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Abstract 

 Cognitive processes and mechanisms underlying different forms of priming were 

investigated using a diffusion model approach.  In a series of six experiments, effects of 

prime-target associations and of a semantic and affective categorical match of prime and 

target were analyzed for different tasks.  Significant associative and categorical priming 

effects were found in standard analyses of RTs and error frequencies.  Results of diffusion 

model analyses revealed that priming effects of associated primes were mapped on the drift 

rate parameter (v), while priming effects of a categorical match on a task-relevant dimension 

were mapped on the extra-decisional parameters (t0 and d).  These results support a spreading 

activation account of associative priming and an explanation of categorical priming in terms 

of response competition.  Implications for the interpretation of priming effects and the use of 

priming paradigms in Cognitive Psychology and Social Cognition are discussed. 

 (141 Words) 
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Cognitive Processes in Associative and Categorical Priming: 

A Diffusion Model Analysis 

Sequential priming procedures play a major role in Cognitive Psychology and related 

disciplines.  For example, priming techniques are used to assess associative structures in 

semantic memory (e.g., Collins & Loftus, 1975; Neely, 1977; Rosch, 1975), to analyze 

subliminal semantic processing (e.g., Draine & Greenwald, 1998; Klinger, Burton, & Pitts, 

2000; Marcel, 1983), or to investigate the mental basis of attitudes, prejudice, and 

stereotyping (Blair & Banaji, 1996; Fazio, Sanbonmatsu, Powell, & Kardes, 1986; 

Wittenbrink, Judd, & Park, 1997, 2001a).  With different sequential priming paradigms it has 

been shown that the processing of an irrelevant prime stimulus influences the processing of—

or the responding to—a subsequently presented target stimulus.  Typically, responses are 

faster and more accurate if prime and target are related. 

Despite these similarities, there are also important differences between paradigms.  

First, relatedness of prime and target can be based on many dimensions, including semantic 

relatedness, associations, similarity, and others. We are primarily interested here in 

associative and semantic relations between prime and target. Items are semantically related 

when they belong to the same category and thus share semantic properties (e.g., cat and cow 

are mammals) or when they are functionally related (e.g., broom and floor are related because 

brooms are used to sweep floors).  Items are considered to be associated when a large 

percentage of people give the target as the first word they think of in response to the prime 

(see Moss, Ostrin, Tyler, & Marslen-Wilson, 1995, for an elaborate discussion of the 

distinction between semantic and associative priming).  In addition to the relatedness 

dimension, priming paradigms differ in the type of task that is to be performed on the targets:  

Most paradigms use the lexical decision task (Meyer & Schvaneveldt, 1971; Neely, 1977; see 

also Gaertner & McLaughlin, 1983; Wentura, 2000; Wittenbrink et al., 1997, 2001a), naming 

or pronunciation tasks (Meyer, Schvaneveldt & Ruddy, 1974; see also Bargh, Chaiken, 
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Raymond, & Hymes, 1996; Hermans, De Houwer, & Eelen, 1994), semantic or affective 

categorization tasks (e.g., De Houwer, Hermans, Rothermund, & Wentura, 2002; Fazio et al., 

1986; Klinger et al., 2000), and verification tasks (Collins & Quillian, 1969; Meyer, 1970; see 

also Dovidio, Evans, & Tyler, 1986). 

A structural taxonomy 

In this regard it is helpful to introduce a structural taxonomy of priming designs that 

distinguishes between semantic priming and response priming (see also Wentura & Degner, 

2010). In semantic priming, the relationship of interest (e.g., whether prime and target are 

associatively related or not) is varied orthogonally to the response categories: For example, in 

a semantic priming design using the lexical decision task, targets that are preceded by 

associatively related primes as well as targets that are preceded by unrelated primes require a 

word-response. By way of contrast, in response priming designs, primes are at the same time 

congruent or incongruent to the target and to the response that has to be given to the target. 

For example, in a typical response priming experiment using valent stimuli (i.e., affective 

priming), positive and negative target stimuli that have to be categorized according to their 

valence are preceded by positive or negative primes. 

Accordingly, two dominant principles of explanation prevail: Effects in semantic 

priming designs are most often explained by a facilitation of target processing (see Spruyt, 

Hermans, De Houwer, & Eelen, 2002). For this kind of explanation, spreading activation in a 

semantic network is still a compelling metaphor (Collins & Loftus, 1975):  The basic idea of 

the spreading activation account is that the processing of the prime stimulus activates its 

corresponding node in the semantic network and that this activation spreads through 

associative links to connected nodes.  If prime and target are associated in semantic memory, 

the processing of the prime pre-activates the target node and thus facilitates the processing of 

the subsequently presented target. This process of speeded access to target information can be 

captured in terms of distributed memory models as well (see Masson, 1995). In a nutshell, 
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semantic relatedness should correspond to a similarity in the activation pattern of units in the 

model. Therefore the transition process from the prime-representing pattern to the target-

representing pattern is faster in the case of related pairs compared to unrelated pairs.  

 We should hasten to add that effects found in semantic priming designs can also be 

due to so-called ―post-lexical mechanisms‖ (Neely, 1991), especially if the lexical decision 

task is used.  Different from mechanisms promoting target processing, post-lexical 

mechanisms refer to processes that depend on the retrieved semantics of the target stimuli, 

that is, information that can be assessed only after the orthographic information has been 

translated into semantic content. For example, Neely, Keefe, and Ross (1989) argued that 

―retrospective semantic matching‖ might contribute to the strength of priming effects.  

According to this account, the impression of a semantic match between prime and target 

facilitates word decisions because semantic matches typically only occur for word targets.  

Another post-lexical influence on priming effects was specified in the compound-cue model 

of Ratcliff and McKoon (1988).  Starting from the assumption that lexical decisions are based 

on a familiarity estimation of the stimuli, with words yielding high and non-words yielding 

low familiarity values, Ratcliff and McKoon argued that familiarity estimations can also be 

influenced by the compound of prime and target, with related prime-target pairs yielding 

higher familiarity than unrelated pairs, thus facilitating a word decision. For some stimulus 

materials more specific hypotheses about post-lexical processes exist. If affectively valent 

materials are used, the affective match between prime and target might trigger an affirmative 

answer whereas a non-match might trigger a tendency to negate (Klauer & Stern, 1992). If the 

target-related task has explicitly or implicitly a ―yes‖ vs. ―no‖ character (e.g., like the lexical 

decision task: ―yes, it is a word!‖ vs. ―no, it is not a word‖), the affirmative tendency 

(following an affective match) might facilitate a word response whereas a tendency to negate 

(following an affective mismatch) might interfere (Wentura, 2000).  
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Effects found in response priming designs are typically explained by response 

competition mechanisms (Kornblum, Hasbroucq, & Osman, 1990; De Houwer et al., 2002; 

Klauer & Musch, 2003; Klinger, et al., 2000; Wentura & Rothermund, 2003). Strictly 

speaking, response priming might work through response competition and response 

facilitation. We will use the former term ―response competition‖ as a shortcut for both 

mechanisms. Similar as in response interference paradigms like the Stroop task (Stroop, 1935) 

and the flanker task (Eriksen & Eriksen, 1974), it is assumed that the irrelevant information 

(the prime) elicits a tendency to execute a certain response.  If this pre-activated response is in 

accordance with the response required by the relevant information (the target), response 

execution is facilitated. Correspondingly, if the prime activates a response that conflicts with 

the response that is required for the target, response execution is delayed.   

 There is a crucial difference between accounts of priming that draw on a facilitation of 

target processing and those that are based on response competition.  The former account 

assumes that priming operates at the stage of access to the target concept:  The presentation of 

a related prime facilitates the encoding and identification of a subsequently presented target 

and thus speeds up the accessibility of (semantic) target attributes.  This implies that this kind 

of priming should be operative for a wide variety of tasks (i.e., all tasks that require semantic 

identification of the target).  Response competition accounts, however, assume that priming 

operates at later processing stages of response selection and execution; effects are thus only 

expected if the dimension on which prime and target are related is task relevant (i.e., in a 

response priming design), so that the prime pre-activates a response that is part of the 

response set of the task and thus can either be congruent or incongruent to the correct 

response (De Houwer et al., 2002; Klauer & Musch, 2003; Klinger et al., 2000; Wentura, 

1999).  The status of post-lexical mechanisms with regard to the stage of their influence on 

priming effects is less clear and might depend on the specific kind of post-lexical process that 

is assumed to mediate priming.
1
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In sum, priming effects in semantic priming designs are typically explained by a 

facilitated access to the semantic target information on which response selection is based, 

whereas response priming is usually explained by a facilitation of (or interference with) 

response selection or execution. Importantly, however, it should be noted that there is a 

specific asymmetry with regard to the explanation of priming effects in semantic and response 

priming designs. Whereas, by virtue of the design, semantic priming effects cannot be 

explained by response competition, effects found with response priming designs can be 

explained by either or both of facilitation of target processing and response competition. 

Separating these mechanisms in response priming paradigms has therefore been an important 

research topic. 

Problems of previous attempts to distinguish between mediating processes in priming 

designs 

 Previous attempts to distinguish between different underlying processes of priming 

effects in response priming designs have used various experimental manipulations to 

determine the nature of the underlying processes.  Many of these manipulations involve the 

appropriate selection of another task that has to be performed on the target stimuli.  For 

example, the pronunciation task can be used to eliminate influences of post-lexical and 

response competition effects on target responses because pronouncing the specific target word 

is not facilitated by the pre-activation of a naming response to a related prime, nor can it be 

facilitated by an increase in familiarity, nor can it be biased strategically by an evaluation of 

the semantic matching between prime and target. The finding of significant priming effects 

with the pronunciation task thus establishes a specific influence of facilitated target access 

processes on priming effects.  Robust priming effects with the pronunciation task have 

repeatedly been demonstrated for associative prime-target pairs (e.g., Meyer et al., 1975; see 

Neely, 1991, for a review), whereas for categorically related prime-target pairs (e.g., affective 

priming), highly inconsistent results have been reported, including congruency, incongruency, 
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as well as null effects (e.g., Bargh et al., 1996; De Houwer & Randell, 2004; Glaser & Banaji, 

1999; Hermans, De Houwer, & Eelen, 1994; Klauer & Musch, 2001; Schmitz & Wentura, in 

press; Spruyt, De Houwer, & Hermans, 2009; Spruyt, Hermans, De Houwer,  & Eelen,  2002;  

Spruyt, Hermans, Pandelaere, De Houwer, & Eelen, 2004; Spruyt, Hermans, De Houwer, 

Vandromme, & Eelen, 2007; Wentura & Frings, 2008; see Klauer & Musch, 2003, and 

Wentura & Rothermund, 2003, for reviews). 

Similarly, using a categorization task that is unrelated to the dimension for which 

category congruency effects are investigated (e.g., an animacy categorization task is used 

when testing for affective category priming) should eliminate response competition as a 

potential explanation of categorical priming effects (but see Schmitz & Wentura, in press).  

Moreover, since post-lexical mechanisms are most plausible for the lexical decision task (see 

above) this strategy should also eliminate post-lexical mechanisms. Categorical priming 

effects are typically eliminated in designs in which the task is to categorize the targets 

according to another dimension (e.g., De Houwer et al., 2002; Klinger et al., 2000; Klauer & 

Musch, 2002; but see Spruyt, De Houwer, Hermans, & Eelen, 2007; Schmitz & Wentura, in 

press).
2
 

Manipulating the task that has to be performed on the targets has yielded many 

interesting results regarding the underlying processes and mediating mechanisms of 

associative and categorical priming effects.  However, changing the task (or other 

experimental manipulations) might not only help to control the influence that specific 

processes have on responding, it might also influence the nature and quality of the processes 

themselves that are triggered by the stimuli of a particular priming study.  Using a 

categorization task that is orthogonal to the dimension of interest in a categorical priming 

study might reduce or inhibit the processing of information regarding the task-irrelevant 

categories.  For example, in the study by De Houwer and colleagues (2002) positive and 

negative targets that were preceded by positive or negative primes had to be categorized as 
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denoting a person (e.g., ―friend‖ or ―enemy‖) or an object (e.g., ―gift‖ vs. ―garbage‖). There 

was no indication of an affective priming effect (i.e., responses were not faster when prime 

and target matched in valence than when they differed in valence). This null result might 

indicate that processing of targets is not facilitated by valence-congruent primes. However, it 

might alternatively indicate that valence of stimuli is not automatically processed if it is 

completely irrelevant in the experimental context. 

Evidence for such a qualitative change in the processing of the stimuli was reported in 

a recent ingenious study by Spruyt et al. (2007; see also Spruyt, De Houwer, & Hermans, 

2009).  In this study, an external cue (a colored frame surrounding the target picture) signaled 

whether an evaluation task (positive vs. negative) or a semantic categorization task (object vs. 

animal) had to be performed on the target.  By varying the frequency of the different tasks 

within an experimental block, Spruyt and colleagues could show that categorical congruency 

effects depended more on the task context in a block than on the specific task that had to be 

executed in a particular trial.  This finding highlights the fact that investigating categorical 

congruency effects in a semantic priming design might not yield a fair test of whether 

categorical congruency effects are mediated by processes that facilitate access to the target. 

Such a task might not only change the mechanism that translates a given process into a 

priming effect, it might also eliminate the (earlier) processing of the prime or its valence 

(Moors, Spruyt, & De Houwer, 2010).  

The previous arguments have shown that task manipulations alone might not always 

yield an unambiguous conclusion about the underlying processes of priming and congruency 

effects.  We therefore want to introduce a different route of testing: We decided to combine 

task manipulations with a diffusion model data analysis. This statistical method allowed us to 

analyze the influence of different types of priming on specific processing stages.  Before we 

present our hypotheses and give an overview of the present studies, we first give a short 
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introduction to diffusion model data analysis and explain how this method can be used to 

identify the contribution of different types of processes to particular priming effects. 

Diffusion Model Analysis 

The rationale of the diffusion model.  Diffusion models (Ratcliff, 1978; Ratcliff & 

McKoon, 2008; Ratcliff & Smith, 2004) provide a unique possibility to improve the 

understanding of cognitive processes underlying simple binary decisions.  These models make 

use of the shape of response time distributions of correct responses and error responses, as 

well as the ratio of both, to estimate a set of parameters that are indicators for ongoing 

cognitive processes (Voss, Rothermund, & Voss, 2004).  Diffusion model analyses have been 

applied successfully to data from many cognitive tasks such as recognition memory (e.g. 

Spaniol, Madden, & Voss, 2006), lexical decision (e.g., Ratcliff, Gomez, & McKoon, 2004), 

perceptual discrimination (e.g., Voss et al., 2004; Voss, Rothermund, & Brandtstädter, 2008), 

multiple categorization tasks (Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007), and others 

(see Wagenmakers, 2009, for a recent review).  To our knowledge, however, there is no study 

using a diffusion model approach to investigate the cognitive mechanisms underlying priming 

effects. Note, however, that a related, somewhat complementary approach to diffusion models 

was recently adopted by Balota, Yap, Cortese, and Watson (2008), who applied ex-Gaussian 

modeling to RT distributions from semantic priming experiments, using lexical decision and 

pronunciation tasks. We will give a more detailed description of this approach in the General 

Discussion.  

The diffusion model belongs to the class of continuous sampling models (Ratcliff & 

Smith, 2004). Information accumulation within one trial is represented by a diffusion process 

running between two thresholds which stand for two alternative decisional outcomes (see 

Figure 1, for a graphical illustration of the information accumulation process and of the 

different parameters that are contained in the model).  As soon as the diffusion process hits 

one of the thresholds the corresponding response is initiated.  The duration of the diffusion 
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process is called decision time. The response time is divided into decision time and the 

duration of non-decisional processes which cannot be further decomposed by a diffusion 

model analysis (e.g., for a semantic categorization task it comprises both pre-decision 

encoding and post-decision initiation and execution of the selected response). 

Diffusion model parameters. The diffusion process is characterized by several 

parameters.  The drift rate (v) is the mean rate of information accumulation.  Positive drift 

rates indicate that the evidence accumulation supporting the outcome represented by the upper 

threshold prevails, and vice versa. The drift represents the performance in a discrimination 

task: It is a measure of how fast information accumulates in the decisional process. 

The distance between the two thresholds (a) represents decision strategies, with larger 

(smaller) values representing a more conservative (more liberal) strategy of decision making.  

The starting point of the information accumulation process (z) reflects an a priori decision 

bias.  The closer the starting point lies to one threshold, the less information is needed for the 

corresponding decisional outcome. 

Finally, the duration of all non-decisional processes is given by t0 (sometimes denoted 

as Terr). This processes may include pre-decisional (preparatory) processes (e.g., directing of 

attention to the stimulus, activation of the correct task set) and post-decisional, response-

related processes (i.e., translation of a decision in a motor action). Importantly, the t0 

parameter is conceptually independent of all processes of response selection (which are 

captured by the diffusion process). Thus, a late level-account of priming effects in terms of 

response competition which assumes that response execution is facilitated or delayed due to 

response preparation or interference would predict that priming effects map on this parameter. 

The simple diffusion model with four parameters as described above can be extended 

to allow for variability in trial-to-trial performance within one experiment and participant.  In 

this complete diffusion model, the drift rate is assumed to belong to a normal distribution with 

the mean v and the standard deviation sv (or η). The starting point is supposed to be equally 
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distributed around z with the range sz and the non-decisional component is assumed to be 

equally distributed around t0 with the range st.  

Mapping response tendencies with the diffusion model. With the standard diffusion 

model as described above it is not possible to map differences in the speed of response 

execution between the two types of responses of the task (i.e., the same duration of execution 

is assumed for correct and incorrect responses). Durations of response execution are mapped 

on t0 independent of the chosen response. To solve this problem, Voss, Voss, and Klauer 

(2010) recently suggested mapping the duration of non-decisional processes separately for the 

two possible responses.  Basically, different parameters t0, lower and t0, upper are applied to the 

two response alternatives. Thus, extra-decisional times may vary between response 

alternatives. For example, with the extended model it is possible to account for prime-

congruent responses being executed faster than prime-incongruent responses in a 

classification task. 

Technically, we still denote the mean duration of non-decisional processes (across 

both responses) as t0. Any difference between the non-decisional component corresponding to 

the lower threshold (incongruent response) and to the upper threshold (congruent response) is 

mapped by the new parameter d (d = t0, lower – t0, upper).  If, for example, the upper threshold 

corresponds to the response that matches the prime, a positive value of d indicates that the 

prime speeds up the execution of a congruent response relative to an incongruent response. 

Fitting the diffusion model to data. In a diffusion model analysis, parameters are 

estimated so that predicted response time distributions optimally fit empirical distributions 

(Ratcliff & Tuerlinckx, 2002).  For this purpose, different optimization criteria have been 

suggested, like the Log-Likelihood statistic (e.g., Klauer, Voss, Schmitz, & Teige-

Mocigemba, 2007), the Chi Square statistic (e.g. Ratcliff & Tuerlinckxs, 2002), and the 

Kolmogorov-Smirnov statistic (KS; e.g., Voss et al., 2004).  We see two important 

advantages of the latter approach:  Firstly, the KS statistic is not as strongly influenced by 
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outliers as the log-likelihood statistic is.  Secondly, no binning of data is required, which is 

often problematic, especially for experiments with low trial numbers and/or low error rates.  

For the present analyses, the diffusion model was fitted to the individual response time 

distributions using the software fast-dm (Voss & Voss, 2007, 2008) which is based on the KS 

approach.  In all analyses data were collapsed across target types (e.g., positive and negative, 

in the evaluation task).The upper (lower) threshold was assigned to correct (incorrect) 

responses. Thus, more positive drift rates always indicate a more efficient processing of the 

target. In the present models, the d-parameter maps the difference between positions of RT-

distributions for correct responses and error responses. If primes influence the speed of 

response execution, larger (positive) values of d will emerge for congruent primes (i.e., the 

correct response is primed) and smaller (negative) values of d are expected for incongruent 

primes (i.e., the incorrect response is primed). 

Due to a low number of errors, it was not possible to estimate a model with free 

starting point and with separate non-decisional parameters for correct and incorrect responses 

(Voss et al., 2010).  For the same reason, the distance from the starting point to the lower 

threshold can also not be estimated with sufficient accuracy.  We therefore decided to fix z to 

a/2 in all analyses.  We decided to estimate separate t0 parameters for correct and incorrect 

responses rather than estimating differences in the starting point of the decision process 

because such a difference in response execution times is what is predicted by response-

conflict accounts of affective priming (e.g., De Houwer et al., 2002; Klinger et al., 2000; 

Klauer & Musch, 2002): If the prime already activates a corresponding response, this should 

reduce response execution times for correct responses (relative to incorrect responses) on 

congruent trials, but it should increase response execution times for correct responses (relative 

to incorrect responses) on incongruent trials.  We cannot rule out on a priori grounds that 

semantic congruency effects might also affect the starting point of the diffusion process; we 

will address this issue again in the General Discussion.  As will be seen, additional analyses in 
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which the starting point was left free to vary revealed that affective congruency effects did not 

map on the starting point, suggesting that affective priming is not mediated by response 

selection processes. 

 Drift rate (v), response-time constant (t0), and response tendency parameter (d) were 

estimated separately for different prime types (i.e., congruent, incongruent, or neutral, 

while—for the sake of parsimony—the remaining parameters (a, sz, sv, and st) were assumed 

to be constant across conditions.  

Overview and Hypotheses 

The core interest of this paper is to investigate the influence of different types of 

priming on specific processing stages.  Specifically, we compared associative priming and 

semantic priming for different types of tasks (categorization tasks and lexical decision task).  

The diffusion model allows us to estimate different parameters for processes that are related 

to either response selection or response execution.  Some priming effects may be best 

explained by differences in the speed of target identification or in the accessibility of semantic 

target features.  In the diffusion model framework, such effects will typically be mapped on 

the drift rate (v).  Other forms of priming might operate at a later stage of information 

processing.  In this case, priming facilitates or impedes the activation and execution of the 

correct motor program.  Processes that are related to response-execution are captured by the 

response-time constant of the diffusion model (t0).  Post-lexical processes are not our main 

focus here
3
, but some aspects of our data can be used to rule out influences of these post-

lexical mechanisms in the priming effects that we observed. 

In line with previous findings, we expect that associative priming effects are—at least 

to some extent—based on a facilitation of early processing stages that are related to response 

selection:  We assume that primes lead to a pre-activation of associated target concepts and 

their semantic attributes which should have an impact on the efficiency of the decision 

process.  Information from pre-activated targets should be more readily accessible, that is, the 
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target concept and semantic target attributes should be processed and identified more readily. 

Therefore, we expect larger drift rates (v) for targets after associated compared to non-

associated primes.  Such associative priming effects are expected to be largely independent of 

the task that is to be performed on the targets as long as the task requires lexical or semantic 

target processing.  For example, associative priming effects on the drift rate indicating more 

efficient target processing after associated primes are predicted for lexical decision and for 

semantic classification tasks alike. 

As elaborated above, we expect that all types of response priming designs are 

primarily based on Stroop-like interference processes (De Houwer et al., 2002; Klinger et al., 

2000; Klauer & Musch, 2002; Klauer, Musch, & Eder, 2005).  We assume that such 

interference processes operate at the stage of response execution.  According to this account, a 

prime from the same category as a following target might pre-activate the corresponding 

motor-response program.  In this case, the primed response can be executed faster.  If the 

prime belongs to the alternative response category, the execution of the correct response to the 

target should be slowed down due to response interference.  Since these effects operate 

independently of the identification and classification of the target, they will be mapped onto 

the non-decisional RT component of the diffusion model.  The non-decisional component 

should either be generally reduced by a categorical match between prime and target (lower 

values on t0), or, more specifically, the primes should reduce (increase) the time that is needed 

in order to execute the matching (non-matching) response, leading to positive (negative) 

values for d in case of congruent (incongruent) primes. 

Another possibility that cannot be ruled out a priori is that response priming effects 

influence the response selection process by biasing the decision process in the direction of the 

prime category.  Such an effect would be mapped by the diffusion model on the starting point 

(z).  As already mentioned above, we cannot estimate priming effects on t0, d, and z 

simultaneously (Voss et al., 2010).  We therefore decided to estimate models with two non-
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decisional components (t0 and d) in which the starting point was fixed, but we also conducted 

additional analyses in which the starting point was estimated freely.  The results of these 

additional analyses suggested that categorical priming does not have an influence on z (see 

below). 

Response priming effects on the extra-decisional RT components are plausible only 

for (semantic or evaluative) categorization tasks and not for the lexical decision task, because 

the latter task implies response congruence (word-word) for related and unrelated prime/target 

pairs likewise.  In the following studies we investigate empirically to which extent categorical 

congruency effects in response priming designs affect non-decisional components and drift 

rates.  In principle, facilitated access for categories can be easily explained by reference to 

distributed memory models (see Masson, 1995): If we assume that a considerable part of an 

activation pattern represents valence, the transition of the prime-representing pattern to a 

target-representing pattern should be facilitated in the case of a valence match (and possibly 

hindered in the case of a non-match). 

As outlined above, previous results were mixed with regard to categorical priming 

effects (e.g., affective congruency effects) in semantic priming designs (using, e.g., 

pronunciation or lexical decision instead of evaluation). Given the inconsistent findings 

reported in the literature, we think that it is an open question whether categorical priming 

effects that cannot be attributed to Stroop-like interference processes or post-lexical 

mechanisms can be found in a typical semantic priming design. Thus it is worthwhile to take 

the alternative route via diffusion model analysis. The task (i.e., evaluation) makes sure that 

valence is task-relevant. If part of the categorical priming effect in a response priming design 

is caused by facilitation of access to target information, the drift rate should be affected as 

well. 

 These hypotheses where tested with six experiments.  In Experiments 1a and 1b 

effects of associative priming in a lexical-decision task (Exp. 1a) and of affective priming in 
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the evaluation task (Exp. 1b) were compared.  In Experiments 2a and 2b, affective 

congruency and semantic congruency (person vs. object) of prime-target pairs were 

manipulated.  Participants classified targets either according to their valence (Exp. 2a), or 

according to their semantic category membership (Exp. 2b).  In Experiments 3a and 3b, the 

influence of semantic associations between prime and target was examined again in a lexical 

decision task (Exp. 3a) and in a semantic categorization task (living vs. non-living, Exp. 3b). 

Experiments 1a and 1b 

Experiment 1 compares cognitive processes of two typical priming paradigms:  An 

associative priming study was realized with a lexical decision task (i.e., a semantic priming 

design; Exp. 1a), while an affective priming study was realized using the evaluation task (i.e., 

a response priming design; Exp. 1b).  It is expected that associative priming with the lexical 

decision task influences the decision process by enhancing the accessibility of the target 

concept and its associated semantic attributes (parameter v), while affective priming with the 

evaluation task operates primarily on the stage of response execution (parameters t0 and d). It 

is an open question whether effects of target access (i.e., moderations of parameter v) will be 

found in Experiment 1b as well (see above). 

Method 

Participants. Two independent samples of 30 undergraduate students of the University 

of Trier participated in the associative priming task (Exp. 1a, 22 female, age mean 23.4) and 

in the affective priming task (Exp. 1b, 15 female, age mean 24.6) for partial fulfillment of 

course requirements.  Additionally, participants got small performance related financial 

rewards (see Procedure for details). 

Materials.  Primes and targets were adopted from Rothermund and Wentura (1998):  

For Experiment 1a, 96 German nouns were used as targets, and 96 other nouns, each of which 

was associatively related to one of the targets, were used as primes.  Three prime stimuli were 

assigned to each target:  One highly associated prime, one non-associated prime, and one 
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neutral prime (strings of 3 to 12 identical letters, e.g., ―ccccc‖).  Each prime word was used as 

associated prime for one target and as non-associated prime for another target.  Associations 

were taken from norm lists (Hager & Hasselhorn, 1994).  Non-words were constructed from 

targets by replacing one letter (non-word trials were ignored in the following analyses; 

analyses including non-word trials are presented in Appendix A).
4
 Prime-target pairings were 

identical for all participants.  For each participant, each target word was combined once with 

its associated prime, once with its non-associated prime, and once with a neutral prime, 

yielding a total of 288 prime-target trials plus an additional 288 trials that included the non-

word targets.  All trials were presented in an individually randomized sequence for each 

participant.  For a practice block, an additional set of 16 associated prime-target pairs was 

used. Again, each target was combined with an associated, a non-associated, and a neutral 

prime, yielding 48 word trials, plus 48 trials with non-word targets. 

For Experiment 1b, 48 positive and 48 negative German adjectives were used as 

targets (norms form Hager & Hasselhorn, 1994).  Forty-eight positive and 48 negative nouns 

were used as primes (norms from Wentura, 1999).  Prime-target pairs were constructed by 

assigning one congruent prime, one incongruent prime and one neutral prime (letter string) to 

each target.  Each prime word was used as congruent prime for one target and as incongruent 

prime for another target.  Pairings were identical for all participants.  For each participant, 

each target was presented once with a congruent prime, once with an incongruent prime, and 

once with a neutral prime, yielding a total of 288 prime-target trials that were presented in an 

individually randomized sequence.  For the practice block, additional adjectives (16 positive, 

16 negative) and nouns (16 positive, 16 negative) were selected.  Again, each target stimulus 

was presented once in each priming condition, yielding a total of 96 practice trials. 

Design.  The only theoretically relevant factor in Experiment 1 was prime type (Exp. 

1a: associated, non-associated, neutral; Exp. 1b: affectively congruent, affectively 

incongruent, neutral).  Additionally, the assignment of response keys (left or right) to the 
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response categories (Exp. 1a: word vs. non-word; Exp. 1b: positive vs. negative) was 

counterbalanced across participants. 

Procedure.  A diffusion-model analysis is only robust with a substantial number of 

error responses that allow for a reliable estimation of the RT distribution for error responses. 

Hence instructions strongly emphasized speed.  Participants were repeatedly encouraged to 

respond as quickly as possible, even if this would increase their error rate up to 20%.  

Responses that were fast and correct were rewarded with 10 points and slow responses were 

penalized with a subtraction of 10 points in a game-like procedure.  The distribution of the 

previous six correct RTs was used as an adaptive criterion for the categorization of a response 

as fast or slow.  Responses that were below the first quartile or above the third quartile of this 

distribution were categorized as fast or slow, respectively.  Participants earned 50 Euro Cents 

for every block of 72 trials that was finished with zero or more points and an error rate below 

20%. 

 The experiments were implemented on an IBM-compatible Pentium computer, using a 

Turbo Pascal (Borland International Inc., Scotts Valley, CA) 7.0 program operating in text 

mode.  Stimuli were presented in a white font on a black screen.  The experiments were 

composed of 96 practice trials and 8 experimental blocks of 72 (Exp. 1a) or 36 (Exp. 1b) trials 

each. The first two trials of each block were regarded as warm-up trials.  Each trial started 

with the presentation of a cue (***) at the center of the screen.  After 500ms, the cue was 

replaced by the prime stimulus that was presented for 200ms.  After an inter-stimulus interval 

of 50ms (SOA = 250ms) during which the screen was blank, the target was presented at the 

same location.  The target remained on the screen until a response was given.  Target stimuli 

had to be classified as word versus non-word (Exp. 1a), or as positive versus negative (Exp. 

1b), by pressing a left key (D) or a right key (L) on a standard computer keyboard.  Responses 

were registered to the nearest millisecond.  Immediately after the response was registered, the 
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target was removed from the screen, and a new trial started after an inter-trial-interval of 

300ms. 

 During the practice block, trial-wise performance feedback was provided, indicating 

whether a response was regarded as fast or slow, and the current account of points.  In the 

experimental blocks, feedback was given only at the end of each block. 

Results 

Data pre-treatment.  Speed instructions and rewarding of speeded responses were 

used to evoke a high error rate.  However, the logic of payoffs (i.e., errors were not penalized 

up to a rate of 20%) seemed to have encouraged participants to make fast guesses in some 

trials to maximize the chance of winning the performance related reward.  Accordingly, there 

was a large amount of fast outlier latencies which can bias parameter estimates from a 

diffusion model analysis (Ratcliff & Tuerlinckx, 2002).  Therefore, a three-step procedure to 

identify outliers was performed:  First, all latencies below 200ms were excluded.  Second, 

latencies were eliminated starting from the lower edge of the individual RT distributions until 

the number of removed correct responses exceeded the number of removed error responses by 

three (cf. Ratcliff & Tuerlinckx, 2002).  This was done to exclude latencies that were based 

on pure guessing.  Third, from the remaining individual latency distributions values below 

(above) the first (third) quartile minus (plus) 1.5 inter-quartile-ranges were eliminated (outlier 

values; Tukey, 1977).  This procedure led to an exclusion of 6.1% of trials (Exp. 1a) or 7.3 % 

of trials (Exp. 1b), respectively. 

Latencies.  Mean latencies from correct responses were entered in repeated 

measurement ANOVAs with the factor prime type (Exp 1a: associated, non-associated, 

neutral; Exp. 1b: congruent, incongruent, neutral).  Table 1 shows the means and standard 

deviations for all conditions.  In Experiment 1a (associative priming), there was a significant 

effect of prime type on mean latencies, F(2,28) = 10.38, p<.001, ηp
2
=0.43.  Planned contrasts 

revealed that responses in trials with associated primes (M = 492ms) where faster compared 
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to trials with non-associated primes (M = 502ms), F(1,29) = 20.86, p<.001, ηp
2
=0.42.  

Likewise, in Experiment 1b (affective priming), latencies were influenced by prime type, 

F(2,28) = 3.88, p<.05, ηp
2
=0.22.  Again, the contrast between congruent (M = 546ms) and 

incongruent (M = 555ms) trials was significant, F(1,29) = 7.69, p=.01, ηp
2
=0.21.  

Accuracy.  Errors (%) are also presented in Table 1.  For Experiment 1a, the error rate 

depended on prime type, with F(2,28) = 18.00, p<.001, ηp
2
=0.56, for the global analysis and 

F(1,29) = 33.63, p<.001, ηp
2
=0.54, for the contrast of associated (M = 9.4%) and non-

associated (M = 14.4%) primes.  For Experiment 1b, the main effect of priming missed 

significance, F(2,28) = 2.68, p=.08, ηp
2
=0.16.  Error rates did not differ significantly between 

congruent (M = 14.8%) and incongruent (M = 16.1%) trials, F(1,29) = 1.69, p=.17, ηp
2
=0.06. 

Diffusion model analyses.  Response time distributions for correct responses and error 

responses were entered in diffusion model analyses using the fast-dm program (Voss & Voss, 

2007; Voss et al., 2010).  Parameter values were estimated individually for each participant.  

Drift rates (v), non-decisional RT constants (t0), and response-execution biases (d) were 

estimated separately for different prime-types.  The remaining parameters (a, sz, sv , and st0) 

were held constant between conditions.  Table 2 shows the mean estimates for all parameters. 

Table B1 (Appendix B) presents effect sizes for all analyses reported below for the complete 

samples as well as for reduced samples excluding all data from participants for which the 

model had only a weak fit. 

The three parameters that were allowed to vary between prime types (v, t0, and d) were 

entered in separate repeated measurement ANOVAs. In Experiment 1a, only the drift rate (v) 

was influenced by prime type, with F(2,28) = 15.47, p<.001, ηp
2
=0.53, for the global analysis, 

and F(1,29) = 32.02, p<.001, ηp
2
=0.53, for the contrast of associated (M = 3.67) vs. non-

associated primes (M = 2.96), indicating a more efficient processing of targets following 

associated primes.  For t0 and d there were no significant effects of prime type, all F<1. 
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Results were different in Experiment 1b.  In this study, prime type did not influence 

the drift rates, F<1.  However, there was a significant effect on the RT constant (t0), F(2,28) = 

6.85, p<.01, ηp
2
=0.33. Planned contrasts revealed that the non-decisional processes were 

faster in trials with congruent primes compared to trials with incongruent primes, F(1,29) = 

5.20, p<.05, ηp
2
=0.15.  The analysis of the d-parameter failed to reach statistical significance, 

F(2,28) = 2.37; p=.11. 

Table 2 also shows the fit-indices (p) provided by fast-dm (Voss & Voss, 2007).  

These p-values are the probabilities of the Kolmogorov-Smirnov-statistic, that is, they are 

measures for deviances of the empirical from the predicted RT distributions.  In our case, the 

presented p values represent the product of the three different p values based on the 

comparison of empirical and predicted distributions for the three priming conditions.  

Although p cannot be interpreted as the exact probability of a statistical test
5
 it is nonetheless 

obvious that the values are very close to 1, indicating that the empirical distributions are 

reproduced very closely by the predicted distributions. A more thorough test of model fit is 

presented in Appendix B. 

Between-experiments analyses. Our main hypotheses include the prediction of a 

double dissociation between different priming procedures and different diffusion model 

parameters. To test the differential effect of the two priming procedures on the different 

diffusion model parameters in a more straightforward manner, we entered data from 

Experiment 1a and Experiment 1b into combined 2 (experiment: associative priming [Exp. 

1a] vs. affective priming [Exp. 1b]) x 3 (prime type: associated/congruent, non-

associated/incongruent, neutral) ANOVAs for each of the diffusion-model parameters.  

As expected, there was a significant experiment by prime type interaction in the 

analysis of drift rates, F(1, 58) = 21.10, p<.001, ηp
2
=0.27, for the contrast of 

associated/congruent vs. non-associated/incongruent trials. As reported above, this interaction 
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reflects a significant priming effect on the drift rate in associative priming and the absence of 

such an effect in the case of affective priming. 

For t0, there was an interaction of experiment with the contrast associated/congruent 

vs. neutral trials, F(1,58) = 4.80, p<.05, ηp
2
=0.08, indicating a speeding of non-decisional 

processes for associated trials compared to neutral trials in associative priming but not for 

congruent compared to neutral trials in affective priming. The corresponding contrast (non-

associated/incongruent vs. neutral trials) was not significant, F<1, ηp
2
<0.01. 

For the d parameter, priming effects did not differ significantly between experiments, 

both F(1,58)<2.74; p>.10, ηp
2
<0.05, for the contrasts associated/congruent vs. neutral and 

non-associated/incongruent vs. neutral. 

Discussion 

With Experiment 1a and 1b, two different kinds of priming effects were realized:  

Experiment 1a revealed the effect of associative priming in a lexical decision task; in 

Experiment 1b the evaluation task was used to demonstrate an affective priming effect.  

Regarding latencies, priming effects in the two experiments were nearly identical (10ms vs. 

9ms).  To evaluate the absolute magnitude of these RT-based priming effects, it has to be 

taken into account that responses were given at the upper end of the of the speed spectrum 

due to high time pressure with latencies of about 500 ms. For error-rates, only in Experiment 

1a robust priming effect emerged. 

The diffusion-model analyses revealed different cognitive mechanisms underlying 

these priming effects:  In the case of associative priming, effects were based on differences 

regarding the efficiency of response selection processes (drift-rate): If a target is pre-activated 

by an associated prime, it can be identified faster and it can be processed more efficiently. It 

should be noted that the associative priming effect that was mapped onto the drift rate in 

Experiment 1a could also be attributed to a post-lexical process.  In particular, according to 

the compound cue model (Ratcliff & McKoon, 1988), familiarity information uptake should 
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be enhanced for associated prime-target pairs, which should also lead to an increase in drift 

rates.  The present data do not allow us to disentangle influences of target processing and 

familiarity-based post-lexical effects for associative priming.  We will address this issue again 

in the Discussion of Experiment 3b. 

Affective priming effects with the evaluative decision task (Exp. 1b) were based on 

differences in the non-decisional components (t0), indicating that response execution in the 

evaluation task was faster following congruent than incongruent primes.  This finding fits 

with the response facilitation/interference account of affective priming effects in the 

evaluation task (e.g., De Houwer et al., 2002; Klinger et al., 2000; Klauer & Musch, 2002, 

2003):  According to this idea, the processing of the prime stimulus automatically pre-

activates the corresponding response, which then either facilitates the execution of the target 

response in case of a match (congruent target), or interferes with the execution of the target 

response in case of a mismatch (incongruent target). The fact that the effect was mapped on t0 

in the present experiments indicates that response compatibility effects mainly affected the 

execution of correct responses. The lack of an effect on the d parameter indicates that the 

response compatibly effects were not reversed for error responses. We attribute this null 

finding at least in part to the fact that the RT component for error responses cannot be 

estimated very reliably due to the small number of errors.
6
  We postpone a detailed discussion 

of this finding, because we conducted two additional experiments with response priming 

designs (Exp.s 2a and 2b).  

Experiment 1b is not the first study that reports evidence for a response competition 

account of affective priming.  Previous studies provided this evidence indirectly by showing 

that affective congruency effects disappeared for tasks in which affective congruency was not 

confounded with response congruency between prime and target.  The new aspect of our 

study is that it provided direct evidence for response competition effects in affective priming 

within the evaluation task. Such a demonstration is of major importance because it shows that 



Cognitive Processes in Categorical and Associative Priming 25 

priming effects in the standard version of the paradigm (Fazio et al., 1986) are mediated by 

response competition rather than by a modulation of target processing.  Second, by using the 

evaluation task, we can rule out that participants might not have attended to the valence of the 

stimuli (Spruyt, De Houwer, et al. 2007, Spruyt et al., 2009).  Stimulus valence had to be 

processed because it was task relevant.  Nevertheless, processing of a valent prime did not 

have an influence on the drift rate for (affectively congruent or incongruent) targets, 

indicating that affective congruency does not facilitate target processing. Affective 

congruency effects in the evaluation task thus have to be explained differently. The diffusion 

model analyses suggest that the basis of the effect lies in extra-decisional components of 

response facilitation and interference. 

Experiments 2a and 2b 

With Experiments 2a and 2b, categorical priming effects of affective and semantic 

congruency were analyzed more closely.  As discussed above, in our view affective priming is 

a special case of a more general phenomenon. We expect that categorical priming effects—

and this includes affective priming effects—are mediated by response competition processes 

that depend on the current task-set; that is, a categorical match of prime and target leads to 

speeded responses only if the dimension on with the match or mismatch between prime and 

target occurs is task-relevant (Klauer & Musch, 2002).  To test this hypothesis, in Experiment 

2, we manipulated semantic congruency (person vs. object) of prime-target pairs orthogonally 

to affective congruency within the same set of stimulus materials.  In Experiment 2a, an 

evaluation task was used, while in Experiment 2b targets had to be classified as persons vs. 

objects.  A priming effect of evaluative congruency was expected to occur only in the 

evaluation task, whereas an effect of semantic congruency was expected to occur only in the 

semantic categorization task.  Like in Experiment 1b, we predicted that categorical priming 

effects were mapped on the non-decisional components (t0 and/or d). 

Method 
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Participants.  Two independent samples of 32 undergraduate students of the 

University of Trier participated in Experiment 2a (24 female, age mean 22.3) and in 

Experiment 2b (28 female, age mean 20.8) for partial fulfillment of course requirements and a 

small performance related financial reward (see Procedure for details). 

Materials.  Two sets of 64 German nouns were chosen as primes and targets, 

respectively.  Within both sets, one quarter of the stimuli (i.e., 16) were positive person-words 

(e.g., ―mother‖), negative person-words (e.g., ―murderer‖), positive object-words (e.g., 

―chocolate‖), and negative object-words (e.g., ―dirt‖).  Four prime stimuli (one of each 

category) were assigned to each target stimulus.  Similarly, each prime word was assigned to 

four different target words (one of each category).  Prime-target pairings were identical for all 

participants.  For each participant, each target word and each prime word was presented four 

times, once for each priming condition (affective and semantic congruency [e.g., mother - 

friend], affective match/semantic mismatch [e.g., mother - diamond], affective 

mismatch/semantic match [mother - liar], affective and semantic mismatch [mother - 

weapon]), yielding a total of 256 prime-target trials that were presented in an individually 

randomized sequence.  For the practice block, two additional sets of 8 nouns (2 of each 

category) were selected.  Each target and prime stimulus was presented once in each priming 

condition, yielding a total of 32 practice trials. 

Design.  In both experiments, the design essentially comprised the repeated-

measurement factors affective match (congruent vs. incongruent) and semantic match 

(congruent vs. incongruent).  Additionally, the assignment of response keys to the response 

categories (Exp 2a: positive vs. negative; Exp 2b: person vs. object) was counterbalanced 

across participants. 

 Procedure.  Procedural details of Experiment 2 were identical to Experiment 1b with 

regard to feedback, instructions and stimulus presentation.  In Experiment 2, participants 

finished one block of 32 practice trials, and 8 blocks of 32 experimental trials.  The only 
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difference between the procedures of Experiment 2a and 2b pertains to the task:  In 

Experiment 2a stimuli had to be classified according to valence, whereas Experiment 2b 

required a semantic classification (person vs. object). 

Results 

Data pre-treatment.  One participant had to be excluded from Experiment 2b, because 

she made no errors in one condition, which poses a problem for our diffusion model 

algorithm.  For the remaining sample, the data pre-treatment procedure described above (see 

Experiment 1) led to an exclusion of 9.4% (Experiment 2a) or 8.1% (Experiment 2b) of all 

trials.  The high number of outliers is due to the high rate of fast guesses that were provoked 

by the reward of fast responses (see Experiment 1 for details). 

Latencies.  Latencies from correct responses (see Table 3) were entered into 2 

(affective match: congruent vs. incongruent) by 2 (semantic match: congruent vs. 

incongruent) repeated measurement ANOVAs, separately for Experiment 2a and 2b.  In 

Experiment 2a, evaluation latencies from affectively congruent trials (M = 502ms) were 

shorter than latencies from incongruent trials (M = 516ms), F(1,31) = 20.29, p<.001, 

ηp
2
=0.40.  There was no significant main effect of semantic match and no significant 

interaction, both F<1.  Results from Experiment 2b revealed a significant effect for semantic 

match, F(1,30) = 28.99, p<.001, ηp
2
=0.49, with faster semantic categorization responses for 

targets after semantically congruent primes (M = 493ms) than after semantically incongruent 

primes (M = 508ms).  Affective match had no influence on latencies, F<1 for main effect and 

interaction. 

Error rates.  The analyses of error rates revealed parallel results to the analyses of 

latencies (Table 3):  Error rates were reduced in affective match trials (M = 15.1%) compared 

to trials with affectively mismatching primes (M = 18.8%) in the evaluation task (Experiment 

2a), F(1,31) = 6.33, p=.01, ηp
2
=0.18, and in semantic match trials (M = 13.9%) compared to 

trials with semantically mismatching primes (M = 17.6%) in the semantic categorization task 



Cognitive Processes in Categorical and Associative Priming 28 

(Experiment 2b), F(1,30) = 11.97; p<.01; ηp
2
=0.29.  No other effects emerged in both 

experiments, all F < 2.40, p > .12. 

Diffusion-model analyses.  The diffusion model was fitted to individual response time 

distributions with the same specifications as reported for Experiment 1.  Means and standard 

deviations of the resulting parameters are presented in Table 4 (see Table B1 for an overview 

of all effect sizes).  

Drift rate (v), RT-constant (t0), and response-execution bias parameter (d) were 

entered in separate 2 (affective match: congruent vs. incongruent) by 2 (semantic match: 

congruent vs. incongruent) repeated measurement ANOVAs.  Results for Experiment 2a 

revealed a main effect of affective match on t0, F(1,31) = 4.30, p<.05, ηp
2
=0.12, indicating 

faster response execution in affectively congruent trials.  Effects on the execution bias 

parameter d revealed that affective-match had an opposite influence on RT constants of 

correct and error responses, F(1,31) = 5.34, p<.05, ηp
2
=0.15.  Conforming to our 

expectations, negative values of d (indicating a delay of correct responses) emerged in 

affectively incongruent trials.  Although the drift rate is numerically larger for affectively 

matching pairs compared to non-matching pairs, this effect clearly misses the level of 

significance, F(1,31) = 1.19, p = .28, ηp
2
=0.04. No other effects emerged for Experiment 2a, 

all F<1. 

For Experiment 2b, the predicted effects of semantic match on response-execution 

speed emerged for t0, F(1,30) = 12.24, p=.001, ηp
2
=0.29, and for d, F(1,30) = 12.71, p=.001, 

ηp
2
=0.30. These effects indicate (a) that responses were executed faster in the semantic match 

condition, and (b) that correct responses were executed faster than error responses for the 

semantic match condition, whereas error responses were executed faster than correct 

responses for semantically mismatching prime-target sequences.  There were two further non-

predicted marginally significant results:  Firstly, analyses of drift rates revealed an affective 

match by semantic match interaction, F(1,30) = 4.43; p=.04; ηp
2
=0.13.

7
  Secondly, affective 
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match also had an effect on d, F(1,30) = 4.17; p=.05; ηp
2
=0.12.

8 
 No other effects were 

significant, all F<2.25,  >.14. 

As already outlined in the introduction, we also tested whether the pattern of results 

remains stable in a model without response execution bias (d), in which instead the starting 

point was allowed to vary between conditions.  (Unfortunately, the current data do not allow 

us to reliably estimate biases in the starting points (z/a) and response execution biases (d) 

simultaneously; Voss et al., 2010).  For this purpose, data were reanalyzed with a diffusion 

model in which d was fixed to 0 and z was estimated for all conditions.  Results revealed 

shorter non-decisional times (t0) for affective match, F(1, 31) = 12.53; p=.001; ηp
2
=0.29, in 

Experiment 2a, and for semantic match, F(1, 30) = 22.83; p<.001; ηp
2
=0.43, in Experiment 

2b.  No other effects were significant in the analyses of z, v, and t0. 

Between-experiments analyses. Differences between the diffusion model results from 

Experiment 2a and 2b were analyzed with separate 2 (experiment) x 2 (affective match) x 2 

(semantic match) ANOVAs for the diffusion-model parameters. As expected, experiment had 

no influence in the analysis of drift rates, all F(1,61) < 1.78, p>.18, ηp
2
=0.03.  For t0, the 

interactions of semantic match and affective match with experiment were significant, 

experiment x semantic match: F(1,61) = 5.06, p<.05, ηp
2
=0.08; experiment x affective match, 

F(1,61) = 3.51, p<.05 (one-tailed), ηp
2
=0.05. For the d parameter there was a significant 

experiment x semantic-match interaction, F(1,61) = 2.89, p<.05 (one-tailed), ηp
2
=0.05, while 

the experiment x affective match interaction did not reach significance, F(1,61) = 1.53; p=.22, 

ηp
2
=0.02. 

Discussion 

 In Experiment 2, the effects of affective match and semantic match between prime and 

target were analyzed for the evaluation task and for a semantic classification task (i.e., person 

vs. object classification).  As predicted, only the task-relevant dimension had an influence on 

performance (De Houwer et al., 2002; Klauer & Musch, 2002; Klinger et al., 2000):  In the 
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evaluation task, responses were faster in affective match trials, whereas semantic match had 

no influence.  In the semantic classification task, only semantic match facilitated responses.  

Given that the very same stimulus materials were used in both tasks, the pattern of results 

cannot be attributed to any differences in semantic or affective overlap. 

 The diffusion-model analyses revealed that priming effects were mediated by the non-

decisional components (t0 and d):  Response execution (t0) was speeded for trials with a 

prime-target match on the task-relevant dimension.  Results on the response-execution bias 

parameter (d) indicate that for the task-relevant congruent conditions, correct responses were 

executed faster than error responses, whereas for task-relevant mismatches, error responses 

were executed faster than correct responses (negative values of the d parameter in the 

incongruent conditions indicate a faster execution of erroneous responses).  These results 

support the hypothesis that categorical priming effects are mediated by a pre-activation of the 

response that is associated with the prime by the current task-set. 

It should be noted that the non-decisional components cannot reproduce the 

congruency effects that were found for the error rates, because these take influence only on 

latencies but not on response frequencies.  A possible explanation of these error effects is that 

there may be effects on the starting point (z) in addition to the response execution effects (see 

General Discussion).  Therefore, we repeated parameter estimates with an alternative model 

in which starting points z was allowed to vary (and with fixed d). These analyses, however, 

revealed no differences between priming conditions with regard to z. Apparently the 

difference in error frequencies between congruent and incongruent conditions also cannot be 

explained by biases in the starting point, and must be due to some other process that cannot 

easily be identified in the diffusion models we used.  Taken together, the results support our 

assumption that categorical priming effects are largely based on the preparation of the prime 

response rather than on a decision bias.
 



Cognitive Processes in Categorical and Associative Priming 31 

In accordance with the results of Experiment 1b, we found no evidence of affective or 

semantic congruency effects on the drift rates.  We thus conclude that categorical priming 

effects of affective and semantic congruency are not mediated by differences in target 

processing (spreading activation) but instead reflect effects of response facilitation and 

conflict (cf. also Hutchison, 2003). 

Experiments 3a and 3b 

In Experiment 3, we will further investigate the processes of associative priming.  The 

findings from Experiment 1b, 2a, and 2b demonstrated that primes evoke response tendencies 

if they can be mapped onto the task-relevant response categories.  Such response tendencies 

speed responses in congruent trials and slow down responses in incongruent trials.  

Experiment 1a suggested that in the case of associative priming another mechanism prevails:  

In this experiment the associative priming effect was located on the drift rate.  This fits with 

our assumption that primes pre-activate closely associated targets, which are then processed 

more efficiently.  A crucial difference between Experiment 1a (associative priming) and 

Experiments 1b, 2a, and 2b (categorical priming), however, relates to the type of task that was 

used.  Whereas categorical priming effects were always investigated with classification tasks, 

associative priming effects were analyzed with a lexical decision task in Experiment 1a.  To 

rule out that the different findings reflect different tasks rather than different types of prime-

target relationships, two associative priming experiments were realized either with a semantic 

categorization task or a lexical decision task in Experiment 3.  Experiment 3a is an associative 

priming experiment with the lexical decision task and thus a replication of Experiment 1a.  

Experiment 3b is an associative priming experiment with a semantic categorization task 

(living vs. non-living).  We expect that associative priming effects should obtain (in RTs and 

errors) for both kinds of tasks, and that these associative priming effects should be captured 

by the drift rate for both types of task. 
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Using a semantic categorization task for the analysis of associative priming effects in 

Experiment 3b also allows us to rule out that a relatedness effect for associated primes is 

caused by a biasing of familiarity estimates due to compound cues (Ratcliff & McKoon, 

1988).  In contrast to the lexical decision task, decisions in a semantic categorization task 

cannot be based on familiarity estimates because this task contains only words as targets (and 

as primes).  Similarly, processes of a post-lexical semantic matching cannot explain 

associative priming effects in a semantic categorization task because related and unrelated 

prime/target pairs are assigned to both responses of the categorization task with equal 

probability. 

Method 

Participants.  In Experiments 3a and 3b, two independent samples of thirty-two 

undergraduate students (Exp 3a: 22 female, age mean 22.1; Exp. 3b: 22 female, age mean 

22.6) of the University of Trier participated for partial fulfillment of course requirements and 

small performance related financial rewards (see Procedure of Experiment 1 for details). 

 Materials.   A set of 64 pairs of associated German nouns was used.  Half of the 

primes and targets belonged to the category "living" and half were "non-living".  For half of 

the targets, the associated prime belonged to the same semantic category (e.g., lion-tiger, 

bread-butter), whereas for the other half of the targets, the associated prime belonged to the 

opposite semantic category (e.g., honey-bee, king-crown).  The same set of target and prime 

words was also used to create the non-associated prime-target pairs.  Again, for half of the 

non-associated prime-target pairs, prime and target belonged to the same semantic category 

(e.g., king-bee, honey-crown), whereas for the other half, prime and targets belonged to 

different semantic categories (e.g., lion-butter, bread-tiger).  For Experiment 3a, pseudo-

words were generated from all targets by replacing one letter.  Prime-target pairs were 

identical for all participants.  In Experiment 3a (lexical decision task), each target was 

presented once with its associated prime and once with its non-associated prime, yielding a 
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total of 128 trials plus an additional 128 non-word trials.  In Experiment 3b (semantic 

categorization task), each target was presented twice with its associated prime and twice with 

its non-associated prime, yielding a total of 256 trials.  The 256 trials of an experiment were 

presented in an individually randomized sequence for each participant.  For the practice 

blocks, an additional set of eight associated prime-target pairs were used that were presented 

once or twice in each condition (associated, non-associated), yielding 32 practice trials. 

 Design.  The design comprised the factors prime-target association (associated vs. 

non-associated) and prime-target match (congruent vs. incongruent).  For data analysis, only 

the first factor (in the following denoted as prime type) was evaluated.
9
 Additionally, the 

assignment of response keys to response categories (Exp. 3a: word vs. non-word; Exp. 3b: 

living vs. non-living) was counterbalanced across participants. 

 Procedure.  Procedural details regarding feedback and stimulus presentation 

parameters were identical to the previous experiments.  The only difference concerns the 

required tasks, that is, a lexical decision in Experiment 3a and a living versus non-living 

classification in Experiment 3b. 

Results 

Data pre-treatment.  The cleaning procedures described above led to an exclusion of 

8.4% trials in Experiment 3a and 9.1% in Experiment 3b. 

Latencies. Data were collapsed over congruent and incongruent prime-target pairs.
10

 

Latencies of correct responses are presented in Table 5.  In Experiment 3a (lexical decision 

task), responses in trials with associated primes were faster compared to trials with non-

associated primes, F(1,31) = 11.08, p<.01, ηp
2
=0.26.  Similarly, in Experiment 3b (semantic 

classification), categorization responses for targets were also faster after associated primes 

than after non-associated primes, F(1,31) = 30.24, p<.001, ηp
2
=0.49. 

Error rates.  Analyses of error rates also indicated an influence of prime type (Table 

5):  Responses were more accurate following associated primes than following non-associated 
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primes, with F(1,31) = 10.51, p<.01, ηp
2
=0.25, and F(1,29) = 9.56, p<.01, ηp

2
=0.24, 

respectively, for Experiments 3a and 3b. 

Diffusion-model analyses. Results from the diffusion model analyses are presented in 

Table 6 (see Table B1 for an overview of all effect sizes).  Parameters for drift rate (v), non-

decisional-component (t0), and response-execution bias (d) were entered in separate ANOVAs 

with the repeated measurement factor prime type (associated vs. non-associated) as 

independent variable. 

As predicted, mean drift rates for trials with associated primes (lexical decision: 3.91; 

semantic classification: 3.73) exceeded drift rates for trials with non-associated primes 

(lexical decision: 3.42; semantic classification: 3.34), with F(1,31) = 5.42, p<.05, ηp
2
=0.15, 

for Experiment 3a, and F(1,31) = 6.71, p<.05, ηp
2
=0.18, for Experiment 3b.  Additionally, in 

Experiment 3a there was a non-predicted effect of prime type on the t0 parameter, F(1,31) = 

5.01, p<.05, ηp
2
=0.14, indicating a shorter duration of non-decisional processes in the 

associated condition.  No other effects emerged, all F(31) < 1.65; p>.20. 

Between-experiments analyses. We did not predict any differences between the 

diffusion model results from Experiment 3a and 3b. Confirming this prediction, separate 2 

(experiment) x 2 (prime type) ANOVAs revealed only a main effect of association on the drift 

rate, F(1,62) = 11.58, p<.001, ηp
2
=0.16. There were no interactions between experiment and 

prime type, with F(1,62) = 2.37, p=.13, ηp
2
=0.04, for the d-parameter, and F<1 for drift and t0, 

ηp
2
<0.01.  

Discussion 

 In Experiment 3, associative priming effects from two different paradigms were 

analyzed, that is, the lexical decision task (Exp. 3a) and a semantic classification task (Exp. 

3b).  In both experiments, associated primes caused faster and more accurate responses.   

Confirming our predictions, the diffusion-model analysis indicated that behavioral effects are 

based on differences in drift rates, that is, the processing of targets was facilitated by the prior 



Cognitive Processes in Categorical and Associative Priming 35 

presentation of an associated prime.  This result supports a spreading activation account of 

associative priming:  If a target is pre-activated by an associated prime, identification of the 

target and processing of its semantic features is facilitated independent of the task that is to be 

executed. 

 Results of Experiment 3b using a semantic categorization replicated the pattern of 

findings with the lexical decision task (Exp. s 1a and 3a) very closely.  To our knowledge, this 

is the first demonstration of associative priming effects with a semantic categorization task in 

the literature.  The finding of associative priming effects with this kind of task is noteworthy 

for several reasons.  Firstly, associative priming effects with this task cannot be easily 

attributed to post-lexical mechanisms.  Because the task does not contain non-words, and 

associated and non-associated pairs are assigned to the two responses of the task with equal 

probability, responding cannot be biased by semantic matching processes (Neely et al., 1989), 

nor can the effects be due to differences in familiarity between associated and non-associated 

compounds of prime and target (Ratcliff & McKoon, 1988).  Secondly, considering the results 

of the diffusion model analyses, we can be sure that the differences in the drift rate between 

associated and non-associated trials are due to an influence of the primes on the processing of 

the target, yielding strong support for a spreading activation account of associative priming.  

Of course, our findings do not rule out the possibility that under certain circumstances, 

associative priming effects can also be influenced by post-lexical or other mechanisms (e.g., 

strategic expectations).  At least with regard to Experiment 3b, however, we can be fairly sure 

that this was not the case. 

General Discussion 

The goal of the present paper is to improve the understanding of the cognitive 

processes underlying different types of priming.  For this purpose, data from different priming 

studies were entered in a diffusion model data analysis (Ratcliff, 1978).  We argued that in the 

case of associative priming the target concept is pre-activated by spreading activation, which 
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facilitates identification of the subsequently presented target and increases the accessibility of 

its semantic features.  In a diffusion model analysis, such an effect is mapped on the speed of 

information accumulation during the decision process, that is, on the drift rate.  Categorical 

priming, on the other hand, might be based on different cognitive mechanisms: The diffusion 

model account was adopted to test whether the presentation of categorical matching 

(mismatching) primes enhances (impedes) the identification of the target and its semantic 

features (i.e., increasing/decreasing drift rate), or whether it influences the response execution 

stage.  In the latter case, categorical match between prime and target should result in a 

speeded execution of the response that matches the prime. Such an effect would be mapped 

on the extra-decisional parameters of the diffusion model (t0 and d). 

 To test these hypotheses, six priming experiments were conducted that were designed 

for a diffusion model analysis.  In three experiments, associative priming effects were 

analyzed adopting either a lexical decision task (Exp.’s 1a, 3a) or a semantic categorization 

task (Exp. 3b).  Robust associative priming effects emerged in the RT and error data of these 

experiments, regardless of the task.  Diffusion model analyses revealed that these associative 

priming effects were mapped onto the drift rate parameter, indicating that associated primes 

facilitate information uptake during the processing of the target identity and its semantic 

features.  Although we cannot rule out the possibility that this effect also reflects increased 

familiarity estimates of associated prime-target pairs (―compound cue model‖; Ratcliff & 

McKoon, 1988) or effects of a post-lexical semantic matching (Neely et al., 1989) for 

Experiments 1a and 3a, we can rule out these explanations in case of Experiment 3b, in which 

a semantic categorization task was used to analyze associative priming effects. 

Categorical congruency effects for affective and semantic categories (in response 

priming designs) were investigated in three additional experiments (evaluation task: Exp.’s 1b 

and 2a; semantic categorization: Exp. 2b).  Congruency effects of the task-relevant semantic 

dimension were found for RTs in all experiments and somewhat weaker congruency effects 
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were obtained for the error data (significant only for Exp.’s 2a and 2b).  In line with previous 

studies (De Houwer et al., 2002; Klauer & Musch, 2002; Klinger et al., 2000), Experiments 

2a and 2b revealed that congruency effects were obtained only for the categories that 

constitute the relevant response categories of the current task, indicating that response 

facilitation and interference play an important role for the emergence of category congruency 

effects.  Correspondingly, diffusion model analyses revealed that congruency effects were 

always mapped exclusively on the response constants (t0, d), indicating that congruent primes 

facilitate the extra-decisional processes whereas incongruent primes interfere with these 

processes.  In contrast to the associative priming studies, none of these congruency effects 

was mapped on the drift rate, indicating that category congruency effects are not mediated by 

differences in the identification of a target or in the processing of its semantic features. 

Importantly, the diffusion model analyses allowed us to separately estimate the 

mediating effects of decision-related (response selection) and decision-unrelated processes 

(response execution) in a response priming design although we used a task in which these 

effects are typically confounded, if the data are analyzed in terms of RT differences.  The 

novel insight that is gained by the diffusion model analyses of categorical priming designs is 

that even when the congruency dimension of interest was task relevant and thus received full 

attention (evaluation task for affective congruency effects; semantic categorization task for 

semantic congruency effects), these congruency effects were mediated exclusively by 

response competition and not by a modulation of target identification and processing of its 

semantic features. 

Cognitive Processes Underlying Associative Priming 

 Spreading activation.  Drift rates were higher in trials with associated primes 

compared to trials with non-associated primes.  Previous studies on lexical decision using a 

diffusion model analysis showed that drift rates for high-frequency words exceed drift rates 

for low frequency words (see Wagenmakers, 2009, for a review).  It is assumed that drift rates 
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reflect the ease with which a word can be accessed and retrieved from memory.  Short-term 

priming seems to ease the access to and retrieval of strongly associated target words from 

memory.  Our findings thus provide additional support for an account of associative priming 

that is based on the ease of access to target information, either in its spreading activation 

version (Collins & Loftus, 1975) or in the version of distributed memory models (e.g., 

Masson, 1995).
11

 We want to emphasize at this point that the finding of increased drift rates in 

case of related primes might be compatible with other approaches as well (e.g., compound cue  

model, Ratcliff & McKoon, 2003), at least for the lexical decision task. 

 Associative priming effects were also mapped on the drift rate in a semantic 

categorization task (Experiment 3b). This finding indicates that associative priming not only 

facilitates the retrieval of target concepts from a mental lexicon, but that it also facilitates the 

processing of semantic target features, which is necessary for the decision process in a 

semantic categorization task. 

 Earlier models of spreading activation mostly focused on the speed of word 

identification (e.g., Anderson, 1983); consequently such models make predictions with regard 

to response latencies but remain silent with regard to priming effects on accuracy. Our 

findings revealed, however, that associative priming effects were obtained not only on RTs 

but also on accuracies. The diffusion model analysis allows us to identify the underlying 

processes of both RT-based and accuracy-based associative priming effects within one 

analysis, The fact that both effects were explained by a single parameter, the drift rate (v), 

indicates that a pre-activation of associated targets leads not only to a faster identification of 

the target’s identity but also influences the percentage of correct and erroneous responses in 

different tasks. Apparently, a pre-activation of the target increases the probability that the 

target is more often identified correctly as a word or is more often categorized correctly in a 

semantic classification task compared to a condition in which the target is not pre-activated or 

a different concept has been pre-activated by the prime (unrelated priming condition).
12
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 Additional processes. In Experiment 3a, non-decisional processes (t0 parameter) were 

also speeded for associated primes.  This effect was not predicted and did not emerge in 

Experiments 1a and 3b.  A possible explanation of this effect is that associated prime-target 

pairs might foster affirmative responses (see Klauer & Musch, 2002; Wentura, 2000), which 

may generally accelerateresponding.  Alternatively, in the case of non-associated targets, a 

kind of orienting response might inhibit immediate responding and might entail a ―double 

check‖ of the target, if two words are paired that do not fit semantically.  However, the effect 

obtained in only one of three experiments, and further studies are needed to check for the 

robustness of this result. 

Cognitive Processes Underlying Categorical Priming 

Response competition.  In line with previous findings, categorical priming effects 

were observed only if the dimension of interest was task-relevant (De Houwer et al., 2002; 

Klauer & Musch, 2002; Klinger et al., 2000).  No congruency effects obtained for categories 

that could not be mapped onto the response categories of the task.  Supporting the assumption 

that categorical priming reflects processes of response competition, the diffusion model 

analyses revealed that categorical priming effects are based on the duration of non-decisional 

processes (t0 and d).  In all three experiments (Exp. 1b, 2a, and 2b) there was a significant 

reduction of the duration of non-decisional components (t0) for congruent compared to 

incongruent trials.  For Experiments 2a and 2b, additional effects were found for d, indicating 

a relatively faster execution of correct responses in congruent trials and a faster execution of 

error responses in incongruent trials.  However, the estimate for the non-decisional 

component for error responses (i.e., t0+d/2) may be quite unreliable, which can explain why 

effects of categorical priming were less robust for d compared to t0:  Since we included all 

participants who made at least one error in each condition, it is possible that the estimate of 

the d parameter is sometimes based on only very few error responses.  More reliable, and 

therefore more informative, is the estimate for the non-decisional component for correct 
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responses (i.e., t0-d/2).  This reasoning explains why response competition effects that were 

observed for categorical priming were distributed over t0 and d.  

As elaborated above, we expect that response priming takes place at a late stage of 

information processing, that is, during response execution.  This view converges with 

previous experimental evidence (De Houwer et al., 2002; Klauer & Musch, 2002; Klauer et 

al., 2005; Klinger et al., 2000) and with recent electrophysiological studies that provided 

evidence for an activation of motor responses by the primes in categorical priming designs 

(Bartholow, Riordan, Saults, & Lust, 2009; Eder, Leuthold, Rothermund, & Schweinberger, 

2012). 

Another view of response priming is that primes influence the decision in the sense of 

a response bias in signal detection theory. In this case, prime-information enters the decisional 

process, either supporting or working against the target information. This latter account on 

response priming might be seen as standing between early target-access-based models and 

late response-based explanations. Unfortunately, with the present data we cannot empirically 

distinguish between these two accounts (i.e., prime influence on response execution vs. on 

response selection), because the diffusion model analysis tends to become unstable if the 

starting point z is estimated for RT distributions that contain only few error responses (see our 

discussion of additional processes in the following paragraph; cf. Voss et al., 2010).  

 Additional processes.  Because prime effects were mapped on extra-decisional 

components, the response competition mechanism discussed above cannot explain any effects 

of prime type on error rates.  Such effects are, however, not uncommon in categorical priming 

(e.g., Draine & Greenwald, 1998), and were also found in Experiments 2a and 2b of the 

present paper.  This indicates that additional effects might contribute to categorical priming 

that could not be adequately mapped in the present analyses.  Theoretically, there are three 

possible sources of error effects in the diffusion model:  A reduced error rate might be based 

on (1) a higher drift rate, (2) more conservative response criteria (i.e. increased threshold 
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separation), (3) a response bias that facilitates the correct response (i.e., the starting point is 

moved towards the correct response). We will address these possibilities in turn. 

 One of the most important results of the present studies is that we found virtually no 

evidence for the first possible source of error effects in categorical priming, a difference in 

drift rates.  Only in one experiment (i.e., Exp. 2b), there was a small interaction effect of 

prime types on drift rate:  Drift was increased if prime and target matched affectively and 

semantically.  Although this effect was found to be based on an extreme outlier value for one 

participant in the present study (see Footnote 6), it is possible that target processing might be 

facilitated if prime and target have many overlapping features (relatedly, Exp. 3a revealed that 

priming effects for associatively related prime/target pairs were somewhat stronger if these 

pairs also matched on an irrelevant semantic dimension; see Footnote 9).  In this case, 

processes might become more similar to those in associative priming (see Carson & Burton, 

2001; Masson, 1995).  However, we would expect such an effect only in the case of multi-

dimensional overlap, a case in which it is difficult—or even impossible—to exclude 

associations as a potential source of relatedness effects. 

 The second possibility to explain reduced error rates in compatible trials within a 

diffusion-model framework is the assumption of more conservative response criteria.  To 

make the model more parsimonious (and thereby more robust), we decided to fix the 

threshold parameter across conditions.  Therefore, we have no empirical test for such a 

mechanism.  However, a more conservative response criterion would imply that the increased 

error rate is accompanied by slower responses.  Therefore, the decreased latencies in 

compatible trials render this possibility less plausible. 

 Additionally, primes could influence error rates via the starting point:  If one assumes 

that prime information pushes the starting point towards the corresponding threshold, this 

could explain reduced error rates and faster latencies.  This mechanism can be described as a 

decision bias (see Voss et al., 2008, for an empirical demonstration of such a decision bias in 
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a motivational context) or—in the terminology of signal detection theory (Macmillan & 

Creelman, 2005)—as a response bias (which should not be confused with the response-

execution bias discussed above).  Such a mechanism can easily explain effects of categorical 

priming on error rates.  Unfortunately, the present data did not allow us to reliably estimate 

starting points.  Simulation studies from our own lab (Voss et al., 2010) indicated that results 

of the diffusion model were often instable and sometimes dramatically biased if there were 

very few errors (e.g., less than 5), and starting points were not fixed to a/2.  Therefore, the 

present data is not appropriate for a reliable test of this decision-bias hypothesis.  Nonetheless, 

we re-examined data of Experiment 2a and 2b with a model allowing for different starting 

points (see section Diffusion Model Analyses from Experiment 2).  The results of these 

analyses suggested that starting points did not play a major role in explaining categorical 

priming effects. 

 Recently, diffusion models have been developed for flanker tasks (Hübner, 

Steinhauser, & Lehle, 2010; White, Ratcliff, & Starns, 2011). Flanker tasks are structurally 

similar to categorical priming tasks because flankers—as categorical primes—activate the 

same response set as the targets. In the proposed models, flanker effects were mapped on the 

drift rates, which seems to conflict with our predictions. However, the models that were used 

in these studies had only one parameter for the duration of extra-decisional processes which 

was applied for both congruent and incongruent flankers. Thus, the models did not allow the 

mapping of flanker congruency effects on response execution times, which might have forced 

a mapping of the effects onto the parameter that reflects decisional processes. Thus it might 

be helpful to re-analyze these data with models with more parameters in order to allow for a 

stronger test of which of the two processes underlies flanker effects (faster response selection 

vs. faster response execution). Of course, there are also important procedural differences 

between flanker and categorical priming paradigms that might also explain the differences in 

findings: Firstly, the simultaneous presentation of flanker and target stimuli might prevent 
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effects based on response preparation, because targets will usually be categorized faster than 

flankers (due to selective attention). Secondly, only a very small set of stimuli is typically 

used in flanker tasks, all of which are assigned to specific responses and that repeatedly occur 

also as targets during the task, which introduces episodic retrieval effects as an important 

additional source of flanker effects (see Rothermund, Wentura, & De Houwer, 2005; Frings, 

Rothermund, & Wentura, 2007) that is not present in a typical priming study. 

The discussion of alternative mediating processes on the basis of the diffusion model 

did not yield a satisfactory answer to the question how the effects of categorical priming on 

error rates should be explained.  Although our arguments revealed that these effects are 

probably not mediated by differences in drift rate, thresholds, or starting point, a positive 

answer of how these effects should be explained is still missing.  A plausible explanation of 

this effect is that in some cases the response activation that is triggered by the prime is so 

strong that it elicits a response before the processing of the target is terminated.  In such a 

case, the prime determines the response before target processing has reached a decision 

threshold.  The diffusion model is incapable of explaining or modeling such an effect, because 

in this case, response selection and execution do not follow the idealized process model of a 

target-based decision process.  Instead, such an effect should rather be modeled in terms of a 

simple race model (e.g., Bundesen, 1987), in which the prime response wins the race against 

the target response.  It might be a worthwhile endeavor for future research to develop an 

expanded version of the diffusion model that includes the possibility of prime-based 

responding, e.g., by combining two independent diffusion processes.  For the present 

purposes, however, it suffices to say that any categorical priming effect that is mediated by a 

direct, prime-based response selection and execution is fully compatible with a response 

competition account, and is completely unrelated to an explanation of categorical priming 

effects in terms of facilitated target processing. 

Affective Priming—A Special Case? 
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In the discussion above we considered affective priming in the evaluation task as one 

example of congruency effects in categorization tasks.  The diffusion model analyses 

suggested that affective priming is driven by the same underlying mechanism as semantic 

congruency effects in a semantic (non-affective) categorization task.  However, the question 

remains whether there is something special in affective priming. 

There is a growing body of studies demonstrating affective priming in non-affective 

tasks like the lexical decision task or the naming task (Bargh et al., 1996; Giner-Sorolla, 

Garcia, & Bargh, 1999; Hermans et al., 1994, 2001; Spruyt et al. 2002, 2004, 2007, 2009; 

Wentura, 2000; Wentura & Frings, 2008; Wittenbrink et al., 1997, 2001a).  Obviously, the 

response competition model of affective priming that has been presented here cannot explain 

effects of affective congruency on non-affective tasks.  Therefore, cognitive mechanisms that 

drive affective priming seem to vary between different tasks. 

Spruyt , De Houwer, and colleagues (2007) highlight the role of (selective) attention to 

the valence dimension in affective priming.  The authors expect affective priming effects to 

influence the encoding and processing of affectively congruent targets if, and only if, the 

experimental context encourages the participants to process valence (but see Werner & 

Rothermund, 2012, for evidence to the contrary).  The absence of any differences in drift rates 

in the affective priming experiments (Exp. 1b and 2a) conflicts with this conception of 

affective priming.  A crucial difference between the present studies and those of Spruyt, De 

Houwer et al. (2007), which might account for the difference in findings, lies in the nature of 

materials that were used in the studies.  Whereas (positive and negative) words were used in 

our experiments, Spruyt and colleagues employed pictures in their experiments.  In addition, 

participants had to name the category of the target picture rather than pressing an arbitrary key 

on the computer keyboard.  These differences might account for the differences in findings, 

because picture processing might give rise to much stronger emotional experiences than 

reading of words, and naming of intrinsically valent response categories might further 
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contribute to the dominance of valence processing in the experiments of Spruyt and 

colleagues.  Of course, it would be interesting to reanalyze the data of Spruyt with a diffusion 

model data analysis, provided that enough errors were committed to allow for a reliable 

estimate of parameters. 

Comparison to other response time distributional analyses 

As noted in the introduction, Balota and colleagues (2008) adopted a somewhat 

complementary approach to diffusion models for analyzing priming data that also investigates 

response time distributions rather than comparing average RTs or error frequencies
13

. 

Whereas diffusion models proceed from an explicit model that predicts how parameters may 

change as a function of manipulations, an alternative approach is to fit an empirical RT 

distribution to a theoretical function that is known to capture important aspects of typical RT 

distributions and to explore how parameters of this function vary as a function of 

manipulations. The theoretical function used by the authors is the ex-Gaussian distribution 

with parameters μ, σ, and τ. The authors conducted several semantic priming experiments, 

employing different manipulations (SOA, target degradation, and masking). Since the two 

approaches—on the one hand diffusion models, on the other hand ex-Gaussian analysis—

proceed from different theoretical vantage points, results are not easily comparable. The 

authors argue, however, that ―if a variable has an isolated effect on the drift rate [i.e., if 

predictions were made from a diffusion model perspective—added], the most straightforward 

prediction [for the ex-Gaussian analysis—added] would be a change in μ, σ, and τ in the 

distribution‖ (p. 499). In fact, for the condition that is most similar to our experiments (i.e., 

lexical decision with a short SOA of 250 ms), Balota and colleagues report that associatively 

related primes led to a shift of the entire RT distribution (decrease in parameter μ in 

combination with a decrease in the standard deviation, parameter σ), suggesting that some 

kind of a ―head start‖ mechanism like spreading activation might be responsible for 

associative priming effects. For other experimental conditions, priming effects mainly 
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affected only the μ parameter: It thus remains an open question whether these two approaches 

indeed suggest different conclusions with regard to the underlying mechanisms of priming 

effects. Nevertheless, it seems clearly a worthwhile endeavor to continue these two lines of 

modeling that go beyond simple analysis of mean RTs (see Mazke & Wagenmakers, 2009, for 

a further comparison of exGaussian and diffusion model analysis). In particular, it would be 

interesting to compare categorical and associative priming in order to see whether and how 

the two types of priming can also be dissociated with this kind of RT distribution analysis. 

Some Methodological Caveats 

Validity of the Diffusion Model Parameters. The diffusion model provides a 

theoretical framework to explain different effects of priming. However, one must be careful in 

the interpretation of diffusion model results. The most important caveat regards the validity of 

the model parameters: Only rarely will there be a one-to-one relationship between a model 

parameter and a single psychological process. Thus, it is possible that the observed pattern of 

results is compatible with other theoretical accounts as well. Although the diffusion model 

parameters are by no means a perfect measure of psychological processes, they are still much 

more specific than most other measures that are commonly used in experimental psychology 

(e.g., mean response times, error rates, psycho-physiological measures), and therefore provide 

much more detailed information regarding the underlying processes of experimental effects. 

For example, Voss and colleagues (2004) demonstrated that specific experimental 

manipulations were mapped on specific parameters. Such experiments strongly support the 

parameters’ interpretational validity.  

Another caveat regards the problem of identifying the d parameter, that is, the 

parameter mapping differences in speed of response execution. As described in detail by Voss 

et al. (2010), effects of d and z can mimic each other: It is difficult to show empirically 

whether differences in latencies between two response alternatives are based on different 

starting points or on different execution times.  That is unfortunate, because these possibilities 



Cognitive Processes in Categorical and Associative Priming 47 

represent different cognitive processes.  However, effects of target accessibility (i.e., drift 

rate) cannot be mimicked by z or d. Therefore, our results clearly suggest that (a) associations 

increase target accessibility and (b) categorical match does not increase target accessibility. 

We can be less sure whether categorical match speeds response execution (as argued for in 

this paper) or biases response selection. 

The same argument can be extended to some degree for other diffusion model 

parameters as well: Especially in the case of small sample sizes (as in the present 

experiments), there might be tradeoffs between parameters. For example, slow responses can 

be explained either by a conservative criterion or by a small drift rate. To disentangle the two 

possibilities, the diffusion model analysis uses information of the form of the RT 

distributions, and the percentage and speed of error responses. However, the smaller the 

distributions are, the less reliable results from the parameter estimation procedures will be. 

This will primarily add noise to the estimation procedure. However, for small sample sizes 

systematic biases in estimates cannot be excluded; this would be especially problematic, if 

biases for the estimates differ between conditions (e.g., estimates from one condition might be 

more stable because of higher error rates). We consider this problem to be small in our case, 

however, because differences in performance between conditions were rather small. 

Material Effects in Priming Studies. A problem that is independent of the modeling 

approach arises from the stimulus selection (see Hutchison, Balota, Cortese, & Watson, 2008, 

for a discussion of material effects). We thus cannot rule out the possibility that priming 

effects are influenced by the materials used for our studies.  The consistent distinction in the 

parameterization of categorical and associative priming effects that we observed across 

different experiments, using different materials and tasks, however, may render the possibility 

unlikely that these differences are due to confounds in the selected stimulus materials. 

It is also important to note that we included associated prime-target pairs also for non-

word trials (e.g., boy-girk) in the lexical decision task. This was done in order to avoid effects 
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of semantic matching. Since semantic matching might affect different parameters of the 

model, we decided to eliminate these effects in order to more clearly map the effects of 

spreading activation and response-based processes in associative and category priming onto 

specific parameters of the model. At the same time, however, this feature sets our study apart 

from many previous associative priming studies that used only unrelated prime-target pairs 

for non-word trials. Investigating the effects of semantic matching (and other post-lexical 

processes) on the different parameters in a diffusion model analyses thus remains to be 

investigated in future studies. 

Finally, it should be noted that a relatively high proportion of related prime-target 

pairs (i.e., 50% of the word-word trials) was chosen in all our experiments in order to make 

associative and categorization priming experiments as similar as possible. Deviating from the 

50% proportion would introduce strategic effects in the category priming experiments 

because the prime then would become predictive of the target response (Klauer, Rossnagel, & 

Musch, 1997). Using a large percentage of related prime-target pairs in the associative 

priming experiments, however, might trigger post-lexical processes. It should be noted, 

however, that the same pattern of associative priming effects and the respective parameter 

estimates obtained also in Experiment 3b, in which an influence of post-lexical processes can 

be ruled out due to the use of a categorization task. In addition, due to the short SOA that was 

used in all experiments (250 ms) it is highly unlikely that priming effects were influenced by 

strategic expectancies (active generation of related targets on the basis of the primes; Neely, 

1977; see also Footnote 10). 

Effect Sizes. The last methodological issue we want to highlight here regards effect 

sizes. In our experiments, average RT differences between related and unrelated (or between 

congruent and incongruent) prime-target pairs ranged between 10 ms to 20 ms. These 

differences are in the typical range for sequential priming effects: For example, Balota et al 

(2008) reported semantic priming effects between 13 ms and 40 ms for conditions using short 
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SOAs and undegraded targets in a lexical decision task (larger effects were found for longer 

SOAs and degraded targets). To evaluate the absolute sizes of RT differences in our studies, it 

has to be taken into account that our experimental setup elicited very fast response times 

(about 500 ms). We induced high time pressure to increase the number of errors, which was 

necessary for our modeling approach. By increasing response speed, absolute RT differences 

are somewhat reduced. Still, all predicted priming effects were significant for RTs in all 

reported experiments. A look at standardized effect sizes for the model parameters (Table B1) 

reveals large effect sizes for the predicted effects, and nearly zero effects on parameters that 

should not be influenced, especially for Experiment 1a and 1b, which employ standard 

priming designs. In the more complex Experiments 2 and 3, effects are somewhat weaker, but 

still of medium size. 

Summary, Implications, and Conclusions 

In this article, diffusion model analyses were used to enhance our understanding of 

cognitive processes underlying different forms of priming.  In experiments with associated 

prime-target pairs, results showed effects on a drift parameter (v), indicating that associated 

primes improved the accessibility of targets and their semantic features.  In experiments 

investigating the effects of a categorical match between prime and target, affective and 

semantic congruency effects were mapped onto non-decisional parameters (d and t0) if, and 

only if, the dimension of the categorical match was relevant for the ongoing task. 

Implications for models of associative and semantic memory.  Our findings suggest 

that strongly associated concepts seem to be connected by specific links that allow a 

spreading of activation.  On the other hand, such a network metaphor seems not well suited to 

model the relations between (not associated) exemplars of a semantic category.  At least in 

our experiments, evidence did not support the view of such direct interconnections among the 

various members of a category.  This may be due to various reasons: Activation within a 

superordinate category may be distributed among too many channels, leading to a fan effect 
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(Anderson, 1974), or the spread of activation may be confined to only the most dominant or 

prototypical exemplars of a category (e.g., Rosch, 1978; but see Wentura & Frings, 2005).  

Alternatively, propagation of activation across multiple links (―mediated priming‖, Balota & 

Lorch, 1986) might simply be too weak an effect in order to occur from exemplars via 

category nodes to other exemplars. 

Implications for Social Cognition.  Our results have shown that affective and 

semantic categorical congruency effects cannot be taken as evidence for direct associative 

links between social categories or attitude objects and other concepts.  Instead, these 

congruency effects are most parsimoniously explained by the assumption that in the context of 

a certain task, irrelevant prime stimuli also become categorized automatically, which leads to 

response competition effects between primes and targets.  Our results thus do not lend support 

to strong versions of semantic or affective network models in Social Cognition (e.g., Bower, 

1981).  This statement is not meant to deny the influence of prejudice and stereotypes on 

perception and judgment (see, e.g., Fiske, 1998, and Moskowitz, 2005, for reviews).  We 

rather want to warn against a too simplistic theoretical explanation of these influences in 

terms of a semantic-affective associative network model.  Given our findings, it seems 

unlikely that activation of a category leads to an automatic and global pre-activation of all 

information (affective and conceptual) that is related to this category.  Instead, such an 

activation effect should occur only for highly specific and strong associates of a category 

concept. To explain the ubiquitous influence of prejudice and stereotypes on information 

processing, we assume that a combination of category and context is necessary to provide 

associations that are strong and specific enough to allow for an automatic spreading of 

activation to related attributes (e.g., Blair, 2002; Casper, Rothermund, & Wentura, 2010, 

2011; Wittenbrink, Judd, & Park, 2001b). 

Potential of diffusion model data analyses in Cognitive Psychology.  Diffusion model 

data analyses provide an additional tool that allows a direct identification and separation of 
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different underlying processes of priming effects.  A major advantage of such an analysis of 

priming effects is that it allows separating and identifying underlying processes even in the 

absence of experimental manipulations that are often used to control or eliminate certain 

influences.  By identifying processes statistically rather than experimentally, one can rule out 

the possibility that experimental manipulations might have influenced or changed the relevant 

processes under investigation. 

The present study extended the use of diffusion model data analyses to sequential 

priming paradigms.  The separation of influences that are mediated at the level of target 

processing and response competition was a major finding of our study.  This dissociation 

between priming effects located at the stage of target processing and response execution 

might also provide a useful key towards a better understanding of priming effects in other 

areas of Cognitive Psychology for which different theoretical explanations have been brought 

forward.  For example, processing- and response-level explanations represent alternative 

accounts of Negative Priming effects (e.g., Rothermund, Wentura, & De Houwer, 2005; 

Houghton & Tipper, 1994). Tse, Hutchison, and Li (2011) recently published a study in which 

inhibition-based and retrieval-based negative priming effects could be dissociated with 

distributional analyses (i.e., conditions fostering inhibition led to a shift of the complete RT 

distribution whereas under conditions that strengthened retrieval processes NP effects were 

increased for the later parts of the RT distribution). On the basis of the diffusion model, we 

would expect that inhibition-based effects should map onto decision-related parameters (drift 

rate or starting point) whereas negative priming effects that are based on a retrieval of 

distractor-response bindings should affect response-related parameters (t0 or d). A 

combination of experimental and statistical methods should shed additional light on the 

underlying processes and mechanisms in this paradigm as well.  
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Footnotes 

1 
By definition, post-lexical processes are not mediated by influencing the encoding and 

identification of the target stimulus.  However, according to the compound cue model, post-

lexical effects that are instantiated by the compound of prime and target influence the very 

process of familiarity information sampling that leads to the word/non-word decision and is 

also driven by the target word. Post-lexical semantic matching effects, on the contrary, are 

assumed to bias responses by a different route than the target, that is, by a strategic biasing of 

word/non-word responses. 

 

2
 To our knowledge, associative priming effects have not yet been investigated with semantic 

categorization tasks because response competition is not a problem with the more typical 

tasks that are used to analyze associative priming (lexical decision, pronunciation).  

Nevertheless, it would also be interesting to analyze associative priming effects with semantic 

categorization tasks in order to control for post-lexical influences (see our Exp. 3b below). 

 

3 
Although not the focus of this paper, the diffusion model might also be used to investigate 

the influence of post-lexical processes on priming effects. Depending on the nature of these 

processes, effects should be mapped onto different parameters of the model: Familiarity-based 

effects of associated prime/target pairs (―compound cue effects‖) in the lexical decision task 

can be expected to be mapped onto the drift rate. Priming effects due to post-lexical semantic 

matching that are mediated by an activation of a specific response should instead be mapped 

onto the extra-decisional parameters of the model (d, t0). 

 

4 
Non-words were also either related or unrelated to primes. Thus, there was no increased 

portion of non-word responses for unrelated targets, which should eliminate semantic 

matching strategies. 
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5
 Because the form of the predicted CDFs is adapted post-hoc to the individual data sets, the 

KS test becomes more liberal, that is, given the null hypothesis is true, values of p<.05 will be 

achieved in less than 5% of tests. 

 

6
 The precision of the estimates for the non-decisional component for error responses is lower 

than the precision of all other parameters, because it depends exclusively on the leading edge 

of the error distribution, which in some cases comprises only a few responses.
 

 

7
 For one participant, the estimate for the drift in affectively and semantically congruent trials 

(v = 7.36) was a far-out value (i.e., this value was more than 3 inter-quartile ranges above the 

third quartile of the distribution of drift rates; Tukey, 1977).  If this participant was excluded 

from the analysis, the interaction was no longer statistically significant, F(1,29) = 3.21; 

p=.08; ηp
2
=0.10. 

 

8
 For two participants, estimates for the d-parameter were far-out values (i.e., more than 3 

inter-quartile ranges above the 3 quartile of the according distributions of d-parameters; 

Tukey, 1977) for at least one condition.  If these participants were excluded from the analysis, 

the effect of affective match was no longer significant, F(1,28) = 2.58; p=.12; ηp
2
=0.08, while 

the effect of semantic match remained unaffected, F(1,28) = 10.95; p<.01; ηp
2
=0.28. 

 

9
 If the factor semantic match (congruent vs. incongruent) was included in the analyses, we 

had to exclude too many participants, who made no error in one condition, because the 

parameter estimation of the diffusion-model analyses are unstable with low error rates. 
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10 
Additional analyses including categorical prime-target match as an additional factor 

revealed the following results: For Experiment 3a, the main effect of association was qualified 

by an association by categorical match interaction, with F(1,31) = 13.83; p=.001; ηp
2
=0.31 for 

the latency analysis, and F(1,31) = 5.85; p<.05; ηp
2
=0.16 for the error analysis, indicating in 

both cases stronger effects of association in the match condition. No main effects of 

categorical match emerged in the RT and error analyses, both F<1. In Experiment 3b, there 

were main effects of categorical match, with F(1,31) = 35.31; p<.001; ηp
2
=0.53 for the 

latency analysis and F(1,31) = 17.63; p<.001; ηp
2
=0.36, for errors, indicating a better 

performance in match trials that conceptually replicated the findings of Experiment 2b. 

Interactions were not significant, both F(1,31) < 1.51; p>.22. As pointed out above, we could 

not investigate these effects further with the diffusion model analysis because of the low error 

rates. 

 

11
 Although we used a short SOA in all our experiments that should eliminate strategic 

expectation-based processes, a recent study by Hutchison (2007) revealed that for participants 

high in attentional control, expectancy-based processes might also play a role in associative 

priming at a short SOA (267 ms). It should be noted, however, that differences in the 

predictiveness of the primes were highly salient in the study by Hutchison (2007; for 

example, predictive and non-predictive primes were presented in different colors), which 

might have increased the influence of strategic processes in this study.  

 

12
 An anonymous reviewer pointed out that equating the drift rate with target activation might 

be problematic for diffusion model accounts that claim constancy of drift over decision time 

because target activation might increase with the time the target is on screen, which would 

lead to an increasing drift rate.  Certainly, activation will increase rapidly during encoding 

(reflecting an extra-decisional process that is mapped onto the t0 parameter); the activation 
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level after encoding will be higher for primed compared to unprimed targets. Once, the 

decisional phase has started, we assume a constant activation level and drift rate (note that the 

decisional phase takes less than 100ms, as is evident from the difference of latencies and non-

decisional processes). 

 

13
 We thank an anonymous reviewer for making us aware of this work.  
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Table 1 

Means (M) and standard deviations (SD) of correct latencies (ms) and error rates (%). Data 

from Experiment 1. 

   Latencies  Errors 

Exp. Prime  M SD  M SD 

1a associated  492 53  9.4 5.2 

 non-associated  502 53  14.4 5.3 

 neutral  497 58  11.6 5.7 

1b congruent  546 56  14.8 5.5 

 incongruent  555 57  16.1 5.5 

 neutral  550 56  16.4 5.9 
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Table 2 

Means (SDs in parentheses) of estimates for the diffusion model parameters and for the fit 

index (p).  If parameters were fixed across conditions, the value is only presented in the top 

row of the corresponding experiment (results from Experiment 1). 

 

Exp. Prime a v t0 d sz sv st0 p 

1a associated 0.72 

(0.13) 

3.67 

(1.03) 

0.411 

(0.041) 

0.008 

(0.023) 

0.21 

(0.20) 

0.64 

(0.59) 

0.14 

(0.05) 

.99 

(.02) 

 non-associated - 2.96 

(0.80) 

0.414 

(0.036) 

0.009 

(0.025) 

- - - - 

 neutral - 3.30 

(1.02) 

0.414 

(0.041) 

0.010 

(0.021) 

- - - - 

1b congruent 0.77 

(0.11) 

2.46 

(0.58) 

0.426 

(0.035) 

-0.031 

(0.037) 

0.34 

(0.13) 

0.36 

(0.20) 

0.17 

(0.04) 

.99 

(.07) 

 incongruent - 2.52 

(0.64) 

0.437 

(0.032) 

-0.022 

(0.040) 

- - - - 

 neutral - 2.53 

(0.77) 

0.441 

(0.037) 

-0.007 

(0.039) 

- - - - 
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Table 3 

Means (M) and standard deviations (SD) of correct latencies (ms) and error rates (%). Data 

from Experiment 2. 

 Affective Semantic  Latencies  Errors 

Task P/T-relation P/T-relation  M SD  M SD 

Evaluation match match  502 63  15.4 6.7 

(Exp. 2a) match mismatch  502 55  14.8 7.8 

 mismatch match  516 62  19.0 8.3 

 mismatch mismatch  516 56  18.6 8.7 

Semantic  match match  492 51  13.3 4.9 

classification match mismatch  508 47  18.3 5.9 

(Exp. 2b) mismatch match  494 47  14.6 5.0 

 mismatch mismatch  508 47  16.9 7.6 
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Table 4 

Means (SDs in parenthesis) of estimates for the diffusion model parameters and for the fit 

index (p).  If parameters were fixed across conditions, the value is only presented in the top 

row of the corresponding experiment (Results from Experiment 2). 

Aff.  

P/T-

relation 

Sem. 

P/T-

relation a v t0 d sz sv st0 p 

Evaluation (Exp. 2a) 

match match 0.70 

(0.13) 

3.13 

(1.00) 

0.418 

(0.040) 

0.002 

(0.023) 

0.31 

(0.15) 

0.65 

(0.49) 

0.15 

(0.05) 

.94 

(.07) 

match mismatch - 3.12 

(1.22) 

0.417 

(0.038) 

-0.001 

(0.028) 

- - - - 

mismatch match - 2.89 

(0.99) 

0.423 

(0.041) 

-0.014 

(0.030) 

- - - - 

mismatch mismatch - 2.94 

(1.02) 

0.423 

(0.038) 

-0.014 

(0.038) 

- - - - 

Semantic classification (Exp. 2b) 

match match 0.69 

(0.10) 

3.42 

(0.94) 

0.415 

(0.038) 

0.008 

(0.016) 

0.29 

(0.13) 

0.50 

(0.33) 

0.16 

(0.05) 

.94 

(.05) 

match mismatch - 2.99 

(0.77) 

0.420 

(0.036) 

-0.007 

(0.020) 

- - - - 

mismatch match - 3.08 

(0.67) 

0.411 

(0.033) 

-0.002 

(0.015) 

- - - - 

mismatch mismatch - 3.26 

(1.13) 

0.422 

(0.037) 

-0.009 

(0.018) 

- - - - 
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Table 5 

Means (M) and standard deviations (SD) of correct latencies (ms) and error rates (%). Data 

from Experiment 3. 

   Latencies  Errors 

Task Prime  M SD  M SD 

Lexical decision associated  516 60  10.2 6.8 

(Exp. 3a) 

 

non-associated  527 67  14.1 7.0 

Semantic classification associated  500 68  13.5 7.0 

(Exp. 3b) non-associated  511 66  16.2 7.0 
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Table 6 

Means (SDs in parenthesis) of estimates for the diffusion model parameters and for the fit 

index (p).  If parameters were fixed across conditions, the value is only presented in the top 

row of the corresponding experiment (results from Experiment 3). 

Task Prime a v t0 d sz sv st0 p 

Lexical 

decision 

associated 0.73 

(0.20) 

3.91 

(1.21) 

0.433 

(0.039) 

0.009 

(0.028) 

0.27 

(0.17) 

0.77 

(0.70) 

0.16 

(0.06) 

.99 

(.02) 

(Exp. 3a) non-

associated 

 

- 3.42 

(1.26) 

0.442 

(0.043) 

0.016 

(0.030) 

- - - - 

Semantic 

classification 

associated 0.71 

(0.20) 

3.73 

(1.48) 

0.416 

(0.040) 

-0.002 

(0.035) 

0.31 

(0.19) 

0.89 

(0.66) 

0.17 

(0.04) 

.97 

(.12) 

(Exp. 3b) non-

associated 

- 3.34 

(1.14) 

0.421 

(0.040) 

-0.012 

(0.032) 

- - - - 
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Figure 1 

The Diffusion Model. The diffusion process starts in each trial of an experiment from the 

interval sz around z and is driven by a constant drift with mean v and standard deviation sv. 

The diffusion process is assumed to be noisy, that is, random noise is added to the drift rate, 

resulting in different process paths in each trial of an experiment.  The gray line depicts a 

sample path for the diffusion process.  The diffusion process terminates as soon as the upper 

threshold (a) or the lower threshold (0) is reached.  Then, the decision phase is completed and 

the response linked to the threshold is initiated.  Predicted distributions for decision times are 

sketched outside the thresholds. 
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Appendix A: Diffusion Model Analyses 

of Lexical Decision Data including the non-word trials 

 The diffusion model analyses of the lexical decision experiments (Exp. 1a and Exp. 

3a) reported in the main part of this paper are based on responses only from trials with "word" 

targets. Non-word trials were ignored because we had no hypothesis whether associations 

would help or impede correct rejections. Here, we will report results from diffusion model 

analyses of the complete data sets including non-word trials. Parameters were estimated for a 

model with the upper threshold used for "word" responses and the lower threshold used for 

"non-word" responses, thus yielding positive drift rates for word trials and negative drift rates 

for non-word trials. Drift and response-time constant were estimated as a function of target 

type (word vs. non-word) and prime type (Exp. 1a: associated, non-associated, or neutral; 

Exp. 3a: associated vs.  non-associated). The response-tendency-parameter d was estimated 

only in dependency of prime type (and not of target type), because this parameter refers to 

differences in the speed of response execution of responses connected to the lower vs. upper 

threshold, and is thus conceptually independent of target type. 

 Results from Experiment 1a are presented in Table A1. The observed pattern 

replicates the findings reported above: Effects of prime-association reveal themselves in 

increased drift rates for word trials. An 2 (target type) by 3 (prime type) ANOVA of drift rates 

revealed main effects of target type, F(1,29) = 897.65, p<.001, ηp
2
=0.97, and of prime type, 

F(2,28) = 10.99, p<.001, ηp
2
=0.44. These effects were qualified by a significant interaction, 

F(2,28) = 4.12, p<.05, ηp
2
=0.23, indicating that drift is influenced by prime in word trials, 

F(2,28) = 12.41, p<.001, ηp
2
=0.47, but not in non-word trials, F(2,28) = 1.11, n.s., ηp

2
=0.07. 

The analysis of the response time constant suggested that non-decisional processes take 

longer in the case of non-word-trials than in word trials, F(1,29) = 40.74, p<.001, ηp
2
=0.58. 

There was also an effect of prime on t0, F(2,28) = 6.23, p<.01, ηp
2
=0.31, indicating slower 

non-decisional processing after neutral primes (e.g., "ffffff"), compared to word primes. 
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Confirming our hypothesis, prime-target association however did not influence the duration of 

non-decisional processes, with F(2,28) = 1.19, n.s., ηp
2
=0.04, for the contrast of associated vs. 

non-associated primes, and F < 1, ηp
2
=0.00, for the interaction of this contrast with target 

type. As expected, the d parameter is also independent of the prime type, F < 1. 

 The same pattern of results emerges for Experiment 3a (Table A2): Drift rate differs 

significantly between target types, F(1,31) = 616.15, p<.001, ηp
2
=0.95, but is not influenced 

by prime type, F(1,31) = 1.96, p=.17, ηp
2
=0.06. However, there is a prime by target 

interaction, F(1,31) = 4.57, <.05, ηp
2
=0.13. Analyses within the target types show that drift 

for word trials is influenced by prime type, F(1,31) = 5.06, p<.05, ηp
2
=0.14, whereas prime 

type has no influence on drift for non-words, F < 1. Like in Experiment 1a, the non-decisional 

component t0 was larger for non-words, F(1,31) = 40.64, p<.001, ηp
2
=0.57, but it did not 

differ substantially between trial with associated or non-associated primes, F < 1. The prime 

by target interaction also failed to reach statistical significance, F(1,31) = 3.13, p=.09, 

ηp
2
=0.09. There was no effect of prime on the d-parameter, F < 1. 
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Table A1 

Mean parameter values (SD in parenthesis) of the diffusion model estimated from data from 

Experiment 1a, including the non-word trials. If parameters were fixed across conditions, the 

value is only presented in the top row of both trial types. 

Prime a v t0 d sz sv st0 p 

Word Trials 

associated 0.85
a 

(0.10) 

3.11 

(0.79) 

0.396 

(0.036) 

0.028
a
 

(0.023) 

0.40
a
 

(0.11) 

0.24
a
 

(0.15) 

0.03
a
 

(0.01) 

.65
a
 

(.18) 

non-associated - 2.57 

(0.70) 

0.394 

(0.034) 

0.024
a
 

(0.023) 

- - - - 

Neutral - 2.81 

(0.84) 

0.397 

(0.033) 

0.027
a
 

(0.030) 

- - - - 

Non-Word Trials 

associated 0.85
a 

(0.10) 

-2.31 

(0.61) 

0.417 

(0.043) 

0.028
a
 

(0.023) 

0.40
a
 

(0.11) 

0.24
a
 

(0.15) 

0.03
a
 

(0.01) 

.65
a
 

(.18) 

non-associated - -2.45 

(0.52) 

0.416 

(0.037) 

0.024
a
 

(0.023) 

- - - - 

Neutral - -2.28 

(0.84) 

0.429 

(0.046) 

0.027
a
 

(0.030) 

- - - - 

a 
The identical values are valid for word and non-word trials 
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Table A2 

 Mean parameter values (SD in parenthesis) of the diffusion model data from Experiment 3a, 

including the non-word trials. If parameters were fixed across conditions, the value is only 

presented in the top row of both trial types. 

Prime a v t0 d sz sv st0 P 

Word Trials 

Associated 0.90
 

(0.15) 

2.91 

(0.87) 

0.404 

(0.038) 

0.021 

(0.025) 

0.38
a
 

(0.14) 

0.31
a
 

(0.24) 

0.03
a
 

(0.01) 

.88
a
 

(.10) 

non-associated - 2.58 

(0.91) 

0.410 

(0.043) 

0.024
a
 

(0.027) 

- - - - 

Non-Word Trials 

Associated 0.90
a 

(0.15) 

-2.11 

(0.61) 

0.442 

(0.049) 

0.021 

(0.025) 

0.38
a
 

(0.14) 

0.31
a
 

(0.24) 

0.03
a
 

(0.01) 

.88
a
 

(.10) 

non-associated - -2.07 

(0.77) 

0.438 

(0.049) 

0.024
a
 

(0.027) 

- - - - 

a 
The identical values are valid for word and non-word trials  
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Appendix B: Model fit of diffusion model analyses 

 Model Fit was analyzed with two strategies: Firstly, a large Monte-Carlo simulation 

study was conducted to get exact probabilities for significant model misfit and, secondly, 

match of predicted and empirical response-time quartiles and error rates are presented 

graphically. 

Monte-Carlo-Simulation 

 Method. From the Parameter values of each participant of each experiment, 1000 

datasets were simulated using the construct-sample routine of fast dm (Voss & Voss, 2007) 

with high precision of calculation (precision =4). Then, parameters were re-estimated with 

fast-dm. This allowed getting empiric distributions of model fit (as given by the p-values) for 

"true" models, i.e. models that were based on data following a diffusion process. From the 

resulting distributions of fit indices the 5% percentiles (or the 1% percentiles) were used as 

critical values for the evaluation of fit indices from the empiric models. Whenever model fit 

from the analysis of the real data was worse than this critical value, we assumed that the 

diffusion model cannot account for the data. 

 Results. In the 6 experiments there were in total 187 participants; consequently, 

187.000 datasets were generated and re-analyzed, which took about 850 hours of processor 

time. Using an alpha level of .05, model fit from the 17 of 187 participants (9%) was 

suspicious (number of bad-fitting models: Exp 1a: 1; Exp. 1b: 0; Exp. 2a: 5; Exp. 2b: 5; Exp. 

3a: 3; Exp. 3b: 3). Only two models (1 %) showed a significant misfit when alpha was set to 

.01 (both from Exp. 3b). The numbers of detected mismatches roughly fits the number to be 

expected for perfect models; thus overall fit is assumed to be good. 

 Re-analyses of parameters. Parameters were re-analyzed excluding data from the 17 

participants for which a misfit on the 5% level was found. Table B1 shows the effect sizes of 

priming effects for the complete samples and for the reduced samples (excluding data from 

models with "bad fit"). As can be seen, the pattern of results is very similar.
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Table B1 

Effect sizes (ηp
2
) for the effects of prime on the diffusion model parameters for the complete 

samples and for reduced samples (participants with bad fitting models excluded). 

 Complete Sample Reduced Sample 

 

Experiment 1a 

N 30 29 

Effect v .53*** .51*** 

Effect t0 .03 .03 

Effect d .01 .01 

   

Experiment 1b 

N 30 30 

Effect v .02 .02 

Effect t0 .33** .33** 

Effect d .15 .15 

 

Experiment 2a 

N 32 27 

Effect v (affective match) .04 .01 

Effect v (semantic  match) .00 .01 

Effect t0 (affective match) .12* .19* 

Effect t0 (semantic  match) .00 .00 

Effect d (affective match) .15* .21* 

Effect d (semantic  match) .01 .05 

   

Experiment 2b 

N 31 26 

Effect v (affective match) .00 .00 

Effect v (semantic  match) .02 .01 

Effect t0 (affective match) .01 .00 

Effect t0 (semantic  match) .29** .38*** 

Effect d (affective match) .12
+
 .11

+
 

Effect d (semantic  match) .30** .28** 

   

Experiment 3a 

N 32 29 

Effect v .15* .12
+
 

Effect t0 .14* .21* 

Effect d .03 .02 

   

Experiment 3b 

N 32 29 

Effect v .18* .14* 

Effect t0 .05 .05 

Effect d .05 .06 
+
p<.10; *p<.05; **p<.01; ***p<.001
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Graphical analysis of model fit 

 For a graphical analysis of model fit, the observed percentage of correct responses and 

the three quartiles of the observed RT-distributions of correct responses were compared with 

the corresponding values from the predicted RT distributions. In Figure B1 observed 

(empiric) statistics are plotted against predicted statistics for all conditions of all experiments, 

that is, each symbol represents the distribution of one participant in one condition. As can be 

seen, the majority of data points lie close to the line of perfect congruency. Most important, 

there seems to be no systematic bias in the predicted distributions. 
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Figure B1. The figure displays the relation of the empiric vs. predicted statistics (top left: 

percent correct; top right: first quartile; bottom left: second quartile; bottom right: third 

quartile) from all conditions of all experiments. 

 


