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Abstract: One of the major challenges in the design of bileaflet mechanical heart valves 
(BMHVs) is reduction of the blood damage generated by non-physiological blood flow. 
Numerical simulations provide relevant insights into the (fluid) dynamics of the BMHV 
and are used for design optimization. In this paper, a strong coupling algorithm for the 
partitioned fluid-structure interaction (FSI) simulation of a BMHV is presented. The 
convergence of the coupling iterations between the flow solver and the leaflet motion 
solver is accelerated by using a numerically calculated Jacobian with the derivatives of the 
pressure and viscous moments acting on the leaflets with respect to the leaflet 
accelerations. The developed algorithm is used to simulate the dynamics of a 3D BMHV in 
three different geometries, allowing an analysis of the solution process. Moreover, the 
leaflet kinematics and the general flow field are discussed, with special focus on the shear 
stresses on the valve leaflets. 
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1 Introduction 
Since the first clinical success with an artificial heart valve 
by Dr. Hufnagel in 1952, the implantation of valve 
prostheses has become a routine treatment for severe heart 
valve failure. However, despite sixty years of research, 
modern valve prostheses still have severe design 
deficiencies. The widely used and preferred bileaflet 
mechanical heart valves (BMHVs), for example, still have 
poor hemodynamic properties and patients need to undergo 
life-long anti-coagulation therapies (Dasi et al. 2009). 
Therefore, one of the major challenges in the design of 
BMHVs is the reduction of the accumulated blood damage 
which is, among others, caused by non-physiological flow 
patterns and elevated shear stress levels on the leaflets. 
Numerical simulations of the (blood) flow provide relevant 
insights into the valve dynamics (Dasi et al. 2009) and can 
be used for design optimization. Unfortunately, such 
numerical simulation of a BMHV is a complex fluid-
structure interaction (FSI) problem because the movement 
of the leaflets strongly interacts with the surrounding fluid 
motion and, therefore, the equilibrium at the fluid-structure 
interface needs to be taken into account.  
In this paper, a strong coupling algorithm for the simulation 
of a BMHV by a partitioned solver is presented and used to 
study the wall shear stresses on the valve leaflet surfaces. 
The algorithm predicts the leaflet moments (and thus the 
leaflet angular accelerations) of the next coupling iteration 
through a linearization of Newton’s Second Law with a 
finite difference approximation of the Jacobian. The 
components of this Jacobian are the derivatives of the 
moments (exerted by the flow on the leaflets) with respect 
to the leaflet angular accelerations. The Jacobian is 
numerically calculated from the flow solver by variations of 
the leaflet positions. This quasi-Newton method was first 
introduced in Vierendeels et al. (2005) for one stiff leaflet 
and subsequently used to simulate a BMHV (Dumont et al. 
2005, 2007). However, the algorithm described in 
Vierendeels et al. (2005) had only one degree of freedom 
which implied a symmetrical motion of both leaflets when 
simulating a BMHV. Therefore, the algorithm was extended 
to two degrees of freedom in Annerel et al. (2010) and Dahl 
et al. (2010), thus allowing the two leaflets to move 
asynchronously. In this paper, the convergence process is 
accelerated by the use of a variable time step size, 
extrapolation techniques and reuse of data from previous 
time steps. Also, the calculation process of the Jacobian is 
made more efficient, thus resulting in faster convergence. 
The paper is organized as follows. First, the algorithm is 
derived and its implementation in a commercially available 
black box flow solver is analysed. Secondly, the algorithm 
is used to simulate a 3D BMHV in three different 
geometries, allowing an analysis of the leaflets kinematics 
and the wall shear stresses on the valve leaflet surfaces. 

2 Methods 
In this section, the developed algorithm is presented. The 
flow chart is visualized in Figure 2 and each component is 
explained hereafter. Subsequently, the setup of the 3D 
simulations of the BMHV is discussed.  

2.1 FSI coupling algorithm 

2.1.1 Governing equations 
A BMHV can be modelled as a rigid casing in which two 
separate rigid leaflets rotate around their hinge axes (see 
Figure 1). Because the position of each rigid leaflet is solely 
determined by its opening angle, the bileaflet valve has two 
degrees of freedom. 
The movement of a rigid leaflet i is governed by Newton’s 
Second Law, which states that the moment about its hinge 
(Mi) must be in equilibrium with the product of its moment 
of inertia (Ii) and its angular acceleration ( iθ&& ). For two 
leaflets, this leads to the following two equations: 

⎪⎩

⎪
⎨
⎧

⋅=

⋅=

222

111

θ

θ
&&

&&

IM

IM  (1) 

When the hinges are modelled as frictionless, the moment 
acting on the leaflet is the pressure and viscous moment 
exerted by the flow.  
 

  
Figure 1: View on the ATS Open PivotTM Standard Heart Valve 
with leaflets (marked in black) in the open position. The casing is 
visible (in white) with the blocking mechanism at the hinges. 

2.1.2  Linearization 
Strong coupling schemes achieve this dynamic equilibrium 
at the fluid-structure interface by introducing a coupling 
iteration loop within each time step. Generally, each of the 
coupling iterations follows the same pattern, as is visualized 
in Figure 2 (shaded). At the beginning of each coupling 
iteration k of time step n+1, the motion of the leaflets is 
computed from the angular accelerations kn

i
,1+θ&& . 

Subsequently, the mesh is moved and the Navier-Stokes 
equations are solved. From the flow field, the moments 
Mi

n+1,k  are calculated. Finally, the convergence of the 
dynamic equilibrium at the fluid-structure interface (i.e. the 
“FSI convergence”, expressed by Equation (1)) is checked. 
When this FSI convergence is obtained, a new time step is 
initiated. However, when the FSI convergence is not 
achieved, a new coupling iteration k+1 is initiated and thus 
new angular accelerations 1,1 ++ kn

iθ&&  need to be calculated. 
Therefore, the introduction of a coupling iteration loop 
requires, in each coupling iteration k of time step n+1, a 
stable and efficient approximation of the angular 
accelerations for the next coupling iteration k+1.  
Such a stable prediction of kn

i
,1+θ&&  can be achieved through a 

linearization of Newton’s Second Law, as analysed by 
Vierendeels et al. (2005) for a monoleaflet heart valve. 
Thus, while taking into account the mutual interaction 
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between the leaflets, Equation (1) is linearized for each 
coupling iteration k+1 of time step n+1: 
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 (2) 
The derivatives jiM θ&&∂∂

 
are the components of the Jacobian 

of the moments with respect to the angular accelerations, 
further referred to as “the Jacobian”. Equation (2) can be 
rearranged as follows: 
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This can be written in matrix notation:  
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For a well-posed problem, the first matrix has to be 
nonsingular. In that case, previous equation can be rewritten 
as 
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In order to solve Equation (5) and thus to calculate the 
angular accelerations of the new coupling iteration k+1, the 
Jacobian has to be known. However, when a black box flow 
solver is used, these derivatives are not accessible. 
Fortunately, they can be approximated by finite differences 
(i,j = 1,2): 

j
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j

i MM
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θ &&&&
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which are calculated by solving the following system of 
equations: 

Figure 2: Flow chart of the presented quasi-Newton coupling algorithm with two degrees of freedom. n = time step, k = coupling iteration 
step, i = leaflet number. Shaded: standard strong coupling scheme, unshaded: extra components of the presented scheme. 
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resulting in 
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The superscripts a and b refer to data obtained from three 
coupling iterations between which the leaflet angular 
accelerations of two coupling iterations have differences 
(according to the vectors aθ&&Δ  and bθ&&Δ ) with respect to the 
angular accelerations of a reference coupling iteration:  
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These differences in accelerations ( aθ&&Δ  and bθ&&Δ ) induce 
differences in the calculated flow fields and thus also in the 
calculated moments, respectively denoted by aMΔ  and bMΔ : 
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The data aθ&&Δ , bθ&&Δ , aMΔ  and bMΔ  can be obtained from 
three coupling iterations by several methods. 

2.1.3 Update of the Jacobian 
A method to obtain the necessary data ( aθ&&Δ , bθ&&Δ , aMΔ  and 

bMΔ ) is described in Annerel et al. (2010) and Dahl et al. 
(2010). In this method, three consecutive coupling iterations 
are needed of which the leaflet acceleration perturbation 
vectors aθ&&Δ  and bθ&&Δ  are perpendicular to each other and 
significantly large.  
This method can be improved in two ways. First, it is not 
necessary that the acceleration perturbation vectors aθ&&Δ  and 

bθ&&Δ  are completely perpendicular to each other. To calculate 
a good estimation of the Jacobian, it is already sufficient 
that their perpendicular components are significantly large. 
Secondly, the three coupling iterations do not have to be 
consecutive.  
The calculation of the Jacobian can thus be made more 
efficient by the use of a criterion that selects two appropriate 
acceleration perturbation vectors (e.g. from previous 
coupling iterations), without the need for extra coupling 
iterations with perpendicularly perturbed accelerations. 
Therefore, the selection criterion needs to check the 

direction and the magnitude of the two acceleration 
perturbation vectors. Such a criterion can be derived from 
an error propagation study, which states that the error of the 
estimation of the angular acceleration of the next coupling 
iteration should be small enough. It can be shown that this 
results in the following criterion (Annerel et al. 2011): 
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with the Jacobian update threshold ε2 and the flow solver 
convergence threshold ε1, which is the accuracy of the 
moments calculated by the flow solver. The optimal values 
for ε1 and ε2 can be determined by a sensitivity analysis. 
This criterion is used in an algorithm that makes it possible 
to update the Jacobian in every coupling iteration with data 
obtained from the coupling iterations in the current and 
previous time steps. This algorithm for the update of the 
Jacobian is constructed as follows: 
At the beginning of the simulation, all the variables are 
equal to zero (in particular aθ&&Δ , bθ&&Δ  , aMΔ , bMΔ  and all the 
components of the Jacobian). Also, when going to each new 
time step, the data vectors ( aθ&&Δ , bθ&&Δ , aMΔ

 
and bMΔ ) are set 

to zero (see further).  
The data obtained in the first coupling iteration (k = 0) of 
each time step are used as the reference (i.e. ref

iθ&&  and Mi
ref) 

for the Jacobian update. Also, in this first coupling iteration 
a first estimation of the Jacobian is obtained from an 
extrapolation of previous time steps (see further).  
In each of the following coupling iterations (k > 0), this 
Jacobian can be updated with useable data obtained in the 
coupling iterations. First, it is checked whether or not the 
data of the current coupling iteration k are useable as an 
acceleration perturbation vector. Subsequently, the Jacobian 
can be updated in three ways, depending on the acceleration 
perturbation vectors aθ&&Δ  and bθ&&Δ  available from the (current 
and previous) coupling iterations (a detailed description can 
be found in Annerel et al. (2011)): 
• If no appropriate acceleration perturbation vectors are 

available, then the Jacobian cannot be updated and thus 
the extrapolated Jacobian is still used;  

• If one acceleration perturbation vector is available, then 
the Jacobian can be updated. The data for the other 
acceleration perturbation vector are obtained from the 
acceleration perturbation vectors of previous time steps, 
or this data can be calculated by the extrapolated 
Jacobian;  

• If both acceleration perturbation vectors are available, 
the Jacobian is calculated with both vectors and becomes 
independent of data from previous time steps. 

 
In the following, the other components of the developed 
quasi-Newton algorithm are discussed. The flow chart of 
this algorithm is visualized in Figure 2. 

2.1.4  Check FSI convergence 
The subsequent coupling iterations are performed until the 
dynamic equilibrium at the fluid-structure interface is 
achieved. This equilibrium is checked by the FSI 
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convergence criterion. For each leaflet i, this FSI 
convergence criterion is given by: 

0
,1,1 εθ <⋅− ++ kn

ii
kn

i IM && (12) 
The FSI convergence threshold ε0 is set relative to a 
reference moment Mref, which sets the minimal accuracy of 
the dynamic equilibrium needed to capture the general 
leaflet dynamics.  
When the FSI convergence criterion (Equation (12)) is 
satisfied, a new time step is started. However, when the FSI 
convergence criterion is not satisfied, then a new coupling 
iteration (k+1) is initiated. 

2.1.5  Control quality of the Jacobian and calculate 
angular accelerations of the new coupling iteration 
Before calculating the appropriate angular accelerations 

1,1 ++ kn
iθ&&  for the new coupling iteration k+1, the quality of the 

Jacobian is checked by evaluating the decrease in moment 
unbalance during the last two coupling iterations. For 
example, an arbitrary criterion of two orders of magnitude 
between these two consecutive coupling iterations is used: 
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When this expression is fulfilled, then the quality of the 
Jacobian of coupling iteration k-1 is good. Therefore, it can 
be concluded that the Jacobian of the current coupling 
iteration k will probably also result in fast convergence, 
since this Jacobian can only become an improvement of the 
Jacobian of coupling iteration k-1. This is because when the 
Jacobian is updated in coupling iteration k, this update is 
done with more (or equally) relevant data (i.e. data of time 
step n+1 and not of time step n) than was available in 
coupling iteration k-1. Subsequently, the angular 
accelerations of the next coupling iteration k+1 are 
calculated by Equation (5) with the Jacobian of coupling 
iteration k and this next coupling iteration is initiated.  
However, when Equation (13) is not fulfilled, then the 
quality of the Jacobian of coupling iteration k-1 is 
insufficient. Therefore, it is uncertain whether or not the 
Jacobian of coupling iteration k will result in fast 
convergence. The angular accelerations of the next coupling 
iteration 1,1 ++ kn

iθ&&  are thus chosen in such a way that it will 
certainly become possible to calculate a good Jacobian in 
the next coupling iteration using the acceleration and 
moment data generated in this next coupling iteration.  
The angular acceleration of this extra coupling iteration is 
thus chosen in one of three possible ways, depending on the 
acceleration perturbation vectors aθ&&Δ  and bθ&&Δ  already 
obtained in the coupling iterations (a detailed description 
can be found in Annerel et al. (2011)): 
• If no acceleration perturbation vectors are available from 

the coupling iterations (i.e 0=aθ&&Δ  and 0=bθ&&Δ ), then the 
angular acceleration of one leaflet is perturbed with a 
significant parameter δ in the next coupling iteration, as 
is described in (Annerel et al. 2010, Dahl et al. 2010);  

• If one acceleration perturbation vector is already 
available (i.e. 0≠aθ&&Δ  and 0=bθ&&Δ ), then the leaflet 
accelerations of the next coupling iteration are perturbed 
in a direction that is perpendicular to aθ&&Δ ;  

• If both acceleration perturbation vectors are available 
(i.e 0≠aθ&&Δ  and 0≠bθ&&Δ ), then no extra coupling iteration 
is needed. Therefore, the Jacobian is kept since the slow 
residual drop rate is inherent to the problem and will 
mostly not be efficiently resolved by generating extra 
data. The angular acceleration of the next coupling 
iterations are thus calculated by Equation (5). 

2.1.6  Increasing the efficiency 
The efficiency of the algorithm is increased in several ways. 
In the following, the use of a variable time step size and the 
extrapolation of data from previous time steps are discussed.  

Variable time step size. Since a heart valve is most of the 
time in the closed or open position, its leaflets are only 
moving in a very small fraction of the time cycle. However, 
when the leaflets are moving, very small time steps are 
needed for reasons of accuracy. Therefore, there is a clear 
advantage in the use of a variable time step size which 
allows a relatively large time step size when the valve is at 
rest, and a smaller time step size when the valve is moving, 
since it decreases the total number of time steps in a time 
cycle and thus lowers the computational cost. For these 
reasons, a variable time step size is commonly used when 
simulating heart valves (Bang et al. 2006; Choi et al. 2009; 
De Tullio et al. 2009).  
When the leaflets are moving, the maximum allowable time 
step size is restricted by the maximum allowable mesh 
motion, and thus by grid characteristics. This is due to 
limitations of the mesh motion algorithm, since the 
remeshing occurs when going to a new time step, and in the 
coupling iterations within a time step only grid node 
relocation can be used. So, there is a maximum allowable 
mesh motion in order to retain an accurate and high-quality 
mesh (and, in worst case, to avoid highly skewed or even 
inverted cells). 
A criterion for the time step size can be proposed based on 
this maximum leaflet movement (Δθmax): 
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When the leaflet velocity is large, then the time step size 
will be small and vice versa. Furthermore, the time step size 
is limited by a maximal value Δtmax, otherwise the time step 
size would become infinite when none of the leaflets is 
moving (i.e. zero velocity). 

Extrapolation from previous time steps. When advancing 
to a new time step, the angular accelerations for the first 
coupling iteration (k = 0) are estimated based on a quadratic 
extrapolation from previous time steps. This initial 
prediction of the values results in fewer coupling iterations 
per time step.  
Also, the Jacobian’s components are quadratically 
extrapolated from previous time steps. This is meaningful 
since the Jacobian is not changing much per time step.  
Therefore, the extrapolation of data from previous time 
steps decreases the number of coupling iterations per time 
step and lowers the computational cost. 
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2.1.7  Initialization at the beginning of a new time step 
When going to a new time step n+1, the variables are 
initialized. This is done by setting tn+1 = tn+Δtn+1, aθ&&Δ  = 0, 

bθ&&Δ  = 0, aMΔ  = 0, bMΔ  = 0 and k = 0. 

2.1.8 Time integration scheme and leaflet behaviour 
at the limited position 

Backward Euler time integration. The angular velocity 
and angular position of each leaflet on the time level n+1 
are calculated from the angular accelerations using a time-
integration scheme. Because the flow solver in which the 
algorithm is implemented uses a backward Euler scheme, 
this scheme is also preferred for the structural movement:  
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If the time discretization schemes of the flow and the 
structural solver do not match, then spurious oscillations can 
occur, as is shown in Vierendeels et al. (2005). 

Leaflet behaviour in open and closed position. The 
angular position of each leaflet is restricted by a minimum 
and a maximum angle, indicating, respectively, the fully 
closed and fully open position. In reality, this is usually 
achieved by a physical blocking mechanism incorporated in 
the design of the leaflet hinges. These limitations can be 
numerically modelled by setting the angular position equal 
to the limited position and the angular velocity and angular 
acceleration equal to zero, as briefly suggested by Guivier et 
al. (2007). However, they did not explain how to make the 
transition from a moving to a resting leaflet.  
In the developed algorithm, this transition is modelled by 
setting the position equal to the limitation and recalculating 
the angular velocity and acceleration. This is implemented 
as follows. When the calculated position of a leaflet exceeds 
its limitations (i.e. θi

n+1,k+1 < θmin or θi
n+1,k+1 > θmax), then the 

position is set equal to this limitation (i.e. θi
n+1,k+1 = θmin or 

θi
n+1,k+1 = θmax). In order to move exactly to the limited 

position in the time step, the angular velocity 1,1 ++ kn
iθ&  

and 
acceleration 1,1 ++ kn

iθ&&  are subsequently recalculated (using the 
backward Euler scheme): 
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Furthermore, the previously described FSI convergence 
criterion must be changed when the position is limited since 
the FSI convergence criterion should no longer depend on 
the absolute value of ( )kn

ii
kn

i IM ,1,1 ++ ⋅− θ&& , but merely on its 
mathematical sign. This can be understood by adding 
Mi

r,n+1,k
 to the moment equation, with Mi

r,n+1,k
 being the 

reaction moment of the blocking mechanism exerted on the 
leaflets in coupling iteration k of time step n+1: 

kn
ii

kn
i

knr
i IMM ,1,1,1, +++ ⋅=+ θ&& (17) 

or 
( )kn

ii
kn

i
knr

i IMM ,1,1,1, +++ ⋅−−= θ&& (18) 

In order to maintain contact between the leaflet and the 
blocking mechanism, this reaction moment will be either 
negative or positive (depending on the leaflet and on the 
limiting position: θmin or θmax). As FSI convergence 
criterion, it is checked whether or not the reaction moment 
has this appropriate mathematical sign. Therefore, when the 
motion of leaflet i is limited, the FSI convergence criterion 
(Equation (12)) of this leaflet i is replaced by 

0,1, ≤+ knr
iM (19) 

or 
0,1, ≥+ knr

iM (20) 
depending on the orientation of the leaflet and on whether 
the leaflet is fully open or fully closed. 
 
Further details of the algorithm can be found in Annerel et 
al. (2011). 

2.2 Simulation setup 
The new quasi-Newton algorithm is used to simulate the 
dynamics of a 3D BMHV. This BMHV is a model of the 
25mm ATS Open PivotTM Standard Heart Valve in aortic 
position with the orifice inner diameter measuring 20.8mm. 
The valve is simplified at the hinge regions by cutting away 
the blocking mechanism and hinges at the casing.  

       
Figure 3: Views on the first geometry with straight tube 
downstream of the valve: isometric (left), from front side (up), 
from top side (middle) and from inlet (down). 
 

          
Figure 4: Views on the second geometry with symmetrically 
placed Valsalva sinuses downstream of the valve: isometric (left), 
from front side (up), from top side (middle) and from inlet (down). 
 

         
Figure 5: Views on the third geometry with asymmetrically placed 
Valsalva sinuses downstream of the valve: isometric (left), from 
front side (up), from top side (middle) and from inlet (down). 
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The valve is subsequently placed in three geometries. The 
first geometry consists of a rigid straight tube (visualized in 
Figure 3). The second geometry also consists of a rigid 
straight tube upstream of the valve, but rigid Valsalva 
sinuses are added downstream of the valve. Such Valsalva 
sinuses are anatomically present in the ascending aortic root 
and have an influence on the valve closing. The Valsalva 
sinuses are based on the geometry described in Reul et al. 
(1990) and are positioned symmetrically with respect to the 
leaflets rotation axes (Figure 4). In the third geometry, the 
same Valsalva sinuses are used, but they are positioned 
asymmetrically (rotated over angle of 30 degrees) with 
respect to the leaflet rotation axes in such a way that one of 
the leaflets faces directly one sinus (Figure 5).  
For the geometries, the upstream tube has a diameter of 
22mm and measures 75mm in length. The downstream 
geometry has a length of 95mm. The diameter of the 
downstream tube is 27.36 mm for the Valsalva sinuses and 
22mm for the straight tube.  
It is noted that these geometries are based on clincial 
practice since, when implanting the BMHV, the surgeon can 
choose to preserve the Valsalva sinuses or to cut them away 
and replace the entire ascending aortic root (in the so-called 
Bentall procedure (Bentall et al. 1968)). Moreover, the 
surgeon can choose to position the valve symmetrical to the 
anatomical Valsalva sinuses, or to position it asymmetrical. 
An unstructured grid is generated in the geometries, 
consisting of approximately 800 000 tetrahedral cells. Two 
cell layers are generated in the gap (measuring 0.1mm) 
between the leaflets and the casing near the hinge region. 
The grids are constructed by defining the mesh size at the 
leaflet walls. Subsequently, a size function is applied at 
these leaflet walls, which means that in the direction 
perpendicular to the leaflet walls, the grid size in the 
geometry increases at a specified rate. Therefore, a very fine 
grid size can be obtained at the leaflet walls, resulting in an 
accurate calculation of the wall shear stress magnitude and 
distribution. 
In previous study (Annerel et al. 2011), a spatial 
convergence study of the cases with the straight tube and the 
asymmetrical sinuses is performed. It is concluded that the 
described grid size is small enough to result in grid 
independent leaflet kinematics.  
The ALE-approach is followed, which means that the fluid 
grid follows the motion of the structure and subsequently 
needs an update. This update is done using a local 
remeshing method and spring-based smoothing. Due to the 
ALE approach, this remeshing can only be performed when 
going to a new time step. During the subsequent coupling 
iterations, the grid motion is performed with spring-based 
smoothing in order to maintain good mesh quality. The 
maximum time step size Δtmax is set to 0.001s. 
An inlet aortic flow pulse with a period of 1s (displayed in 
Figure 6) is imposed upstream and was previously used in 
Dumont et al. (2005, 2007) and Annerel et al. (2010). The 
flow pulse profile is uniform. A physiological pressure 
profile is imposed at the downstream outlet boundary. Note, 
however, that in a rigid geometry the pressure level does not 
affect the flow field (only the pressure gradient appears in 
the equations).  

Blood is modelled as an incompressible Newtonian fluid 
with density and viscosity respectively equal to 1050kg/m3 
and 4E-3Pa·s. No turbulence model is used, thus implying 
laminar flow. A no-slip boundary condition is applied at the 
walls. The valve is initially set in the closed position. The 
moment of inertia of one rigid valve leaflet about its rotation 
axis is equal to 9.94E-9 kg·m2.  
Each simulation is run in parallel on eight cores (2 x Quad-
Core Intel Xeon 2.66GHz) with 8GB RAM. 
The FSI convergence threshold ε0 is chosen as (with 
reference moment equal to 1E-9Nm): 

Nm 13-E1
4E1
9-E1

4E10 === refM
ε

 
(21) 

The optimal values for ε1 and ε2 are derived from a 
sensitivity analysis and are equal to: 
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The algorithm is implemented in the commercial flow 
solver FLUENTTM (v.13.0.0, Ansys inc.). The Navier-
Stokes equations are solved with second-order accuracy.  

3 Results 
In this section, the performance of the presented coupling 
algorithm is evaluated. Subsequently, the leaflet dynamics 
and the general flow field are discussed. Finally, the 
maximal wall shear stress that occurs during opening of the 
valve leaflets is studied in the three geometries. 

3.1 Solution process 
The average number of coupling iterations per time step for 
the first geometry is given in Table 1. The solution process 
shows that during valve movement the developed algorithm 
reaches convergence in each time step within approximately 
four coupling iterations (see Table 1, “opening” and 
“closing”, with ε0=1E-13Nm).  
 
Table 1: Averaged needed number of coupling iterations per time 
step for the presented coupling scheme, in the first geometry 
(straight tube) with ε0= Mref/10000, ε1= ε0/100 and ε2=0.001. 
 

Opening 
(t=0s .. 

0.0725s) 

Open 
(t=0.0725s 
.. 0.325s) 

Closing 
(t=0.325s .. 

0.3925s) 

Closed 
(t=0.3925s 

.. 1s) 

Total 
(t=0s .. 1s) 

4.064 1 3.984 1 2.279 

3.2 Leaflet kinematics and flow field 
The results of the simulations are depicted in Figure 6 and 
Figure 7.  
The angular positions of the leaflets are presented in Figure 
6, relative to the fully open position. Therefore, 0 and 1 
refer, respectively, to the fully closed and fully open 
position. For the first geometry (straight tube), the leaflets 
of the valve reach the open position. Moreover, the resulting 
movement of the leaflets is symmetrical. Such symmetry in 
leaflet movement is also (approximately) found in the 
second geometry with symmetrical placed Valsalva sinuses. 
However, the leaflets do not reach the completely open 
position in this geometry. Finally, in the third geometry with 
asymmetrically placed Valsalva sinuses, both leaflets do not 
open completely and they do not behave symmetrically. 
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Figure 6: Angular position of the leaflets (relative to maximal 
opening angle) and the aortic flow pulse velocity. The leaflets of 
the straight tube geometry move symmetrically. The gray vertical 
line denotes “peak systole” (t = 0.125s), the time level at which 
Figure 7 is taken. 
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Figure 7 shows the velocity field for the geometries at peak 
systole. Downstream of the valve, the flow pattern consists 
of three jets, which is typical for a BMHV. The recirculation 
zones of the blood flow in each sinus of Valsalva is clearly 
visible. Furthermore, downstream these Valsalva sinuses, 
the flow velocity is lower than in the geometry with the 
straight tube due to the difference in downstream tube 
diameter. 
The maximum Reynolds number during forward flow is 
approximately 4400.  

3.3 Maximal wall shear stress on the valve leaflets 
The amount of blood damage can be related to the 
magnitude and the duration (exposure time) of the applied 

shear stresses (Dumont et al. 2007). In this section, the 
magnitudes of the wall shear stresses on the valve leaflets 
are discussed. Since the difference in leaflet opening 
movement between the three geometries is a main interest 
of this paper, only the forward flow is studied.  
In all geometries, the maximal wall shear stress during 
forward flow is observed at t = 0.125s (peak systole). 
Furthermore, because this time level corresponds with the 
maximal blood inflow velocity, the maximal wall shear 
stress is located at the (b-datum) leading edge of the leaflets, 
as is visualized in Figure 8. For the first geometry (with 
straight tube), a maximal wall shear stress of 197.8Pa is 
calculated at both leaflets. In the second geometry (with 
symmetrically placed Valsalva sinuses), the magnitude of 
the maximal wall shear stress is approximately the same: 
192.5Pa for both leaflets. Finally, the third geometry (with 
asymmetrically placed Valsalva sinuses), induces the same 
value of 197.2Pa at one leaflet, but a significantly larger 
maximal wall shear stress of 233.3Pa is observed at the 
other leaflet (i.e. at “leaflet 2”, the leaflet that faces directly 
one sinus). 
Subsequently, the wall shear stresses are spatially averaged 
on the leaflets during peak systole. This results for both 
leaflets in an average wall shear stress of 16.5Pa in the first 
geometry, and an average wall shear stress of 17.2Pa in the 
second geometry. For the third geometry, however, a 
slightly larger value of 17.9Pa is calculated for “leaflet 2” 
and a much larger average shear stress of 18.2Pa is observed 
on the other leaflet. The values of the average shear stress 
are in the same magnitude as calculated in previous studies 
(Dumont et al. 2005, 2007). 

                     
Figure 8: Distribution of wall shear stress magnitude in Pa on one valve leaflet surface during peak systole (t = 0.125s), front view seen 
from the b-datum gap, for the geometry with the straight tube (left), the symmetrically placed Valsalva sinuses (middle) and leaflet 2 of 
asymmetrical Valsalva sinuses (right). 

   
Figure 7: Velocity Magnitude in m/s at peak systole (t = 0.125s) visualized on a longitudinal section perpendicular to the leaflet rotation 
axes, for the geometry with the straight tube (left), the symmetrically placed Valsalva sinuses (middle) and the asymmetrical Valsalva 
sinuses (right). 
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4 Discussion 
The results indicate that the presented algorithm has a stable 
and efficient solution process.  
Furthermore, the resulting leaflet positions agree well with 
Feng et al. (1999, 2000) and De Tullio et al. (2009).  
In particular, the results show that the maximum open 
position of the valve leaflets is not reached in the geometries 
with the Valsalva sinuses. Such incomplete opening for the 
ATS Open PivotTM Standard Heart Valve in a divergent 
geometry is explained due to the greater sensitivity of the 
leaflet movement to the downstream flow field compared to 
other BMHV designs, since the leaflets extend farther in the 
flow downstream of the orifice than is the case in other 
designs. Therefore, the valve does not open completely in 
the divergent transvalvular flow caused by the Valsalva 
sinuses enlargement, since the leaflets tend to align with the 
streamlines (Feng et al. 1999, 2000). In the straight tube, 
however, a full opening of the valve leaflets is observed.  
Moreover, it is observed that the two leaflets have 
differences in movement for the third geometry (with 
asymmetrically placed Valsalva sinuses). This asynchrony 
is triggered by the presence of the asymmetry in the 
geometry downstream of the valve. In the symmetrical 
geometries, no differences in movement between the two 
leaflets are observed. The asynchronous leaflet movement 
caused by the asymmetrically placed Valsalva sinuses is 
consistent with De Tullio et al. (2009). 
Finally, for forward flow, the maximal wall shear stresses 
generated at a valve leaflet is significantly lower in the 
symmetrical geometries than is the case in the geometry 
with asymmetrically placed Valsalva sinuses. Because the 
maximal magnitude of wall shear stress is related to the 
acquired blood damage, it can be concluded that, in case of 
the ATS Open PivotTM Standard Heart Valve, placing the 
downstream geometry symmetrically with respect to the 
valve leaflets reduces the accumulated amount of blood 
damage during forward flow. 

5 Conclusion 
In this paper, a strong coupling scheme for the partitioned 
simulation of a BMHV is presented and evaluated. The 
convergence of the coupling iterations between the flow 
solver and the leaflet motion solver is accelerated using the 
Jacobian with the derivatives of the pressure and viscous 
moments acting on the leaflets with respect to the leaflet 
accelerations. This Jacobian is numerically calculated from 
the data in the coupling iterations. A criterion is used for the 
selection of useable coupling iterations. 
Subsequently, the algorithm is used to simulate an ATS 
Open PivotTM Standard Heart Valve in three different 
geometries. The results show that the presented scheme is 
stable and converges within a few coupling iterations. 
Moreover, it is observed that the leaflets tend to align with 
the streamlines. As a consequence, the leaflets perform an 
asynchronous movement in an asymmetric (downstream) 
geometry and they do not open completely in a divergent 
downstream geometry. Since symmetrical downstream 
geometries induce the smallest wall shear stress during 
systole, such geometries are preferred for valve 
replacement. 
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Nomenclature 
 
Greek Symbols 
δ Perturbation, [rad/s2]. 
ε Threshold. 
θ  Angular position, [rad]. 
θ&  Angular velocity, [rad/s]. 
θ&&  Angular acceleration, [rad/s2]. 
θ&&Δ  Acceleration perturbation vector, [rad/s2]. 

 
Latin Symbols 
I Moment of Inertia, [kg·m2]. 
M Moment, [N·m]. 
ΔM Moment data vector, [N·m]. 
t Time, [s]. 
Δt Time step size, [s]. 
 
Subscripts 
0 FSI convergence threshold. 
1 First leaflet; 
 Flow solver convergence threshold. 
2 Second leaflet;  
 Jacobian update threshold. 
i,j Leaflet. 
max Maximal value. 
min Minimal value. 
ref Reference.  
 
Superscripts 
a First acceleration perturbation vector. 
b Second acceleration perturbation vector. 
k Coupling iteration. 
n Time step. 
r Reaction moment.  
ref Reference. 
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