for spo(2n|m) was studied which
generalizes the metaplectic representation of sp(2n) and the spinor representation of so(m).
In particular it was proven in [6] that these spinor spaces are the unique completely pointed



spo(2n|m)-modules. We will also prove that the corresponding annihilator ideal is exactly the
second Joseph-like ideal.

Because these two ideals and their corresponding representations possess these remarkable
similarities with the Joseph ideals and minimal representations of so(m) and sp(2n), we believe
this is a good starting point to study the general concept of Joseph ideals and minimal repre-
sentations for Lie superalgebras. In particular it would also be of interest to construct general
theories as in [1, 2, 18, 26] for Lie superalgebras. For instance there seems to exist an interesting
link with (co)adjoint orbits, see [29]. As will become apparent in the current paper, the repre-
sentations corresponding to the Joseph ideal for Lie superalgebras can not always be expected
to be unitarizable. This implies that also requirements alternative to the unitarity condition
will need to be considered for minimal representations of Lie superalgebras. We hope that our
results help to formulate the appropriate properties of Joseph ideals.

The structure of the article looks as follows. In Section 2 we recall all conventions used in
the subsequent sections. Being geometrically motivated, our exposition follows the tensor or
abstract index notation.

In Section 3 we focus on the description of the second tensor power of the adjoint repre-
sentation of the Lie superalgebra osp(m|2n). Except for M = m — 2n equal to 0, 1 or 2, this
tensor product is completely reducible. We identify the irreducible components as highest weight
representations for both positive root systems, and construct projectors on these irreducibles.
The two root systems we use, are the ones that only contain one isotropic root in their Dynkin
diagram. There is a corresponding choice of which submodule in tensor products has to be iden-
tified as the Cartan product. If the ordering is introduced in which the roots of so(m) are greater
than those of sp(2n), as in [5, 6], the Cartan product resembles the one inside so(m) ® so(m).
If the standard choice of positive roots is made, as in [14, 21], the Cartan product resembles the
one in sp(2n) ® sp(2n). Therefore, when the standard root system is considered we will use the
notation spo(2n|m) rather than osp(m|2n).

In Section 4 we investigate the Cartan product of the tensor powers of irreducible repre-
sentations of a semisimple Lie (super)algebra. We propose a general statement which we prove
for the natural representation of osp(m|2n), the adjoint representation of osp(m|2n), all star-
representations of semisimple Lie superalgebras (see [30]) and all representations of complex
semisimple Lie algebras. As a side result we obtain the proof of a conjecture made in [10].

In Sections 5 and 6 we define and study the two Joseph-like ideals. Though in the current
article (contrary to [2, 32]) we shall not study Poincaré-Birkhoff-Witt theorems for quadratic
superalgebras of Koszul type, we construct two elements in the tensor algebra of the orthosym-
plectic Lie superalgebra which resemble the ones in [12]. They are given in Lemma 9 and Lemma
12. The reason and necessity for the appearance of two, rather than one, such elements comes
from the fact that the notion of the Cartan product of g® g depends on the positive root system
used. Based on these tensors, we compute the special values in two l-parameter families of
nonhomogeneous quadratic ideals in the tensor algebra ®osp(m|2n) or the universal envelop-
ing algebra U(osp(m|2n)), for which the ideals are of infinite codimension, in Theorem 7 and
Theorem 13. These two obtained ideals will be referred to as the Joseph ideal of osp(m/|2n)
and spo(2n|m) respectively. Furthermore we extend the unique characterization of the classical
Joseph ideal, obtained in [16], to these two ideals in Theorem 8 and Theorem 14.

The first ideal is consequently identified with the annihilator ideal for the representation on
the space of superharmonic functions, which is the content of Subsection 5.2. This generalizes
the appearance of the Joseph ideal of so(m) as the annihilator ideal of the conformal represen-
tation on harmonic functions, see e.g. [1, 11, 20, 23]. In Subsection 6.2, the super metaplectic



representation of [6, 33] is considered. We show that the annihilator ideal of this representation
is given by the second type of Joseph-like ideal we constructed. The main results are stated in
Theorem 11 and Theorem 16.

Inspired by classical results on the symmetries of the Laplace operator, see [11, 17|, we
touch analogous questions in the last Section 7. It follows that the quotient of the univer-
sal enveloping algebra of osp(m|2n) with respect to the Joseph-like ideal forms an algebra of
symmetries. This also leads to a connection between symmetries and superconformal Killing
tensor fields. However, orthosymplectic Lie superalgebras suffer from the lack of existence of
generalized Bernstein-Gelfand-Gelfand resolutions for finite dimensional modules. This implies
that completeness of the constructed symmetries does not follow so we can not draw sharper
conclusions at this stage.

It is perhaps worth remarking that the present article should be regarded not only as a
result in Lie theory and representation theory of Lie superalgebras, but also as a germ of general
strategy to extend the framework of parabolic geometry ([3]) or ambient metric construction
([13]) to the realm of curved differentiable supermanifolds with a geometrical (e.g., a conformal)
structure. We hope to develop the present results further in this direction.

2 Preliminaries and Conventions

In this section we introduce a basic collection of conventions with emphasis on the tensor notation
approach.

All throughout the paper, the natural numbers are assumed to include 0, N ={0,1,2,---}.

The standard basis of the graded complex vector space V = C™2n consists of the vectors ey
for 1 < a <m+ 2n, where e, = (0,---,0,1,0,---,0) with 1 at the a-th position. The elements
eq with 1 < a < m span Vp, and e, with m < a < m + 2n span V;. For any Zs-graded vector
space V =V @ Vi, a vector u € VU V] is called homogeneous and in this case we define |u| = «
for u € V,,, a € Zs. The function

[]:{1,2,--- ,m+2n} = Zy, [a] =0if a <m and [a] =1 otherwise,
allows to write |e,| = [a] for all a if V' = C™?". In this paper, the summation Y, will always
stand for Y72

The endomorphism ring of C™2" is End((Cm|2”), as an associative algebra this is isomorphic
to End(C™t2"), it is a superalgebra with grading induced from C™?". The graded Lie bracket
on End(C™*2") is given by [A,B] = Ao B — (—=1)I4IBIB o A for homogeneous elements A, B
and extended by linearity, this makes the vector space End((Cm|2”) into a Lie superalgebra and
then it is denoted by gl(m|2n) = gl(m|2n;C). To an element A € gl(m|2n;C) we associate a
tensor in C™?" @ (C™I2")* by

Aep = Z A%eq, or

a

a
v ZAabvb, for v = Zvaea e Ccmin, (1)
b

To define the subalgebra osp(m|2n) = osp(m|2n;C) C gl(m|2n;C), we introduce an orthosym-
plectic metric g = gq € CMH2M)x(M+2n) © This metric is even, i.e. g = 0 if [a] + [b] = 1,
and super symmetric, gy, = (—1)[“”b]gab = (—1)[‘1] gap- The metric allows to raise and lower
tensor indices by V, = >, gapV? and V¢ = Y a9V, with g™ = g,. When considering the

4



orthosymplectic Lie superalgebra osp(m|2n) we will always assume m > 4 and n > 1, as in the
classical case for so(m) and sp(2n), see [1, 12, 20].

The orthosymplectic Lie superalgebra can be defined in several ways as the algebra preserving
an inner product or element in the tensor space, we restrict to the subsequent definition.

Definition 1. The Lie superalgebra osp(m|2n) is given by endomorphisms A € End(C™?")
satisfying

Z (gacAcb + (_1)[b]([a]+[c])Aca9cb) =0.

This is equivalent to Ay = —(—1)l A, or A% = —(—1)allb] gba,

This means that, as a graded vector space, osp(m|2n) is equivalent to the super anti-
symmetric tensors in C™2" @ C™?" (or equivalently in ((Cm|2”)* ® ((Cm|2”)*). The trace of
a tensor is defined as ), T,* =) ab gabTba and one can calculate

 ga=m—2n=M and Y A" =0 for A€ osp(m|2n). (2)
a a

The integer M = m — 2n will play an important role in the main results of the article. The Lie
superbracket of A, B € osp(m/|2n), C = [A, B], can be written in tensorial notation as

Cab _ Z (Aachb o (_1)[a}[b]AbCBca) _ Z (AaCBcb + (_1)[a}([b]+[c})Achac) (3)

C

We use a renormalization of the Killing form, which is not zero if M = 2, (the case D(n +
1ln) = osp(2n + 2|2n)), contrary to the actual Killing form.

Lemma 1. The Killing bilinear form on osp(m|2n) in the tensorial notation is proportional to
the form

UV) = > UaV™
a,b

for U,V € osp(m|2n).

Proof. The proposed bilinear form is invariant, ([U, W|,V) = (U, [W, V]), as follows from (3)
and therefore it is proportional to the Killing form, see Chapter 23 in [14]. O

As in [5, 6] we will use two different systems of simple roots. These are the two systems
that contain only one isotropic simple root. We need to make a distinction between m = 2d
and m = 2d + 1. All roots for D(d|n) = osp(2d|2n) are given by xe; £ ¢, for 1 < j < k < d,
+o; £ for 1 <i <l <nand +e £9; for 1 <j<dand 1l <i<n. The Lie superalgebra
B(d|n) = osp(2d + 1|2n) has in addition the roots +e; and +4;. The d’s correspond to the roots
for sp(2n) and the €’s to the roots for so(m).

For the distinguished standard root system, see [14, 21], the simple positive roots are given
by

01— 02,7+ ,0p—1 — On,0p — €1,€1 — €2, , €41 — €d; €4, (4)
51_527"' 757171_571’571_61761_627"' y€Ed—1 — €4, €4—1 T €4



for B(d|n) = osp(2d + 1|2n) and D(d|n) = osp(2d|2n) respectively.
For the non-standard one, see [5, 6], the simple positive roots are given by

€1 — €2, 76d—176d76d761561 7527"' 561171 75n76n (5)
€1 — €2, ,€d—1 — €d,€4 — 01,01 — 02, ++ ,0p—1 — On, 20y,

for B(d|n) = osp(2d + 1]2n) and D(d|n) = osp(2d|2n) respectively. When it is not mentioned
explicitly we use the second root system.

An irreducible highest weight representation for osp(m/|2n) will be denoted by LTB" if it
has highest weight A\ with respect to the standard root system. The same representation has a
different highest weight p with respect to the non-standard root system, and will be denoted
by K ,T 2" The highest weights p respectively A can be calculated elegantly from each other
through the technique of odd reflections, see [22]. The link between the two weights for this
specific case is given explicitly in Theorem 3 of [6] for all irreducible finite dimensional highest
weight representations.

We also could have defined the orthosymplectic Lie superalgebra by a natural action on
C?"Im rather than through equation (1), therefore with sp(2n) acting on the even part and
s0(m) acting on the odd part of the super vector space. This leads to the Lie superalgebra
spo(2n|m), corresponding to super symmetric tensors in C2lm @ C2nm However, as a Lie
superalgebra spo(2n|m) is isomorphic to osp(m|2n). We will use the notation spo(2n|m) when
we use the standard root system and osp(m|2n) for the non-standard one, since it will become
apparent that this is the logical association of root systems and fundamental representations,
e.g. in Remark 1. The fundamental representations then become

(Cm|2n ~ Kem|2n Lgn|2n o (C2n|m
1 1

For a Lie superalgebra g = g5 @ g7, the tensor product of two g-modules ¢/ and V, U ® V is
a g-module with action given by

X -UeV) = (X-U)oV+(-1))¥Vyex.v),

for X € g;, U € U; with i,j € Zo and V € V. It is a general fact that the tensor power U ® U
of a g-representation U for a Lie superalgebra g decomposes into the super symmetric part

USU=span{X @Y + (-1)XIYly @ X| XY e U; for i =0,T}
and super anti-symmetric part
UNU=span{X @Y — (—1)* VY @ X| XY e f; for i = 0,1},

which form two subrepresentations and Y QU =UOU & U NU.

One aim of the present paper is the characterization and properties of an important represen-
tation of 0sp(m|2n), carried by harmonic functions on the Riemannian superspace (R™~22% h;).
Therefore we need to repeat some facts related to harmonic analysis on RPI?" which can be found
in [5, 8]. For a general introduction to supergeometry, see [9]. In this paper we will always as-
sume p > 2. The supervector x is defined as x = (X1, -+, X;12,), where the first p variables are
ordinary commuting ones and the last 2n are anti-commuting variables generating the Grass-
mann algebra Ag,. The commutation relations for both the commuting and the Grassmann
variables are captured in the relation

X X; = (1)l x; x;,



where [-] is now understood to be the same function as before but with m replaced by p. This
defines the polynomial algebra P generated by the variables X;. For an orthosymplectic metric
h € RPT20)x(p+2n) the super Laplace operator, norm squared and the Euler operator are defined
by

p+2n p+2n p+2n
A= Z anhjkana R2 = Z thijk and E= Z Xjan. (6)
J,k=1 J,k=1 7=1

The operators A/2, R?/2 and E + (p — 2n)/2 then generate the Lie algebra s(2). The spherical
harmonics on RPI?? of degree k are defined as

H, = {PeP|AP =0and EP = kP}.

In this paper we consider H = @j-, Hi as an 0sp(p + 2|2n) representation, but first we repeat
some properties of Hy as an osp(p|2n)-representation, obtained in [5]. The algebra osp(p|2n)
has a natural realization as differential operators on RP12". This will be written down explicitly
later but is an immediate consequence of the fact that

o
Pi=0C"P =Pt crkn,
k=0

Moreover, R? corresponds to the tensor in ®2CPI?" given by the metric. The harmonic polyno-
mials are then exactly the traceless tensors. Theorem 5.1 and 6.1 in [5] lead to the following
result.

Theorem 1. If p —2n & —2N or p — 2n = —21 with k not in the interval [l + 2,2l + 2], Hy, is

an irreducible 0sp(p|2n) representation, isomorphic to K,fgn
Ifp—2n= -2l and I +2 < k < 21+ 2 holds, Hy, is indecomposable as an osp(p|2n)-module.

It has one submodule RQk_Ql_2H2+gl_k = Kélj—gl—k)el and the quotient Hk/RQk_21_2H2+gl_k 18

isomorphic to Kﬂ?n
We recall some further results on ®CP2" obtained in [5]. If p—2n ¢ —2N, the decomposition
Qk(cp\Qn ~ ®gcp|2n & ®k—2(cp\2n (7)

holds with H; = @8@"2” the traceless tensors. These traceless tensors can also be written as
©*CPI2" which denotes the Cartan product, see discussions in Sections 3 and 4. The embedding
ek=2Crl2n y @kCPI2n i given by tensorial multiplication with the metric tensor in ®2CPI2?
followed by supersymmetrization. In particular Hj, = @FCPI2" / @F2 CPI2n holds.

As already follows from Theorem 1, when p—2n € —2N these properties do not hold for every
degree k. As mentioned above the representation H;, C ©FCPI2" of traceless tensors is not always
irreducible (but still always indecomposable). The quotient representation ekcrizn / k-2 crizn
is reducible for the same values Hy, is, see Theorem 5.2 in [5]. But, for these values it also holds
that H, is not isomorphic as an osp(p|2n)-representation to @FCPI?*/ @*F=2 CPI2" In fact the
representation ®@FCPI?" / @F=2 CPI2" is the dual of Hy,

Summarizing, in case p — 2n € —2N, the notion of traceless symmetric tensors does not
necessarily correspond to the quotient of symmetric tensors with respect to symmetric tensors
containing a metric term.



3 The second tensor power of the adjoint representation

The adjoint action of osp(m|2n) on itself is given by the Lie superbracket. Since osp(m|2n) is
a simple Lie superalgebra, the adjoint representation is irreducible and it has highest weight
€1+ €2:

~ 2 2
osp(m|2n) = KZLL:; = ngll "

In this section we will study the second tensor power of this representation. The main result is
given below.

Theorem 2. Consider g = osp(m|2n;C), with m — 2n & {0,1,2}. The second tensor power of
the adjoint representation decomposes into irreducible pieces as

~ m|2n m|2n m|2n m|2n m|2n m|2n
g ® g - K2€1+262 D K2€1+€2+€3 S5 K261 D K61+62+63+64 D K61+62 ) KO

~ m|2n m|2n m|2n m|2n m|2n m|2n

- L251+252 b L351+52 ® L51+52 ® L451 52 L251 S LO )

where the identical representations are underneath each other. The supersymmetric tensor power
g ® g corresponds to the first, third, fourth and sizth representation.

In this theorem we assumed that m > 7 (when considering the second root system), the cor-
responding result for 5 < m < 7 can be obtained by replacing the weights by the corresponding
ones in the subsequent Lemma 2.

The remainder of this section is dedicated to proving this theorem and studying the cases
where the second tensor power is not completely reducible, for M = m — 2n = 0,1,2. While
proving this, we also obtain useful information on and tensorial expressions for the submodules
of g®g.

Lemma 2. For g = osp(m|2n), the g-module g ® g has at most 6 highest weight vectors, the 6
possible weights are

461, 301 + 02, 201 + 262, 261, 61+62, 0

2¢1 + 269, 2¢1+e€3+e€3, 2€1, €1+es+ezteq, € +6, 0
2¢1 +2€9, 2€1+ex+e€3, 2¢, € +ext+e3+1, €1 +e€, 0
2¢1 + 2¢€9, 2€1 + €3+ 61, 261, €1+e+201, €1+ €9, 0.

respectively for the standard root system, the non-standard root system if m > 7, m = 6,7 or
m = 5.

Proof. We give the proof explicitly for the non-standard root system and m > 7, the other cases
being completely analogous. As in the classical case any highest weight vector v (of a fixed
weight) in the tensor product is of the form

U+ = Xe1+62 ®A+"'+Z®X€1+€2’

for A, Z nonzero elements of g of a certain weight. The relation X,v™ = 0 for all positive simple
roots « in equation (5) leads to the condition

Xejte, @ [Xoo Al 4+ = 0.



In order for this to hold, there is either another vector B € g such that [X,, B] = X¢ e, and
v is of the form

vt = Xejte ®A=B®R[Xo, Al + -+ Z® Xey ey

or alternatively the condition [X,, A] = 0 must hold. This implies that [X,, A] = 0 for o #
€2 — €3. This narrows the possibilities for A down to X¢, +e;, Xe,tess Xej—ens Xeg+eq, the unique
element H of the Cartan subalgebra that satisfies [X;, H] = 0 for j # 2 with a;, j = 1,--- ,m+
2n the positive simple roots in equation (5), X_ _., and X_,t,. The last one would lead to
a highest weight €; + €3 which is impossible. O

Lemma 3. For m # 2n, the tensor product representation of the fundamental representation
Cmi2n K?fpn = ng:|2n of osp(m|2n) with itself has the following decomposition into irreducible
representations

(Cm|2n Q Cm\2n ~ Kgd?n ® Kﬁr?@n _ Lm|2n ® Lm|2n

o1 o1
~ m|2n m|2n m|2n
= KQel D K61+61 D KO
~ m|2n m|2n m|2n
= L51+52 ©® L251 D LO .

The representations above each other in the last two lines are in correspondence and C™2" @
Cmlzn o JeEn g femizn g g @mizn p omlzn o femin

€1t+€2”
Proof. The super anti-symmetric part C"2* AC™2" (the tensors satisfying A% = —(—1)lallt] 4ba)
is clearly the adjoint representation because of equation (3). This is an irreducible representation
with highest weight €; + e2. If m # 2n, the super symmetric part C™2" © C™2" decomposes
as K" Ky 2 as has been proven in [5], or follows from Equation (7). The corresponding

2€q1

highest weights for the standard root system can then be obtained from Theorem 3 in [6]. [

As was mentioned at the end of Section 2, the trivial representation Kgl 2 inside €120 ®
C™2n ig given by the tensor ¢, If M = m — 2n # 0, the two other components correspond
to traceless tensors. For the super skew tensors, this is a consequence of equation (2). The
statement for the super symmetric tensors follows from the fact that they can be written as

Ac° Ac°
Aab _ Aab _ frc ab ¢ _ab

if M # 0.

Remark 1. Lemma 3 already shows that the notion of Cartan product depends on the choice of

m|2n _ Km|2n

root system. For the standard root system, the Cartan product is Lys; e1+ep- Lhis actually

is inside the super anti-symmetric part of C"2" @ C™?" which would be very unnatural for a
Cartan product. However, Lg}'lzn is inside the super symmetric part of C2"™ @ C2"™  which

corresponds to the spo(2n|m)-interpretation. The Cartan product with respect to the second
root system is Kgfn = LQE?Q and is inside the super symmetric part. Therefore we have a
different Cartan product as an spo(2n|m)-representation and as an osp(m|2n)-representation.

Lemma 4. There is an injective homomorphism ¢ from C™2" @ C™2" jnto g ® g, with g =
osp(m|2n). This implies that for m — 2n # 0,
Ky o K cgog  and KM cang

€1+€2

hold.



Proof. Firstly, we construct the osp(m|2n)-module homomorphism

b1 : ®2Cm|2n N ®4(Cm|2n .
¢1 (X) -7 Tabcd _ gchad.

The embedding of C™2" @ C™2" in g® g is then given by the composition of ¢ with g-invariant
projection @*C™I2" — ((Cm|2" A Cmp”) ® ((Cm|2" A Cmp”) >~ g® g. So the embedding is given
by ¢(X) =V, with

1
Vabcd _ Z <gchad _ (_1)[(1} [b]gachd _ (_1)[0][d]gbanc + (_1)[a][b]+[c][d]gadec> '

It is clear that ¢ maps C™2" A C™2" into g A g and C™?" © C™?" into g ® g. The rest of the
lemma then follows immediately from Lemma 3. O

|2

In particular, the realization of the trivial representation Kg1 " inside g ® g is given by the

tensor

1
Vabcd _ 5 (gbcgad _ (_1)[a][b]gacgbd) , (8)

called the total trace part of g ® g. When the projection of ®g onto U(g) is considered this
corresponds to the quadratic Casimir operator.

Lemma 5. If M = m — 2n ¢ {1,2}, the second tensor power of the adjoint representation of
g = osp(m|2n) has the following g-module decomposition:

gRg (Cm|2n ® (Cm|2n ® .A,
with A the tensors T in g ® g that satisfy the relation > T = 0.

Proof. We denote the trace map by

pig@g—>CMECT p(T) =Y  with Y= 1%
b

This clearly is a g-module morphism. The composition of p with ¢ from Lemma 4 is denoted
by x =¢op:g®g— g®g. The two spaces Im(x) and Ker(x) are subrepresentations of g ® g.

It is clear that Ker(x) = Ker(p) = A holds. Next we prove that Im(x) = Im(¢) holds. This
is a consequence of the fact that p is surjective, which we prove by calculating the composition
podon Cm|2n ® (Cm\2n:

1
X = ((M —2)X® 4 g™y X;‘) : (9)

which follows from equation (2). This implies that for M = m — 2n ¢ {0, 2}, K;ZF” @ KZLE?Z C

Im(p). Substituting ¢? for X in equation (9) implies that the total trace part is mapped
under p o ¢ to

a ]' a
g o S =1, (10

10



so for M = m —2n ¢ {0,1}, Kgnlzn C Im(p), which leads to C™P?" @ C™?" = Im(p) provided
m—2n ¢{0,1,2}.

The case left is M = 0. The surjectivity of mapping (9) follows from injectivity. This
injectivity can be checked immediately for traceless tensors. If the mapping would be zero for a
tensor which is not traceless than in particular the trace of the right-hand side of equation (9)
should be zero, which is never the case for such a tensor if M = 0.

The calculations above also imply that Ker(x)NIm(yx) = Ker(p)NIm(¢) = {0} and therefore
g ® g =Im(x)®Ker(x), which completes the proof. O

Now we get to the proof of Theorem 2.

Proof. Consider the subrepresentation A C g ® g of traceless tensors from Lemma 5. First we
remark that AN (g A g) # 0, which is a consequence of the corresponding claim for so(m) C g.
We call this subrepresentation A;. The representation A2 = AN (g ® g) is nonzero for the same
reason.

We define the g-module morphism ¢ : As — Ay given by

yabed 1 (Vabcd + (_1)[a}([b]+[c])vb0ad _ (_1)[b} [c] Vacbd) (11)
3

for V€ Ay C g ®g. This is a projection (¢> = ¢q) and we obtain that the kernel and the image
of ¢, Ay and AKe" | satisfy Ay = A" @ AL as g-representations. The non-triviality of these
subrepresentations follows from the classical sp(2n)-case.

Therefore by considering Lemma 3 and Lemma 5 we have proven that as a g-representation,
the decomposition

gog = Ky o KM o Ko Ao A5 o Ak

€1+€2

holds. So g ® g has at least 6 disjoint subrepresentations and by Lemma 2 at most 6 highest
weight vectors. Therefore, Corollary 1 in [6] can be used to conclude that g ® g is completely
reducible and has exactly the 6 weights from Lemma 2 appearing as highest weight vectors. [

o . . _ -m|2n ker _ p-m|2n im __ om2n
Then it is easily verified that Ay = Ko, 7 1., A5 = Ko o, and AS™" = K 7011

Remark 2. The g-module morphism ¢ in equation (11) can be defined on g ® g instead of on
Ao, the traceless tensors in g ® g. Since the image of ¢ is always tracefree (p o g = 0), we find
that KZLE32+63+64 is also equal to the image of ¢ acting on g ® g,

1

Km|2n _
{3

o eten (Vabcd + (_1)[a]([b]+[c])vbcad _ (_1)[b][c]Vacbd)|V €go g}.

The kernel of ¢ is related to the representation K;ZB:LZQ:

K;?Z‘lg_fgez ={Vego g\Vade + (—1)[a]([b}+[c])vbmd — (—1)[17”0] vaeetd — 0 and V is traceless}.

According to the standard choice of positive roots, the Cartan product inside g ® g is given
by LZ}‘fn =K beg teste, C OO, it is part of the completely traceless part inside g ® g, denoted
by As in the proof of Theorem 2. According to the second choice of positive roots, the Cartan

product inside g ® g is given by K;ZB:LQEQ = L;%'lz_tQ 5, C 90O g, it is also a component of the

completely traceless part inside g ® g, in fact Ay = Kg:ﬁgﬁz o K, "ffg tegtes i M & {1,2}.

€
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For g = osp(m|2n) = spo(2n|m) we introduce the notations

go1g = osp(m|2n) ® osp(m|2n) = KoM, if M ¢ {1,2}
g@2g = spo(2n|m) ® spo(2n|m) = Lzyfn.

The two Cartan products are therefore given by

~ 7-m2n  ~ rm[2n ~ 7M2n ~, 7-m|2n
9019= Koo, = Log 195,  and 9@20= L5 = K feriepre

To avoid confusion we will use the notations g@; g and g©2 g rather than osp(m|2n)® osp(m|2n)
and spo(2n|m) ® spo(2n|m).

Remark 3. There is an important difference in behavior between the two Cartan products. For
g = osp(m|2n) = spo(2n|m) with m — 2n ¢ {0,1,2}, we denote HT'M and H;n‘% the unique
g-invariant projections from g ® g onto respectively g ©1 g and g ©3 g. We denote the canonical
embeddings of so(m) and sp(2n) into osp(m|2n) by ¢1 : s0(m) — osp(m|2n) and o : sp(2n) —
osp(m|2n) (with the same notation for the extension to the tensor algebras) and the invariant
projections onto the respective Cartan products by TI"I° : s0(m) ® so(m) — so0(m) © so(m) and
102" : 5p(2n) @ sp(2n) — sp(2n) ® sp(2n).
There are X € so(m) ® so(m) such that

n(M™0(X)) # T (0 (X))

holds, because the trace parts that need to be subtracted in the osp(m|2n)-case are given by
the tensor ¢?° and not the metric-part of so(m). In other words the projection onto the Cartan
product of 0sp(m|2n) ® osp(m|2n) of an element in so(m) ® so(m) is not equal to its projection
onto the Cartan product so(m) ® so(m).

From the form of the second Cartan product in Remark 2 however, it follows that

LI (Y)) = TIP(,(Y)  holds for all Y € sp(2n) ® sp(2n).

This different behavior will be important for the Joseph-like ideals and the corresponding min-
imal representations.

Now we consider the structure of the second power of the adjoint representation for the
exceptional cases, M equal to 0, 1 or 2.

Theorem 3. In the cases M = m — 2n € {0,1,2} the representation g ® g is not completely
reducible for g = osp(m|2n). If M = 0, the decomposition of g-representations

m|2n m|2n m|2n

~ 2 2 2
g®g = ngljkz 52 K261+62+63 ® KE1+62+63+E4 ® K61+62 D (Cm| "o le n) :

holds, where C™27 & C™2" 45 not completely reducible. If M € {1,2}, the decomposition of
g-representations

~ 2
90y = KO, ©7 000
holds where v is the representation corresponding to the tensors

N o= {V €Ego g|‘/abccl + (_1)[a}([b]+[c])vbcad o (_1)[b}[c}vacbd _ 0},

which is not completely reducible and the representation K:ff?2+€3+64 is given as in Remark 2.

12



Proof. Firstly we consider the case M = 0, then Lemma 4 and Lemma 5 hold. The proof that
A=A @ AJ" @ A5 holds is then completed similarly to the proof of Theorem 2.

For the case M = 1,2, we consider the morphism y from the proof of Lemma 5 restricted
to g ® g. It is clear from the proof of Lemma 5 that for these dimensions Ker(y)NIm(x) # 0, in
particular KSZF" C Ker(x)NIm(x) if M =2 and Kgnpn CKer(x)NIm(y) if M = 1.

Therefore Ker(x)+Im(x) # g ©g. We also consider the morphism ¢ defined in equation (11)
but now defined on the entire space g ® g, as in Remark 2. This leads to

gg = Im(g)evdgng.

with Im(q) C Ker(x) and Im(x) C Ker(q) = . The module Im(g) must contain at least one
highest weight vector. The module v has at least three, the vector X, 4., ® X, 4., and the
two highest weight vectors inside C™?" @ C™?". Finally the module g A g has at least two,
KXeites @ Xeytes — Xeytes © Xej 4, and the highest weight vector of cmi2n A CmI2n . Lemma 2
implies that these are all of the highest weight vectors in g ® g, so in particular v has exactly
three highest weight vectors.

Next we prove that v has a subrepresentation that contains the three highest weight vectors,
which implies that ~ is not completely reducible. This subrepresentation is given by

(Ker(x) +Im(x)) N+

If this were equal to 7 it would imply that (Ker(x) + Im(x)) NIm(g) is not equal to Im(q) which
is a contradiction with Im(q) C Ker(x). The two highest weight vectors of C™?" @ C™?" are
contained in this subrepresentation as they are inside Im(x) and from the classical case it follows

that also X¢te, ® Xejte, 18 contained. The identification Im(q) = Kgf?2+53+54 then follows

from the fact that the other five weights are already assigned to the other representations. [

Therefore we obtain that g ©; g = KﬂQfQQ C g ® g is still well-defined if M = 0 and

g ©g g KZE?2+63+64 C g ® g is still well-defined if M =0,1,2 (as in Remark 2).

4 The Cartan product

One of the results in [10] is that for V' a finite dimensional irreducible s[(n)-module, the property
o'V = (e WV)evnve (ot 'V) (12)

holds. In this section we prove that this property can be extended to an arbitrary semisimple
Lie algebra. With an extra assumption we prove that it also holds for basic classical Lie super-
algebras. These results are stated in Theorem 4 and generalized in Corollary 1 which proves the
conjecture made in [10]. Because of examples, there is reason to believe that property (12) can
still hold without that extra assumption, but with a slight reformulation. For V a finite dimen-
sional irreducible representation with highest weight vector vy of a semisimple Lie superalgebra
g, the question is whether the property

U)ot = (U)o @ V) (Ve U of ) (13)

holds for k& > 2.

13



In case V = C™" and g = osp(m|2n), equation (13) can be obtained from the results in
[5], repeated in Section 2. So in this case equation (13) holds even when ®*V is not completely
reducible, which happened sometimes in case m — 2n € —2N.

In case V = g with g = osp(m|2n) for both positive root systems there is a direct application
of the results to connect the Joseph-like ideals to annihilator ideals of representations further in
this paper. In case U(g) -v%k is irreducible, statement (13) reduces to the classical one (12). Even
though it is clear from the aforementioned example, that this property is not always necessary
to obtain equation (13), we only manage to prove this result in cases where it turns out that
U(g) - vf%k is irreducible, in Theorem 5.

In this section we first consider an arbitrary simple Lie algebra or basic classical Lie super-
algebra g. The basic classical Lie superalgebras include sl(m|n) for m # n, psl(n|n), osp(m|2n),
D(2,1;a), F(4) and G(3), see [14, 21]. All these algebras are contravariant: their Cartan sub-
algebras are contained in the even part and there is a natural bijection between the positive
and negative roots. For each g we fix a positive root system and an arbitrary irreducible finite
dimensional representation V. The set of positive roots is denoted by AT and for each such
root we fix the positive and negative root vectors X, and Y,. The corresponding triangular
decomposition is given by g=n" + § + n.

First we show that the proposed identity is equivalent to other formulations. Therefore we
recall that V' has a non-degenerate hermitian form (-, -) such that for a choice of {X,} and {Y,}

(Xqu,w) = (u,Yaw)

holds, which is known as the Shapovalov form, see e.g. Lemma 3.2 in [7]. This is a contravariant
hermitian form. Furthermore different weight spaces are orthogonal to each other. This prop-
erty immediately extends to the tensor power representations @*V where the form is defined
iteratively by (v ® a,u ® b) = (v, u){a,b) for a,b € @1V and v,u € V. We fix notations

Bo=U(g)  (vy®vy) and B =F 1@V NV ® By for k> 2 (14)
I, = ﬁ,ﬁ with respect to (-,-) for k > 2

for subrepresentations in ®*V. Equation (13) can then be restated as 8, = U(g) -vf?k for k > 2.
It follows immediately by induction that the properties

U(g) - v$* C By € MV (15)
hold and that

Iy =Ir1 @V +V ® I, (16)
which can be used as an alternative definition for the representation Ij.

Lemma 6. For () and I}, as defined in equation (14), the following statements are equivalent:

The representation By is generated by the highest weight vector of @V : By, = U(g) - U?Ek.

)

) The representation @V /I}, has only one highest weight vector, vf?k + I.
3)  Any representation K C ®FV that properly contains Iy, also contains vf?k.

)

For any vector x € @V, with x & I, vﬁ?k € U(g) - x holds.

14



Proof. First we prove the equivalence between the first and the second statement. Because Si
and I}, satisfy Bkl = [, with respect to a non-degenerate contravariant hermitian form, it follows
that the codimension of n™ - 8 in [ is equal to the dimension of the space of highest weight
vectors (vectors annihilated by n) in ®*V/I;. The first equivalence is a consequence of this.

Each representation K D I has a vector x of maximal weight that is not inside I;. Positive
root vectors acting on this vector x must map it to I, this implies that = + I is a highest
weight vector in ®FV/I,. If property two holds, this vector 2 has to correspond to vf%k and
property three holds. Similarly each highest weight vector in ®*V/I; can be used to construct
a representation K D i, so property three implies property two.

The equivalence of the third and fourth property is straightforward. O

Lemma 7. Consider By as defined in equation (14). If Br—1 = U(g) ~v§k71 holds, then B
satisfies By, = Cvf‘fk + (0 - @FV N B).

Proof. If Br—1 = U(g) - Uf?k_l =Un") - vﬁ%k_l holds, the representation §;_1 ® V is equal to
Un) - (v%k_l ® V), as follows from the Leibniz rule of tensor product representations.

Now we assume that x € B is not inside n~ - ®*V. Since it is an element of U(n~) -
(vﬁ?k_l ® V) it can be written as

xzvi%k_l(@’u-i-l‘l

withu e Vand 1 en"Un™)- (vﬁ?k_1 ® V). Because z is inside ©*V by equation (15), 1 must
contain a term u®v§k*1. However x1 e U(n™)- (v%kfl ® V) which implies that this term must

come from an element in U (n™) - vfif_)k . Elements inside U(n™) - v%k are symmetric on their own,

so can never be used to compensate for the lack of symmetry of other terms.
This shows that « must be proportional to vy which completes the proof of the lemma. [

When U(g) - vf‘fk’ is irreducible it is isomorphic to My if V' = M, with M, the irreducible
g-module with highest weight p. If U(g) - Uf‘fk also has a complement representation W, we can
use the notation @*V = U(g) - vﬁ?k C ®FV. We say that in those cases @*V is well defined and
the property @*V = @*V @& W holds.

Theorem 4. Consider a semisimple Lie algebra or a basic classical Lie superalgebra g and a
finite dimensional irreducible representation V' with highest weight vector vy. If B;, defined in
equation (14), has a complement representation inside @'V for 2 < j < k, @V C &'V is
well-defined and the properties

B; = Ug) vy =&’V  and
@V = (@ V)eVnVe (e V)

hold for j < k. In case g is a semisimple Lie algebra, the extra condition on [3; is not necessary.

Proof. By definition 53 = U(g) -1)%2. We proceed by induction and assume ;1 = U(g) ~v§j -1
Since 3; has a complement representation, (n™ - ®’V N ;) = n™ - 3; and therefore Lemma 7
implies that 8; = U(g) - U%j.

To complete the proof we show that the fact that 3; = U(g) - vf?j has a complement repre-
sentation implies that it is irreducible. If U(g) - v%j would contain a highest weight vector x
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other than vf?j , this vector would be orthogonal with respect to all other elements of U(g) - U%j
for the contravariant hermitian form. Since the form is non-degenerate there exists a vector u
in the complement representation of U(g) - v%y such that (zy,u) # 0. By using the contravari-
ance of the hermitian form this implies that v%j € U(g) - u, which is a contradiction. Since

U(g)- vfifj is generated by a highest weight vector, the lack of other highest weight vectors proves
its irreducibility. O

In case g = osp(2|2n) or g = gl(p|q), g has large classes of star representations for which
the tensor power is always completely reducible, see [14, 30], so where the extra condition on j;
from Theorem 4 is not needed.

The method in Theorem 4 can easily be extended to prove the following claim which was
made by Eastwood underneath Corollary 1 in [10].

Corollary 1. For any irreducible finite dimensional representation V' of a semisimple Lie alge-
bra, the property

(V) ® (01V)) ® @ V]N[(e"V) @ (01V)e (@'V))] = e’TtV
holds for p,q,r strictly positive natural numbers.

Proof. If r < p+ ¢ this can be proved by considering
Un) - (UT‘? ® @TV) nertetry
with the same techniques as in the proof of Lemma 7 and using complete reducibility. If r > p+q
then p < ¢ 4+ r and the proof can be done that way. ]
In order to prove equation (13) or (12) in the cases of our interest we need another lemma.
Lemma 8. The representation By is contained in the subrepresentation of @V consisting of

those elements that are etgenvectors of the quadratic Casimir operator with the same eigenvalue

Rk
as vy .

Proof. By definition this holds for B3. The statement for k£ > 2 follows from the fact that the
restriction to each two positions in the tensor product of @*V of an element of £, is contained
in By and the fact that the Leibniz rule spreads the quadratic Casimir operator over at most
two positions. ]

Theorem 5. Equation (13) holds for g = osp(m|2n) and V' the adjoint representation with
e the positive oot system corresponding to spo(2n|m),
e the positive oot system corresponding to osp(m|2n) if m — 2n > 2,

where the root systems are given in equations (4) and (5). In both cases the statement reduces
to equation (12).

Proof. First of all we note that since the adjoint representation of g = osp(m|2n) corresponds
to the representation on C™2" A C™?" it naturally extends to a gl(m|2n)-representation. The
same holds for the tensor powers ®7g.
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For the first case the representation 3; corresponds to the space
53' _ {T e ®jg‘2Tabcd~~ef _ (_1>[a]([b]+[c])Tbcad~--ef - (_1)[b][c]Tacbd~~-ef},

see Remark 2. This is a gl(m|2n)-tensor module (star representation, see [14, 30]) and since
tensor products of irreducible gl(m|2n)-tensor modules are completely reducible, it follows that
B has a complement representation as a gl(m|2n)-representation and hence as a representation
of osp(m|2n) C gl(m|2n) too. The result then follows immediately from Theorem 4.

For the second case, the representation ; corresponds to the subrepresentation of traceless
tensors inside the space

v, = {T e QjQ‘Tabcdmef + (_1)[a]([b]+[c})Tbcad--~ef _ (_1)[b}[c}Tacbd-~-ef _ O}

For the same reason as above «; has a complement representation inside ®7g. It follows easily
from the concept of taking traces that all possible osp(m|2n)-highest weight vectors inside ~;
are of weight

(j—pe+(J—qe

with p 4+ ¢ even and p,q < j. It can be checked easily, see [19], that all of these weights lead
to a different eigenvalue of the quadratic Casimir operator exactly when m — 2n > 2. The
representation 7; decomposes into generalized eigenspaces of the quadratic Casimir operator,
mutually orthogonal with respect to the contravariant hermitian form. Since the one containing
vf‘fj has only one highest weight vector and has a non-degenerate contravariant hermitian form,
it follows straightforwardly that it is an irreducible highest weight representation. This has to
be 3; by Lemma 8, so 8; = U(g) - U%J = @/g. O

5 The case of osp(m|2n)

The main achievement of [12] was the discovery of special tensors, responsible for the uniqueness
of the Joseph ideal as a special ideal in the universal enveloping algebra of simple complex Lie
algebras. It is then explained in [32] that this tensor is precisely responsible for the deformation
theory and Poincaré-Birkhoff-Witt (PBW) theorem for non-homogeneous quadratic algebras of
Koszul type. We expect the special tensors constructed in the article will play an analogous
role in the category of simple complex Lie superalgebras. In this paper we use these tensors
to prove a characterization of the Joseph ideals, which is a natural analogue of the classical
characterization in [16]. First derive these results for the positive root system corresponding to
osp(m|2n), in this section.

5.1 The Joseph-like ideal for osp(m|2n)

In the following lemma we prove the existence of a specific tensor, which exists for simple Lie
algebras by the results in [2]. We also obtain the explicit form of this tensor, similar to the
corresponding result for so(m), sp(2n) and sl(n) in [12].

Lemma 9. For g = osp(m|2n), let & denote the composition of g-module morphisms
gNgRE—=gRIRI—gR¥IO1 g,
for M =m —2n & {1,2}. Then
dim Homg(g,ker®) > 1.
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Proof. We have to construct a tensor S%°%f in g® g® g starting from a tensor T' € g such that
the abed part is in g A g while the cdef part contains no g ©; g-piece.
We will use the total trace part (8) in cdef

_2gdegchab + 2(_1>[c][d}gcegdfTab
which clearly can be regarded as an element of g ® g ® g. By defining, for each a, b,

Fcf _ gbcTaf o (_1)[a][b]gachf

as an element of C"2" @ C™2" we can consider the embedding into g ® g of Lemma 4,

gie e — (—1)dlel gdf pee _ (_ylelld gee paf y (_q)llld-+ellf] gef prde

which is in g ® g ® g as well. By construction, the sum of these tensors

_2gdegchab + 2(_1)[0} [d}gcegdfTab + gdegbcTaf o (_1)[0,} [b]gdegachf o (_1)[d] [e]gdfgbcTae
+(71)[a] [b]+[d] [e]gdfgache o (71)[0] [d]gcegdezzf + (71)[11] [b]+][c] [d]gcegadbe
(1)l gef gdae (el +Hall] e godope

which we denote by U%°f has no Cartan product part in cdef. Then we define

gabedef _ rrabedef _ (_ 1) ([a]+[6) ([e)+[d]) [y cdabef

which by definition is an element of g A g® g. It remains to be checked whether the second term
of S has no Cartan piece in cdef. We therefore write it out as —(—1){el+)((c+ld)gredabef —
2(—1) ([l +B) (el +[d]) gbe gafpred _ 2(_1)([aH[b])([C]Hd])Ha][b}gaegbchd _ (_1)([aH[b])[C]Ha][b]gbegadTCf
( 1)[b} [al+[d]) gbegachf +(~1 )[a]([C]+[b])+[b]([81+[€]) gt g e — (_1)([b]([a]+[d]+[e}) g geeTe
1)[0] [a]+[b] decf (_ )[a] [d]gbcgaerf o (_1)[a} [e]+([a]+[b])[c}gbdgache

A

( 1)[(1] [d]+[e]) gbcgadee

We take the projection onto g ® g ® g. Since everything except the first two terms is already
super symmetric in cd <> ef, this is given by

(1) D () e g ped  gpegadepes (1)l +D)+d)+all] e o e
( 1)([(1 deef ( )([a}-{-[b])[c]—f—[a] [b] begachf + (_1)[b}([a}-i—[d])gbegachf
( 1) al( +[b] +[b]([c]+]e]) bfgache _ (_1)([b]([a]-‘r[d]—f—[e})gbfgache + (_1)[0]([a]+[b])gaegdecf
( 1) [a][d] bcgaerf ( 1)[11] [e]+([a]+[b])[c}gbdgache + (71)[&]([d}+[6])gbcgadee.

It can be checked in a straightforward manner that this expression has the form of equation
(11) in the indices cdef. Hence it represents an element of g ® A", see Remark 2 with the

notation A as introduced in the proof of Theorem 2. Since A = KZLE:;JFQJFM = g ©2 g has
trivial intersection with g ©; g we obtain S € ker(®) for each T' € g. It remains to be proven
that T' — S is a g-module morphism. Since U — S is a g-module morphism we just need to
prove that T" — U corresponds to one. The first part of U is trivial, the second one follows
immediately from the fact that 7% — g7 g — @4C™2" is a g-module morphism because

T — U is the composition of this with super anti-symmetrization. O
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In the following theorem, this tensor will be used to prove that except for one special value
of the parameter, the codimension inside ®g of a 1-parameter family of ideals is finite.

Theorem 6. Consider g = osp(m|2n) with M = m — 2n for M & {1,2}. If A # —%, the
two-sided ideal j)} in ®g = Dr, ®F g generated by
1
X®Y—X@1Y—§[X,Y]—)\<X,Y> € grgdgoaC (17)

for every X, Y € g, contains g.

Proof. We consider the tensor S from the proof of Lemma 9 and simplify it inside ®g/J; in
two different ways. Since S%¢4f has no ®@-part in cdef, the equality

1
gabedef o = ( gabe df _ (_1>[c][f] Sabfddc) 4 AGabde

holds inside ®g/Jy. A direct calculation shows

Sabcddf _ (4 N 2M)gchab + (3 _ M)(_l)[a][b}gachf + (M N 3)gbcTaf
+ (o 1)Blld gbrae _ (_q)lal(E+e gas e

which yields the equality

Sabcdef ~ (gbcTaf - (_1)[a][b}gachf - (_1)[c}[f]gbfTac

M—-4
2
(—1) bl gaf ey _oN(M — 2)(M — 1)T.

The first term on the right hand side is the embedding of g 2 C™2" AC™2" into g A g of Lemma
4. Inside ®g/J, such a tensor Ybel is therefore equivalent to Y%/, Substituting this finally
yields

M —4

gabedef o\ — 9) < —2\(M — 1)> T,

We can also reduce the tensor S by using the defining quadratic relation of j)\l on abcd.

The tensor S clearly contains no Cartan part and no Kgmn—part in abed since S € g A g g
Therefore we calculate S%0%f =

(M — 4) (QdeTaf (= 1)lelld] gaedf _ (_q)fellf] g pae o (—q)lalldl+Lellf] gadee) _

This tensor again corresponds to the embedding g — g A g of Lemma 4. This immediately
implies Sgt%¢f = 0 and

gebedel = (M — 4)(M — 2)T*.

Combining the two reductions of S shows that

ar-2 (M e nar-n) = o
inside ®g/.7§ orgcC j)} if A # _%' -

19



IfgcC Jf, then @9 ®* g € J;", which implies that either j} = ®g or jj = Pp>o F g.
From equation (17) it is clear that when @~ ®* g € J, C C Jy if and only if A # 0.

The ideal J; in ®g can be associated to an ideal J} in the universal enveloping algebra U(g).
Notice that the relation (17) may be split into the super skew and symmetric part

XeY - (-)*My ® X - [X,Y] and
XV + ()X WVygx —2X e, Y —2M(X,Y).

The algebra A\ = ®g/J. )} can therefore be realized in two steps. First we take the quotient with
respect to super anti-symmetric part, which yields (g). The corresponding image ideal in U(g)
defined by the second relation is then J}, and A\ = U(g)/J}.

Theorem 7. For g = osp(m|2n) with M = m — 2n different from 1,2, the ideal J}
o is equal to U(g) if X # —% and X\ # 0
e is equal toUy(g) =U(g)g if \=0 and M # 4
M—4

e has an infinite codimension in U(g) if A = — i

Proof. The first two properties follow from the considerations above. The third statement
follows from the relation of the ideal 3}\ with the annihilator ideal of an infinite dimensional
representation of g in Theorem 11. O

If A reaches the critical value for which J} (or J%) has infinite codimension we denote the
ideals as J' (or J') and call J* the Joseph ideal of osp(m|2n).

Remark 4. One can take the junction J' N (s0(m)) using the embedding so(m) < osp(m|2n).
However it can be checked that this ideal is not of the form of the corresponding classical Joseph
ideal for so(m) in [1, 2, 12]. This is closely related to Remark 3 and the subsequent Remark 5.

In [16] it was proven that if for an ideal J C U(so(m)) with infinite codimension, the corre-
sponding graded ideal gr(J) in S(so(m)) = Gso(m) satisfies the property gr(J)NSa(so(m)) = E,
with E the sum of all irreducible representations inside so(m) ® so(m) except the Cartan prod-
uct, then J is the Joseph ideal. With the obtained results we can now prove the same statement
for osp(m|2n).

Theorem 8. Consider a two-sided ideal R in U(g) for g = osp(m|2n) with m —2n > 2. If R
has infinite codimension and the associated graded ideal gr(RK) in S(g) = ©g satisfies

(9r(®) N &’g) ®gerg = O,
then R is equal to the Joseph ideal J*.

Proof. Define the ideal K in ®g as the kernel of the composition of the projections

®g — U(g) — U(g)/ K.

We define Ky, a subspace of @*g, as the projection of KN <@§:0 ®7 g) onto ®@*g. By construction,
each Ky, is a closed subspace under the adjoint action of g. It is also clear that g A g is inside
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Ko since for each X,Y € g, 2X AY — [X,Y] is inside the kernel of the first projection. Since
(gr(&) N ®?%g) is naturally embedded in Ky, we obtain

Ke®go1g = g®g.

Therefore Ko is equal to the representation Iz, defined in Equation (14) for g = osp(m/|2n)
and V the adjoint representation. Since K is also a two-sided ideal, it follows that K D
Kir—1® g+ g® Kg_1, which results in £ D I, by equation (16). Likewise, for the Joseph ideal
J' in ®g, we can define (jl)k, which is equal to I}.

From the assumed property of gr(8) it follows that for each X,Y € g, there must be at least
one element of the form XY + (—DXIVIYX —2X @, Y + Z(X,Y) + ¢(X,Y) inside & NUs(g)
with Z(X,Y) € g and ¢(X,Y) € C. Since R is a two-sided ideal it follows that Z and ¢ extend
to a g-module morphism g © g — g and g © g — C, which by Theorem 2 imply that Z = 0 and
c¢(X,Y) = MX,Y) for some constant A. Theorem 6 then implies that the only possible value of
A which does not contradict the infinite codimension of R is A = —(M —4)/(4(M —1)). From

this it follows immediately that IC contains J' and K N (@?:0 ®J g) =J'n (@]2.:0 ®7 g).
Now if K were bigger than J', then for one value of k, KN <€B§:0 ®7 g) would be bigger than
Jin (@;?:0 @7 g) while KN (@f;& @ g) =J'n (@;?;3 7 g) holds, since & N (69?20 ®7 g) =
J'n (69?20 ®7 g). This implies that K is bigger than I, otherwise every element in K N
(EB?ZO ®7 g) has a corresponding element in J!N (@;?:0 ®7 g) with the same leading term, so by

subtracting these two we obtain elements in N (EB?;& ®7 g) which are not in 71N (@?;é ®J g).

If there would be such a K which is strictly bigger than Iy, than by Theorem 6 and Lemma
5 (1)<+(3) it would follow that Ky = ®Fg, which implies K; = ®/g for all j > k. Since K has
infinite codimension this is not possible and the theorem is proven. O

5.2 The corresponding representation of osp(m|2n)

In this section we will consider the superspace RPI2" from Section 2, for p = m and p = m —
2. This corresponds to a super version of the ambient space method, used for the minimal
representation and the Joseph ideal for so(m) in e.g. [1, 11, 17, 23].

For p = m — 2 we will use the notations from Section 2, i.e. the operators A, R? and E of
equation (6) and capital letters for the variables {X;|i =1,--- ,m — 2+ 2n}.

For p = m we use small letters for the variables, {z,|a =1, - ,;m+2n} where the first m are
commuting and the last 2n anti-commuting. The corresponding s(2) realization on R™I2n will

be denoted by 5, EQ, E. These correspond to the definition in equation (6) with substitution
h — g. For the partial differential operators we use the notation

Oy = Z 9600z, which implies 0a(e) = Geas
b

for g the orthosymplectic metric on R™?" used in the definition of osp(m|2n).

We consider the canonical realization of osp(m|2n) as first order differential operators on
O (Rm|2n)’
Dy = Z Vr,0, = Z V& x40y,
a,c

a,b
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for V' € osp(m|2n), see e.g. [5]. Since this corresponds to a representation of osp(m|2n), we
know that

DyDy — (-)VIVIDyDy = Dy (18)

This action of osp(m|2n) commutes with the generators of s(2) given by A, R? and E. We
assume the metric h € R(M=2+20)x(m=242n) op RM=2121 and the metric g € RO?H2)x(m+2n) o

the bigger (usualy termed ambient) space R™2% to be related by

0 1
g = 1 0
0 0

> O O

With the association x;40 = X; for i = 1,--- ,m — 2 4 2n, this implies

A= Zgabﬁxa&gb = 20,05, + A, R? = Zgabmaxb = 22129 + B2 and (19)
ab

ab
E = Z 2q0z, = 104, + 204, + E.
a

The function space C’OO(RT|2") = C®(R7") ® Ay, is the algebra of smooth functions on the half
space R = {(x1,--- ,2y,)| 21 > 0} with values in the Grassmann algebra Ag,. We take the

quotient space C’OO(RTDn) /(R?) with respect to the ideal generated by the function R2. Then
we can restrict to functions of homogeneous degree «, for a € R:

Fa = {feC¥®RP")/(R})|Ef = af} c C®RT")/(R?).

The space Fy_py/2 has a useful property. The Laplace operator A maps functions in COO(]RT%)

of homogeneous degree 2 — M/2 to functions of degree —M/2. Consider R%k € C’OO(]RTlQn) of
degree 2 — M/2 (so k is of degree —M/2), the equation

AR’ = R*Ak+ (4E+2M)k = R?Ak

is an immediate consequence of the s(2)-relations among A /2, R2/2 and E+ M /2. This implies

that A acting from COO(]RT‘Z")Q,M/Q to C’OO(]RT‘Q”),M/Q naturally descends to an action from
Fo_ny2 0 F_pp/a. Therefore we can define a subspace

Ho= {f€~7:2—M/2|&f:O}C}—2—M/2-

Since the action of osp(m|2n) commutes with A, R? and E, the space H is an 0sp(m|2n)-module.
To consider the ideal in the universal enveloping algebra corresponding to this representation
we need to consider the composition of two vector fields Dy and Dy for U,V € osp(m|2n). This
yields

DyDy = (—1)[b] [l UabVCd:UaiL'cabad + U“bvbdxaad.
Therefore, the g-module morphism ®g — Diff(R”I?"), given by

Ve -V, = Dyewng..v, =DyDy,---Dy,,
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satisfies
]D)X — (—1)[b][c]Xade$axc8bad —+ Xabbdﬁaad, (20)
for X eg®g.

Lemma 10. When acting on 7-[, the composition of vector fields satisfies
1
Dygv =DyDy = Dye,v + §D[U,V] + ADwvy

for A = —% and for all U,V € g = osp(m|2n) with m — 2n & {1,2}. The right-hand side
can not be further simplified, i.e. all terms are not identically zero and do not correspond to
lower-order differential operators.

Moreover, when acting on Fa_pr/o the composition satisfies

1 ~
Dugy = Dye,v + 5Dy +ADwy)  mod A.

Proof. The proof of this relation can be split up into the super symmetric and the super anti-
symmetric part. When evaluated on H, we have to get

DyDy + (-1)YVIDyDy = 2Dye,v +2ADyy  and
DyDy — (-1)I71IVIDy Dy

I

The second equation trivially holds, see equation (18). The left-hand side of the first equation
represents Dx for a general tensor X € g ® g. First we exclude the case M = m — 2n = 0.
By choosing X to be in one of the four submodules of g ® g in Theorem 2, the statement is
equivalent to

Dx =0 on H fXeKM™M. . ..,
Dy =0 on H if X ek

M —4 . )
Dy = —— = N x ba it X e K™,
X 4(M—1)§ ab OnHl 0

. . 2
First consider X € Kg:l " so

1
xabed Z <gbcAad . (_1)[a][b]gacAbd N (_1)[0}[d]gbdAac + (_1)[a}[b]+[c}[d]gadAbc> 7

with A € ®3C™?" a super symmetric traceless tensor, see Lemma 4. Equations (19) and (20)
then imply
ADx = A Ed; + MA2,0; — AR*0,04 — Ax,04
A%z A — A%, 0y + (—1)Pd Abe g B,

When evaluated on the space 7:2, this reduces to

M M
Dy = (1- 7)Aadggaad + MAY2,0; — A%2,04 — A%2,0, + (1 — ?)(—I)WMAd%a@d
- (% ~1) (A“d . (—1)[““6”/1‘“) a0, (21)
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which is zero by the super symmetry of A.
As for the total trace part K(T)nun in (8), Xed = % (gbcg“d — (1)l [b]gacgbd), the associated
differential operator is

Dy = % (IE(IE 1) - R2A+ (M — 1)@) . (22)
When evaluated on the elements of ﬁ this becomes
Dy = —%(M —4).

The comparison with X, = M (M — 1)/2, see e.g. equation (10), then yields the result.

The result for K:fg teste, fOllows from the explicit form of the projection operator in
equation (11),
xoabed 1 (Vabcd + (71)[a}([b]+[c})vbcad _ (71)[b][c]vacbd)
3

with Ve ¢ g ® g. This is totally traceless, therefore
3Dy = (_ 1) [][c] Vabcdxaxcabad + (_ 1) [a] ([b)+[c])+][b][c] Vbcadl’al’cabad - Vade$a.Tcab8d.

This is zero since V4 = —(—1)lalldyeabd while 2,2, = (—1) g 2,
For the case M = 0 this can be proven very similarly. Instead of considering Kg:?n and

Kgn |2n independently one needs to prove that
Dx = - Z Xabba
ab

for X = ¢(A) with ¢ defined in the proof of Lemma 4 and A € C™?"* @ C™?" which follows
from a direct calculation.

The fact that the terms in the right hand side of the lemma can not be reduced to lower-order
operators follows from the fact that they correspond to irreducible osp(m|2n)-representations
which do not appear in lower orders. The fact that they are not identically zero follows from
plugging in elements of s0(m) < osp(m|2n) and using the classical result.

The slightly stronger second statement follows immediately from the calculations above. [

Lemma 11. The function space Fa_p1/9 C C“(RT'QTL)/(EQ) is isomorphic to C>°(R™212n),
Proof. We consider the super vector space morphisms

o Fo_prpe — CO(R™22m),

a(f)(x) = f(1,—R*/2,x),

B: CXR™) = Fy iy,

BUP)(w1,02,%) = 0y * Flx/m),

with x = (X1, , X;m_212n) = (23, -+, Tmron). Functions in R? are defined by a finite Taylor
series in the Grassmann variables. The morphism « is well-defined since a(R?h) = 0. The
composition 3o a on Fy_j/o satisfies

Boa(f)(er,x2x) = oo * f(1,—R/(242),x/a1)

= f(l'l, —R2/(21’1),X) = f($1,l'2,X).
Similarly we can show that oo § is the identity on C'>(R™~227). O
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This isomorphism gives an induced action of 0sp(m|2n) on functions on R 22" defined by
Dx = aoDxop for X € osp(m|2n). (23)

This extends immediately to Dx for X € ®g.
It is clear that AB(F) = 0 if and only if AF' = 0, which implies that under the isomorphism

between F5_jp7/2 and C>®(R™™ 2|2") the space H corresponds to the harmonic functions on

R™~212" " This gives the harmonic polynomials on R™~ 22" and osp(m|2n)-module structure.

This is expressed explicitly in the following theorem.

Theorem 9. The harmonic polynomials on R™—212n 3 = Dr o Hi, form a representation of
osp(m|2n), with action given by

1. Dy =YW 3" AU X0y, for A € osp(m — 2|2n) < osp(m|2n),

2. Oxi, Xj(E+M —4)— R?0x; forj=1,---,m—2+2n,

3. 2E+ M — 4.

Proof. This can be calculated directly from the equality Dx = oDy o 8 for X € osp(m|2n).

A
and third kind correspond respectively to 210,42 — 24201 and 2(220j42 — ;4202). The last one
corresponds to 2(z20) — x102). O

0 0
The first kind corresponds to X = 0 > € osp(m|2n) for A € osp(m — 2|2n). The second

Remark 5. It is clear that the realization of so(m) < osp(m|2n) given in Theorem 9 does
not correspond to the classical realization of so(m) as differential operators on R™~2 preserving
the kernel of the Laplace operator. This is the essential difference between the two Joseph-type
ideals and their corresponding representations in the current paper. Because for the metaplectic
representation of spo(2n|m) in Section 6, the restriction to sp(2n) gives the ordinary metaplectic
representation. This is closely related to Remarks 3 and 4.

Corollary 2. The differential operators Dx on C®°(R™ 227} for X € osp(m|2n) defined in
equation (23) and calculated explicitly in Theorem 9, satisfy the relation

1
DXDY = DX@IY + §D[X7y} + AD(X,Y) mod A

for A = 4(M 1), with X, Y € osp(m|2n).

Proof. This is an immediate consequence of Lemma 10 and equation (23). O
For the next theorem we will make the substitution m = p 4+ 2 in order to connect more

easily with earlier results on harmonic analysis on superspace, as in [5, 8].

Theorem 10. Consider the osp(p+2|2n)-representation H = @y o Hi of harmonic polynomials
on RPI2" from Theorem 9. The space is an irreducible osp(p + 2|2n)-representation if p — 2n &
2—2N. Ifp—2n = 2—2q, the representation H is indecomposable but has exactly one (irreducible)
subrepresentation, which decomposes as an osp(p|2n)-representation into irreducible pieces as

@H ® @ R 7247y,

Jj=q+1

. L . 2|2 2|2
This subrepresentation is isomorphic to Kf;:[ 2n _ K&ii "p/Q)

25



Proof. In this proof we choose the metric ¢ such that the equalities X' = X5 and X? = X;
hold.

First we consider the case p — 2n ¢ —2N. Each space H, is an irreducible osp(p|2n)-module
with highest weight vector XF, see Theorem 1. It is clear that dx, from Theorem 9 maps X
to kX1 while

(X1 (2E+p—2n—2)— R?0x1) X{ = (2k+p—2n—-2)X5"0

So it is clear that if p — 2n & 2 — 2N, H is irreducible. If p — 2n = 2, the scalars form a
submodule, which does not have a complement representation, while the quotient #/C is an
irreducible osp(p + 2|2n)-representation.

Now we consider the case p — 2n = 2 — 2q with ¢ € N;. Theorem 1 implies that H is an
irreducible osp(p|2n)-representation if k ¢ [q + 1,2q] with highest weight vector X, while if
k € [q+ 1,2q|, H} is an indecomposable highest weight module with highest weight vector X f
and with one submodule RQk*Zqqu_k.

The action of the elements dx, and X; (2E — 2¢q)— R?0x1 shows that each vector X} with k >
q generates the entire representation H, so H is an indecomposable osp(m|2n)-representation.
It also shows that an osp(p + 2|2n)-submodule cannot contain X¥ for k¥ > ¢. Since all partial
derivatives dx; are elements of osp(p + 2|2n) each submodule & must contain the scalars. The
elements X (2E — 2¢) — R?0x1 then imply that XF € U for k < g. Then we can take the
action of the element Xy (2E — 2¢) — R20y2 on XY, which shows that also R¥~24X7977 s
inside U for j = q+ 1, 2q.

Summarizing, this yields that any possible submodule must be of the form

q 2q
U = @Hj@ @ R¥ 721y,
§=0 j=q+1

as an osp(p|2n)-representation. To prove that this is an osp(p + 2|2n)-representation we only
need to show that it is preserved by the action of the operators dx; and (Xl(2E —2q) — R28Xz).
This corresponds to noting that

(Xl(2E —2q) — R28Xz) R2j_2_2q7‘[2q7j+1 C R2j_2q7‘[2q7j

for j = q+1,--- ,2q and (XZ(ZE —2q) — R28X1R2j_2_2q) R?? = 0 holds. This follows easily since
the right-hand side is always an element of R?>P and H,NR?*P = R%*Zq?'-[gq_k forg+1 <k <2q
and zero otherwise, which is an immediate consequence of Theorem 1. The corresponding claim
for Ox; follows similarly. O

Note that the identification of the submodule with Kf;flgf
n—p/2)e

0sp(p|2n) — osp(p + 2|2n), which follows also from applying Theorem 10 in [5] twice:

yields a branching rule for

p+2|2n ~ p+1|2n p+1|2n
Kibnpma = Baynpma © Konpoe
14+n—p/2 | n—p/2 |
~ p|2n p|2n
- @ Kl&l @ GB Kjﬁl :
1=0 j=0

This representation of osp(m|2n) (with m = p + 2) is not unitarizable, contrary to the
classical case. This follows from the fact that, due to the structure of the roots, a faithful uni-
tarizable representation of osp(m|2n) remains unitarizable as an osp(m — 2|2n)-representation.
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The module H can not be unitarizable for osp(m — 2|2n) since it decomposes into finite di-
mensional representations, which are never unitarizable for orthosymplectic Lie superalgebras
different from osp(2|2n), see [30]. If m —2n € 4—2N, the non-unitarizability follows immediately
from the non-completely reducibility. This non-unitarizability is also related to the fact that the
representation corresponds to a representation of the real Lie superalgebra osp(p + 1,1|2n;R),
which has no unitary representations, see Theorem 6.3.1 in [27].

Now we can prove that the Joseph ideal from Subsection 5.1 is related to the annihilator
ideal of this representation on the kernel of the super Laplace operator.

Theorem 11. If for g = osp(m|2n), M = m — 2n & {1,2} holds, the annihilator ideal in the
universal enveloping algebra U(g) of the representation of osp(m|2n) on harmonic polynomials
on RM=212n  or its irreducible quotient space contains the ideal J*. In particular this implies that
U(g)/3 is infinite dimensional. If m — 2n > 2, the annihilator ideal is identical to J'.

Proof. Corollary 2 implies that the ideal in the universal enveloping algebra of osp(m|2n), corre-
sponding to the representation #, contains J'. The fact that the annihilator ideal is not bigger
than J! in case m — 2n > 2, then follows from Theorem 8. O

Remark 6. In case equation (13) could be proven for g = osp(m|2n) and V the adjoint repre-
sentation for m —2n < 0, the equality of the annihilator ideal and Joseph-like ideal would follow
from Lemma 6 for those cases as well.

6 The case of spo(2n|m)

In this section we use the second notion of the Cartan product in the second tensor power of
g = spo(2n|m) to construct a second 1-parameter family of ideals in U(g). Again, only for one
value of the parameter the ideal has infinite codimension. In this case the ideal generalizes the
Joseph ideal of sp(2n). We also show that this ideal is the annihilator ideal of a generalization
of the minimal representation of sp(2n) to spo(2n|m) studied in e.g. [6].

6.1 The Joseph-like ideal for spo(2n|m)

Lemma 12. For g = spo(2n|m), let ® denote the composition
gNgRE—=gRIRY > gRIO29.
Then,
dim Homgy(g,ker®) > 1.
Proof. First we construct, from T' € g, the tensor Ucdef

_ _4gdegchab + 4(_1)[0][d]gcegdfTab - gcbgdeTaf + (_1)[0}[d]gdbgceTaf + (_1)[6}[f}gcbgdfTae
_(_1)[0][d]+[e}[f}gdbgchae + (_1)[a][b]gcagdebe N (_1)[a][b]+[c][d]gdagcebe
_(_1)[a] b+ [ellf] gea gdf pbe 4 (_1)[@ [bl+[elld]+[e][f] gda gef pbe

of which the cde f-part is inside KS” |2n o K m|2n e K ™20 Then we define the tensor

2€1 €1+ez”

Sabcdef _ Uabcdef - (_ 1)([a]+ ) ([e]+]d]) Ucdabef ’
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the second term is given explicitly by —(—1)([“]“”])([0“[””)UCdabef
= 4(—1)+EDe+d) gbe gaf red _ g1 ([al+PH e+ +alP] gae obf ped
+ (=)D +alle] gda gbepef _ (1) (el +[])le] dbgaeTCf — (=1 P+ Halle]+elf] gda gbf e
+( 1)[(1 c]+[b][c]+]e][f] dbgache ( 1)[6] +[d berf + (_1)[b][d]gcbgaerf
+( 1)[1)]( +[d])+[e][f] ca bdee ( 1) a][d]+]e] f] cbgadee.

It can then be checked that the cdef-part of the tensor, after being super symmetrized in
cd <> ef, is of the form

2 1 1
2ypedef Lo pydlelyreedr _ Loy iel(d)+le))y dect
3 +3(=1) 5(=1) :

for V€ g©g, which according to Remark 2 corresponds to the projection of g©g onto everything
except g ©9 g. This shows that S is of the required form. O

This tensor can now be used to prove the following theorem. Since the proof is, like the
proof of Theorem 6, a generalization of methods in [12] using the results obtained in the current
paper in Section 3, we do not give it explicitly.

Theorem 12. Consider g = spo(2n|m). If u # %, the two-sided ideal jﬁ in ®g generated by
1
XY -X0oY — §[X,Y] —u(X,Y)

for all X, Y € g, contains g C ®g.

Proof. This is proven similarly to Theorem 3.1 in [12] by reducing the tensor S from Lemma 12
in two different ways. ]

Again we can consider the associated ideal in U(g), J2, which is a generalization of the

Joseph ideal for sp(2n) for the critical value.

J73

Theorem 13. For g = spo(2n|m), the ideal 37,
e is equal to U(g) if p # 1/4 and p # 0
e is equal to Uy (g) = gUU(g) if u =10
e has infinite codimension if = 1/4.

Proof. The first two cases follow similarly as in Theorem 7, the last case is stated in the subse-
quent Theorem 16. ]

For the critical value u = 1/4 the ideals will be denoted by J? and 32

Remark 7. Contrary to the first kind of Joseph-like ideal, the ideal J2 has the property that
J%2 N U(sp(2n)) is exactly equal to the Joseph ideal for sp(2n). This follows immediately from
Remark 3 and the quadratic relation in Theorem 12. This is intimately related to the fact that
the spo(2n|m)-representation, of which this ideal is the annihilator ideal, is the tensor product
of the minimal sp(2n)-representations with so(m)-representations, see the subsequent Theorem
16.
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Finally we can again prove that the result of [16] extends to the second notion of Joseph
ideal in the current paper.

Theorem 14. Consider a two-sided ideal R in U(g) for g = spo(2n|m). If R has infinite
codimension and the associated graded ideal gr(R) in S(g) = Og satisfies

(9r(®) N %) ® gerg = ©%,
then R is equal to the Joseph ideal J>.

Proof. This result is obtained identically as Theorem 8. O

6.2 The corresponding representation of spo(2n|m)

For spo(2n|m) we consider the representations studied in [6], which are classified as the only
completely pointed ones, see Theorem 6 in [6]. This corresponds to a generalization of the
metaplectic or Segal-Shale-Weil representation, which is the minimal representation of sp(2n),
even though the motivation to study these representations in [6] came from a generalization of
the spinor representation of so(m).

The minimal representation of sp(2n) on n commuting variables is extended to a represen-
tation of spo(2n|m) by adding anticommuting variables on which so(m) acts. Contrary to the
representation we considered for osp(m|2n), this representation is unitarizable (see e.g. [4, 6]),
as in the classical case. We prove that the second Joseph-like ideal is the annihilator ideal of
this representation.

Definition 2. The algebra Ay, is freely generated by {61,--- ,0a,t1,--- ,tn} subject to the re-
lations
Hjtgk = —9k9j fOT 1 S j, k S d, titl = tltz‘ fOT’ 1 < i,l <n

and
Gjti:—t,ﬂj f07“ 1§j§d, 1§’L§n

This algebra is a superalgebra with unusual gradation. The commuting variables are con-
sidered as odd and the Grassmann variables are even. With this gradation the algebra is in fact
a super anti-commutative algebra, ab = —(—1)'“”1"6& for a,b two homogeneous elements of the
superalgebra. Therefore this corresponds to a supersymmetric version of a Grassmann algebra.

We introduce the short-hand notation of weights wy = %(61 +e+ -+ €1), wi1 = %(61 +
62+--~+6d,1—6d), Up—1 =01+ + - +0d,-1and v, =61+ + -+ .

For spo(2n|2d + 1), the space Ay, is an irreducible highest weight representation Lidﬂllin =
d—3Vn
Kijtll‘in For spo(2n|2d), the space Ag4), decomposes into two irreducible highest weight repre-
2 n

2d|2nl =~ K2d|2711 and L2 ~ 2 5 . For both cases the weight of

Wd—35Vn Wd—35Vn Wd—l_%Vn wd+Vn—1_§Vn
an element of Agy,

sentations L

d n
) 1
9?19;2 ce Q’d}ldtfltéﬁ s tgn 1S Wq — §l/n — Z’}/d_j+1€j — Z 5n7i+15i- (24)
j=1 i=1
The generators ¢; and t; can be combined into one notation 7} for k = 1,--- ,d +n. The

operators Jp, are defined by 0p,0; = 6; — 010p,, 9p,t; = —1;09, and 9p,(1) = 0. The operators 0,
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are defined by 8tj 0, = —91@]., at].tk = 0 + tkatj and th(l) = 0. These operators Jr, generate
an algebra isomorphic to Agy,. The algebra generated by T}, and 97, is denoted by Diff(Ay,,),
or Diff(S,j2,)-

The realization of spo(2n|2d) is generated as a Lie superalgebra by the operators T;7); and
aTiaTj with Zs-gradation inherited from the associative superalgebra Ad|n. The realization of
spo(2n|2d+1) is generated by the operators T; and O, again with gradation inherited from the
superalgebra Ag,,.

The realization inside Diff(Ag),,) of spo(2n|m) for m = 2d+1 or m = 2d described above and
in [6] is denoted by Dy for V' € g = spo(2n|m), which extends to ®g by setting Dygy = Dy Dy .

Aside from the obvious Zs-gradation we introduce a useful N-filtration on Diff(Agp,) by
setting the degT; = 1, degdr, = 1 and degl = 0, then we obtain that g is realised inside
Diff(Ag), )2 for g equal to spo(2n|2d) and spo(2n(2d + 1).

Theorem 15. If m — 2n ¢ {0,1,2}, the operators Dx for X € ®g, where g = spo(2n|m),
introduced above satisfy the relation

1
DyDy = Dye,v + §D[U,v1 + uD vy
for p = % and with U,V € g. The three terms on the right-hand side are not identically zero
and cannot be simplified to lower order terms.

Proof. The mapping g ® g —Diff(S,,j2,,)4 given by U ® V' — Dy Dy is a g-module morphism,
where the g action on Diff(S,,|2,) is given by V' - D = [Dy, D] for V € g and D €Diff(S,,)25,)-

If one of the subrepresentations of g® g, which are all generated by a highest weight vector, is
not in the kernel of the mapping above, there has to be a highest weight vector inside Diff(S,,,2,,)4
of the corresponding weight. The six highest weights are given in Theorem 2. For 44, 26; and
0, such a highest weight vector is given by respectively 81?”, 8§n and 1.

For the other three highest weights, we can prove that such a highest weight vector does not
exist. For 381 4 d2, the only allowed vector is 7 9, _,, which is not a highest weight vector since
[tn—10y,,0; O, ] = —0f . For 261 + 28, the only allowed one is 07 87 | which is not a highest
weight vector for the same reason. The allowed vectors with weight §; + Jo are given by

n n+d
vo= |ao+ Y ajtjd, + Y ajin0;0, | 0,0k,

=1 j=1

for arbitrary constants ag for s =0,--- ,n 4+ d. Again, we calculate
n n+d

[tn_latn, U] = — | a + Z ajtjé)tj + Z aj+n9j89]. 8,52n + antn_lﬁtn_ﬁfn

Jj=1 Jj=1
which can only be zero if as =0o0r s =0,--- ,n+d.

The statement can then be split up into a super symmetric and super skew symmetric part:

DyDy — (~)UWVIpy Dy = Dy and
DyDy + (-1)"WIDyDy = 2Dpe,v + 20D wv)-

The first part follows immediately. The fact that the other two subrepresentations of g ® g are
mapped to zero combined with the fact that the constants form the only trivial representation
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inside Diff(Ag),)4 prove that the second part must hold for some constant p. Now if u # i
would hold, Theorem 12 would imply that the representation S,,2, would be trivial, which is
not the case.

The last statement follows the fact that the right-hand side consists of irreducible repre-
sentations which can not be constructed by elements of lower degree and the classical case of
the symplectic spinors, since the realisation of sp(2n) < spo(2n|m) corresponds to the classical
realisation of the metaplectic representation. O

Theorem 16. The annihilator ideal in the universal enveloping algebra of the spo(2n|m) rep-
resentation Sy, 1s equal to the Joseph-like ideal I%if m—2n ¢ {0,1,2}. If m is even this
statement also holds for the two non-isomorphic components of the representation Sy, 2,. In
particular this implies that U(g)/J* has infinite dimension.

Proof. The proof is identical to that of Theorem 11. O

7 Symmetry algebra of super Laplace operator

Apart from the interest in pure algebraic results for the theory of Lie superalgebras, the main
motivation for treating the present problems is harmonic analysis on Lie supergroups. One
basic question here aims towards understanding the kernel of the super Laplace operator A on
R™~212" a5 a module over osp(m|2n), see Subsection 5.2. In the core of the problem lies the
structure of the algebra of symmetry operators of A, preserving the representation space of
harmonic functions. For example, in the classical case, the commuting pairs of second order
symmetries correspond to separation of variables for the Laplace operator and lead to classical
coordinate systems and special function theory for orthogonal groups.

The symmetries of the Laplace operator on R™~2 are studied in [11]. It follows easily that
the symbol of a symmetry of the Laplace operator corresponds to a conformal Killing tensor
field. The symmetries of first order generate so(m). The extension of this realization of so(m) to
the universal enveloping algebra yields higher order symmetries. Then it can be proved that this
procedure gives a higher symmetry corresponding to each conformal Killing tensor field. The
kernel of this realization of U(so(m)) is exactly the Joseph ideal. This implies that there is an
isomorphism between the space of symmetries of the Laplace operator on R™2, the conformal
Killing tensor fields on R™~2 and the quotient U(so(m))/J with J the Joseph ideal. In this
section we discuss the corresponding statements for the super Laplace operator on R™212% and
the Joseph ideal for osp(m|2n).

As in the classical case, a symmetry of the super Laplace operator A is a differential operator
D which satisfies AD = §A for some other differential operator §. Trivial symmetries are
the ones of the form TA for some differential operator T. When we consider the algebra of
symmetries, it is understood to be quotiented with respect to these trivial symmetries, so we
compose equivalence classes of symmetries.

It can be proved directly that the realization of osp(m|2n) as differential operators on R 22"
in Theorem 9 yields all non-trivial symmetries of degree 1 of the super Laplace operator. Com-
posing these symmetries leads to higher order symmetries. Corollary 2 implies that this yields
an algebra of symmetries isomorphic to the quotient of ¢/(g) with respect to an ideal containing
the Joseph ideal J'. Identically to Theorem 11 it then follows that this algebra is given by
U(g) /I if m — 2n > 2 and this would hold also for m — 2n < 0 in case equation (13) could be
proved for V' = g = osp(m|2n) for those dimensions.
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Lemma 13. For g = osp(m|2n), the injective realisation of U(g)/I' as equivalence classes of
symmetries gien by differential operators A on R™ 212" induced by Theorem 9 yields an algebra
of symmetries of the super Laplace operator for m — 2n > 2.

In order to address the question whether this yields all non-trivial higher symmetries we
introduce conformal Killing tensor fields on superspace. An immediate extension of the classical
definition is given underneath.

Definition 3. If m — 2 — 2n € —2N, a superconformal Killing tensor field of valence r on
R™2127 s ¢ supersymmetric trace-free tensor field

(pjk...l e Coo(Rm—2|2n’ ®6Cm—2|2n)’
satisfying
where the subscript 0 always denotes the trace free part of a given tensor field.

As was discussed in Section 2, in [5] it was proved that the osp(m — 2|2n)-representations
QSCm_2|2n are irreducible and equal to @"C™ 22" if m — 2n — 2 ¢ —2N.

As in the classical case we aim to identify conformal Killing tensor fields with symbols of
symmetries of the Laplace operator. The reason why traceless tensors fields are considered is
because metric terms in the symbol lead to a Laplace operator, thus to a trivial symmetry.
However in superspace when m — 2n — 2 € —2N holds, ©"C™ 22" does no longer decompose
into traceless tensors and tensors containing a metric part, see the end of Section 2. In particu-
lar, for some values of r, traceless tensors can contain metric terms. Therefore the quotient of
O"C™ 2127 with respect to tensors containing a metric term is not irreducible, but still indecom-
posable. As discussed at the end of Section 2, ®6Cm_2|2" is also not isomorphic to this quotient
eTCm—22n / Or2 C™=212n for these cases, so it is important to adjust Definition 3. The reason
why only the traceless part of %1 in Definition 3 is required to be zero, is again that the
metric part leads to a Laplace operator. The proper definition of superconformal Killing tensor
fields therefore is given in the following definition.

Definition 4. A superconformal Killing tensor field of valence r on R™212" is g supersymmetric
tensor field
cij...l e O (Rm—2|2n QTCm—2|2n/ ®r—2 (Cm—2|2n)

where O"2C™ 22 s imbedded in ©"C™ 22" by multiplying with the metric and symmetrizing,
satisfying

for some tensor field A. Denote by A,(R"™212") the vector space of superconformal Killing tensor
fields on RM—212n,

If m — 2n &€ 2 — 2N this is identical to Definition 3.

It follows from a straightforward calculation that the symbol of a symmetry of the super
Laplace operator is a superconformal Killing tensor field. As in the classical case, the question
of completeness of the symmetries in Lemma 13 inside the space of symmetries of the Laplace
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operator, can be posed in a graded way. Therefore, we only look at the highest order term of
the symmetry, which is identified with its symbol. Thus we obtain a mapping

d - ng N COO(R'I?’L—2|21’L’ Qk(cm—2|2n) (27)

for g = osp(m|2n), induced from the realisation of g as symmetries of the Laplace operator on
Rmf2|2n'

Let us first consider the case m — 2n > 2. From the considerations in Lemma 10 it follows
that if we take the quotient with respect to @F—2Cm—22n (considering only traceless tensors)
on the right-hand side, then everything except the Cartan product ®Fg is inside the kernel of
the mapping induced by ®. This is well-defined, since the Cartan product has a complement
representation in that case, see Theorem 5. The question whether the algebra of symmetries is
U(g)/I* and whether for each conformal Killing tensor field there is a symmetry with such a
symbol, is therefore reduced to the question whether the mapping

@rg N AT(Rmf2\2n)’ (28)

is surjective.

In the classical case, the BGG resolution [25] allows to conclude that the map (28) is sur-
jective. This follows from the fact that the differential operators in Definition 4 are exactly the
first differential operators in the BGG resolution corresponding to the representation ©"so(m).
It is generally believed that BGG resolutions do not exist for all finite dimensional osp(m|2n)-
modules. The reason is that finite dimensional osp(m|2n)-modules correspond to rather compli-
cated modules on the Lie algebra side according to the super duality principle, which connects
parabolic categories O for the orthosymplectic Lie superalgebras and classical Lie algebras of
BCD types, see [4]. On the other hand, according to the same super duality principle, BGG
resolutions exist for oscillator modules of osp(m|2n), see the last paragraph of Section 1.4. in
[4]. In Section 7 in [7] a procedure is developed which might create the necessary information
related to the desired BGG resolutions for conformal geometry for osp(m/|2n).

We leave open the surjectivity question for the representation of osp(m|2n) corresponding to
super conformal Killing tensor fields. Let us remark that the problem might also be geometrically
resolved by constructing a prolongation of the overdetermined system of the superconformal
Killing tensor differential operator, (26). In the case the surjectivity hypothesis is fulfilled, the
isomorphism between symmetries of the Laplace operator, conformal Killing tensor fields and
the quotient U(g)/J* follows.
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List of notations

spo(2n|m) orthosymplectic superalgebra with standard system of simple roots
osp(m|2n) orthosymplectic superalgebra with non-standard system
Tg,a=1,...,m+2n variables on the superspace R2"
Xj,j=1,...,m+2n —2 variables on the superspace R™M—2[2n
A, R%E 5[(2)-realisation on R"?"
A RLE 5[(2)-realisation on R™~22"
L irreducible representation of spo(m|2n) with highest weight A
K, [2n irreducible representation of osp(m|2n) with highest weight u
Vov super symmetric tensor product of module V'
VAV super skew symmetric tensor product of module V'
VoV submodule of V ® V generated by the highest weight
vector, if this module is irreducible and has a complement

go1 g Cartan product of the adjoint representation for g = osp(m|2n)
go@29 Cartan product of the adjoint representation for g = spo(2n|m)
A The submodule of g ® g of traceless tensors if m — 2n ¢ {1,2}
Ai The submodule of g ® g given by ANgAg
A2 =g gD go2g The submodule of g® g given by ANg® g
;) Killing form on osp(m|2n)
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