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Abstract 

Background: Patients with ADHD are typically more variable in their reaction times (RT) than 

control children. Signal processing analyses have shown that ADHD children’s time-series RT 

data has a distinctive low frequency periodic structure suggestive of a pattern of occasional 

spontaneous performance lapses. However, findings have been constrained by task design 

and analytical techniques. Here we use data derived from a simple attention task with a 

short inter-stimulus interval combined with a fine grained analysis of spectral power across 

a broader frequency range to differentiate the periodic qualities of ADHD time series RT 

data from (i) 1/f noise and (ii) the performance of controls. We also assess the familiality of 

these frequencies by using a proband-sibling design. 

Methods: Seventy-one children with ADHD and one of their siblings, and fifty control 

participants completed a simple RT task. Power across the RT frequency spectrum was 

calculated and peaks identified for cases and controls. The frequencies significantly 

differentiating the two groups were identified. Familiality was assessed in two ways. First, 

by comparing probands with their unaffected siblings and controls, and secondly by 

investigating the siblings of neuropsychologically impaired and unimpaired children with 

ADHD.  

Results: Analyses converged to highlight the potential importance of the .20-.26 Hz (4-5 

second cycles) band in differentiating the periodic structure of variability in ADHD RT time 

series data from both 1/f noise and control performance. This frequency band also showed 

the strongest evidence of familiality. 

Discussion:  ADHD children’s RT performance had a distinctive periodic structure compared 

to controls. The band identified as most differentiating and familial was at a higher 

frequency than in most previous reports. This highlights the importance of employing tasks 
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with faster inter-stimulus intervals that will allow a larger portion of the frequency spectrum 

to be examined. The possible psychological significance of the findings is discussed.  

 

5 KEY WORDS: Reaction Time Variability, Low Frequency, Attention-

Deficit/Hyperactivity Disorder, Endophenotype, Attentional lapses
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Introduction 

Attention deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder of 

childhood with a complex, multi-factorial aetiology (Bidwell et al., 2007). One of the most 

consistent findings across laboratory studies is that individuals with ADHD are more variable 

in their reaction times (RT) on neuropsychological tasks than control children (e.g. Kalff et 

al., 2005; Klein et al., 2006; Scheres et al., 2001; van Meel et al., 2005). This heightened 

degree of intra-individual variability (IIV: typically reported as larger standard deviation (SD) 

of RT) is as strongly and reliably correlated with ADHD symptoms as are measures of more 

specific cognitive processes (Epstein et al., 2003; Kunsti et al., 2001). IIV is often related to 

poor performance on tasks (e.g. Bellgrove et al., 2004), although case/control RTV 

differences are sometimes seen even when there is no obvious performance deficits on 

other measures (for a review see Klein et al. 2006). Increased IIV has been said to reflect 

state regulation deficits (Sergeant et al., 1999), an astrocyte dysfunction (Russell et al., 

2006) or default-mode interference (Sonuga-Barke & Castellanos, 2007).  However the SD of 

RT statistic, the most commonly used index of IIV, is unable to capture periodic fluctuations 

in time series RT data which are important in distinguishing between the predictions made 

by these different models. Random variability that does not contain a regular or periodic, 

temporal structure may represent global dysregulation of behaviour – perhaps a non-

specific feature of psychopathology (Geurts et al. 2008). Periodicity in IIV, in contrast, is 

assumed to implicate specific biological mechanisms which exhibit similar temporal 

frequencies (e.g., lapses in attention due to interference from very low frequency brain 

oscillations; Castellanos et al., 2005; Sonuga-Barke & Castellanos, 2007; Broyd et al., 2009).  

A number of alternative indices of variability to SD of RT have been proposed to 

explore this issue; here we will review two of these indices and related methods. First, the 
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ex-Gaussian model (Ratcliff et al., 1979) assumes that the RT distribution can be 

represented as the sum of a normal (Gaussian) distribution and an independent exponential 

curve. This model has three parameters, µ, the mean, σ the SD of the normal component, 

and τ the mean of the exponential component. This allows the mean RT from slower 

responses (τ) to be calculated independently from RTs in the normal distribution. Ex-

Gaussian analyses have demonstrated that ADHD and control children may not differ in 

terms of the first two parameters; however τ is greater suggesting that they make an 

unusually high proportion of very slow responses (e.g. Leth-Steensen et al., 2000; Hervey et 

al., 2004). This has been presented as evidence of periodic attentional lapses. Crucially 

however, the periodic structure of these occasional long RTs cannot be represented in ex-

Gaussian models. Instead, more sophisticated signal processing techniques such as Fast 

Fourier Transformations (FFT), which can inform about the power and amplitude of specific 

frequency bands within RT data, are required to capture this aspect of IIV. Castellanos et al. 

(2005) first employed these techniques on time-series RT data. They found that RT data 

from an Eriksen flanker task oscillated (i.e. fluctuated periodically) at a distinctive frequency, 

centred around 0.05 Hz
1
 (a cycle on average every 20 seconds) in both ADHD and control 

children. Greater power at this frequency was seen in the ADHD group than the control 

group: An effect normalised by methylphenidate. Building on this finding Di Martino et al. 

(2008) found that power in this frequency band was able to predict the diagnosis of ADHD 

above and beyond SD of RT. However, not all studies have found supportive evidence that 

ADHD children’s RT fluctuations can be differentiated from controls in terms of power in this 

frequency band. Geurts et al. (2008) did not find children with ADHD to differ from controls 

                                                      

1
 The frequency of oscillations is described in hertz (Hz), which is a unit of cycles per second. 
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on measures of IIV (SD of RT, ex-Gaussian measures of µ, σ and τ, or frequency domain 

specific measures of RT), raising questions about how generalisable these findings are across 

ADHD samples.  Nonetheless, these alternative indices of IIV allow us to explore the 

temporal structure of RT data more effectively and may provide a useful alternative to 

global measures of RTV in the investigation of underlying biological mechanisms associated 

with enhanced IIV in ADHD.  

While FFT evidence supporting the existence of low frequency periodicity in Flanker 

Task RT time-series data in ADHD has provided an important impetus for the development 

of new models of ADHD performance, it is obvious that the particular frequency band 

identified by these studies will be constrained in a number of ways by the characteristics of 

the task and the analysis used. First, the flanker task has a relatively slow event rate 

(typically an inter-stimulus of 3 seconds) so that the observation of cycles of more than 0.17 

Hz (i.e. cycles shorter than 6 seconds) are not possible. In this regard it is interesting that 

Johnson et al., (2007) identified a different ADHD-differentiating frequency band using a 

sustained attention task with a shorter ISI of 1.5 second. Second, the Flanker task is a 

relatively complex task incorporating different stimulus types, with different response 

demands of varying difficulty (i.e. incongruent vs. congruent trials) so that the time series 

has to be reconstructed statistically to account for the RT difference between easier and 

more difficult trials. A recent study highlighted the effect of task difficulty on RT periodicity 

(Vaurio et al. 2009). On a Go/No-Go task, ADHD patients were best differentiated from 

controls in a frequency band from .027-.074 Hz, but in a complex version of this task, the 

ADHD patients were best differentiated from controls in a higher frequency band .074-.202 

Hz (Vaurio et al. 2009). Third, previous analyses have summed power across theoretically 

derived frequency bands (slow 2, 0.2-0.5 Hz; slow 3, 0.06-0.2 Hz; and slow 4, 0.02-0.06 Hz, 



Low frequency reaction time oscillations in ADHD 7

see Penttonen & Buzsaki, 2003). However, these boundaries may not capture the 

functionally important or most statistically significant elements with regard to differences 

between ADHD cases and controls. Finally, analyses have not taken into account that the 

power spectrum of human RT data, like periodic data from biological systems such as 

electrical and electromagnetic brain activity (Demanuele et al. 2007) decreases with 

increasing frequency: That is, it exhibits 1/f noise (Gilden et al. 1995; Gilden 1997; Gilden 

and Hancock 2007). Because of this there may be a bias towards identifying power peaks in 

the lower frequencies if analyses are not adjusted for 1/f properties. This has not been done 

in previous analyses. In summary, task and methodological parameters, including analysis 

strategy have implications for, and may constrain, the frequency bands that can be 

observed and explored by frequency domain analyses.     

We address these limitations in the current study. First, the task used to generate 

the time-series RT data is a simple choice RT task with a relatively short ISI (1500 ms). This 

allows an analysis across a broader frequency range (i.e. 0.01 to 0.30 Hz). Second, we 

employ a fine grained analysis of spectral power across a broader frequency range 

unconstrained by the theoretically-derived frequency band boundaries. Finally, we 

incorporate an assessment of spectral power peaks relative to 1/f noise.  

We also assess the familiality of low frequency periodicity in ADHD RT fluctuations. 

Given the probability that ADHD is genetically heterogeneous (Bidwell et al., 2007), there is 

a need to find endophenotypes or biological markers associated with etiologically more 

homogenous and simpler forms (e.g. Doyle et al., 2005). Some data support increased IIV, in 

general, as an endophenotype of ADHD. Groups of unaffected relatives of probands with 

ADHD, who share susceptibility genes for the disorder but do not express the disorder 

themselves, have been shown to demonstrate increased IIV (SD of RT) compared to controls 
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groups, including dizygotic twin pairs discordant for ADHD (Bidwell et al., 2007; Rommelse 

et al., 2007; Uebel et al., 2010). Furthermore Nigg et al. (2004) have demonstrated that 

familial patterns of impairment segregate within ADHD families. When their sample of 

ADHD children was divided into two groups on the basis of whether they showed excessive 

IIV, they found that the relatives of those with high levels of IIV also had higher levels of IIV 

than a group of controls. Siblings of those ADHD patients without high IIV were no different 

from controls.  The value of specific frequency bands of periodic fluctuations in RT as 

putative endophenotypes (i.e., their familiality) has not been examined. In this paper we 

report the first analysis of familiality of IIV, in terms of power in low frequency fluctuations 

in RT time series data.  

 In summary, in the present study we employ a fine grained analysis of spectral 

power across a broader frequency range in time series RT data derived from a simple task 

with a short ISI to; (i) isolate “peaks” in low frequency power that significantly differ from 

1/f noise in cases and controls separately and (ii) identify ADHD-differentiating frequency 

bands. Heritability of ADHD-differentiating frequency bands will be measured by comparing 

ADHD probands with their unaffected siblings and controls and also the siblings of 

neuropsychologically impaired and unimpaired subgroups of ADHD. Through these analyses 

we aim to identify ADHD-differentiating frequencies in the RT time series that differ 

significantly from 1/f noise and are familial and so likely to be important mediators of 

aetiological processes.  

Method 
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 Methods for the present study have been described elsewhere in three separate 

publications (see Bitsakou et al., 2008; Bitsakou et al., 2009; Sonuga-Barke et al., 2010a) and 

will be described only briefly here.  

Participants 

 Seventy-one families with at least one child with ADHD and one sibling were initially 

recruited into the University of Southampton contribution to the International Multicentre 

ADHD Genetics study (IMAGE) database. Control participants were recruited from local 

primary and secondary schools. The ADHD, sibling and control samples are identical to the 

samples reported in Bitsakou et al. (2008), Bitsakou et al. (2009) and Sonuga-Barke et al. 

(2010a). Participants who made >15% omission errors on the task were not considered to 

be sufficiently engaged in the task and were excluded from further analysis (see Di Martino 

et al., 2008). Seven children from the ADHD group and six children from the sibling group 

were excluded on this basis. Excluded children were younger (F[1,189] = 9.64, p = .002) and 

had greater conduct problems (F[1,189] = 6.17, p = .014) than not-excluded children. Data 

failed to record for two children in the sibling group. Six siblings of the ADHD probands were 

also affected by ADHD, and were included in the ADHD group in any case/control analyses 

but were excluded from familiality analyses. Therefore, 69 cases with ADHD, 56 unaffected 

siblings of a subset of these cases, and 50 controls were included in various analyses. 

Inclusion criteria for ADHD cases was a research diagnosis of ADHD and inclusion criteria for 

both ADHD cases and controls was IQ > 70, age 6-17 years, and no other major mental 

health problems. 

Diagnostic Criteria 

 The clinical diagnosis of ADHD-combined type was validated in all cases using the 

IMAGE project clinical algorithm, which are described in detail elsewhere (see Brookes et al., 
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2006). In brief, probands and siblings with Conners’ ADHD subscales T scores > 63 were 

administered the Parental Account of Childhood Symptoms (PACS; Taylor et al., 1991) - a 

semi-structured clinical interview developed to provide a research-based diagnosis of ADHD 

and related disorders (i.e. conduct disorder). Parent and teacher report on the Conners 

long-version rating scales (Conners, 1996), the Strengths and Difficulties Questionnaire 

(SDQ; Goodman, 1997), and Social Communication Questionnaire (Berument et al., 1999) 

were also used to quantify comorbid symptoms and to identify ‘above cut-off’ levels of 

impulsivity or hyperactivity in control children.  

Procedure 

 The University of Southampton IMAGE neuropsychology protocol was approved by 

both the University of Southampton and local NHS medical-ethics committees. Any ADHD 

medication was discontinued for at least 48 hours before testing. All participants and 

parents gave their informed consent to participate in the study. The parent was 

administered the PACS during the children’s neuropsychological testing (no PACS interview 

was undertaken with the healthy control children or non-ADHD siblings (i.e. Conners’ T 

score < 63)). Each testing session lasted between 2 and 2.5 hours and children were allowed 

short breaks, the experimenter remained with each child throughout the task. All children 

received a £5 voucher for their participation.  

Task & Measures 

 All participants completed a simple two-choice response RT task (2CR-RT; Hogan et 

al., 2005) as part of the larger test battery. In this task children were presented with 100 

green left- or right-pointing arrows (left- and right- pointing arrows were presented with 

equal probability [50:50] in random order: 1500 ms ISI, 100ms stimulus presentation) in the 

centre of a computer monitor.  Children were instructed to indicate the direction of each 
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arrow as quickly and as accurately as possible by a button press of the left or right computer 

mouse button.  

Wechsler Intelligence Scales for Children (WISC-III; Wechsler, 1991) were used to 

estimate full-scale IQ in all children. The vocabulary and block design subsets were used; this 

short form of the WISC-III is frequently used as a screening measure in research and has 

been shown to have good reliability (r = .911) and validity (r = .862) (Sattler, 1992). The sum 

of the scaled score from these two subtests was converted into an estimated full-scale IQ 

deviation quotient using the conversion reported in Sattler (1992).  

Analytical Strategy 

Task performance – RT and SD of RT 

 Impossible responses (<100 ms) for each participant were removed. The number of 

omission errors and directional errors for each participant was calculated. Consistent with 

previous research, Mean RT and SD of RT for each participant was calculated from correct 

responses only (see Di Martino et al., 2008). For each measure, any outliers (individual’s 

score > 3 SD from the group mean) were replaced by the group mean for that measure. 

Differences between groups in task performance were assessed using independent samples 

t-tests. The effect of comorbidities in ADHD cases (i.e. oppositional defiant disorder [ODD], 

conduct disorder [CD], and anxiety disorder [AD]) was assessed by comparing comorbid and 

non-comorbid cases using t-tests. 

RT data series pre-processing and signal processing analysis  

 To remove the impact of response type (correct or incorrect) on the RT data series, 

errors were regressed out and the unstandardised regression residuals were used in 

subsequent frequency domain analyses (see Helps et al., 2009). To maintain the structure 

and validity of the RT data series critical for FFT analysis, missing responses were 
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interpolated using a linear interpolation (SPSS version 15). For the frequency analysis, the 

1500 ms ISI allowed for a frequency resolution of up to 0.33 Hz, while the 150 sec block 

length determined the lower boundary of 0.013 Hz. FFT analyses were conducted (using 60 

point Hamming windows with 20 sample overlap) and two separate analyses were then 

performed on these data.  

Identifying frequency bands that distinguish periodic structure of RT data from 1/f noise  

 First, we identified power peaks in the frequency domain that differentiated the 

periodic structure of RT time-series data from 1/f noise for cases and controls separately. To 

achieve this we first fitted a 1/f
α
 + β model to the mean FFT for each group using EzyFit 

curve fitting software (version 2.30; see http://www.fast.u-psud.fr/ezyfit/). Previous work 

suggests that a 1/f
α
 + β model provides a good fit to RT data where f refers to frequency, α 

refers to a spectral component and β represents the amplitude of a white noise component. 

Although Gilden and Hancock (2007) have shown that these components may vary with 

group status (i.e. participants with attention deficits have a different frequency structure 

relative to controls), the 1/f
α
 + β model successfully captured and accounted for this 

difference, providing a good fit for both groups
2
. We then compared each group’s FFT score 

at each data point to the value predicted by the model, using a one-sampled t-test to 

identify peaks in the data that differed significantly from the 1/f distribution. As this large 

number of tests (total number = 8192 tests) would increase the number of false positives 

occurring by chance, we adopted a stringent criteria for identifying peaks differing from the 

1/f noise with 500 consecutive significant results required (see Smith et al., 2007). This 

represented a frequency band of minimum bandwidth, 0.02 Hz.  

                                                      

2
 As with Gilden and Hancock (2007) 1/f

α
 + β provided the best fit to our data (Control R = .748, ADHD R = .909)  



Low frequency reaction time oscillations in ADHD 13 

Identifying frequency bands that distinguish ADHD from controls 

Second, using identical significance criteria as above, we attempted to identify frequency 

bands that differentiated ADHD from control individuals by directly comparing the 

frequency spectrum of each group. The statistical significance of differences between the 

ADHD and controls for each point in the whole frequency spectrum was tested using t tests, 

and the frequency bands that best differentiated the groups identified. Power was 

calculated as the area under the curve within each of these ADHD-differentiating bands for 

each of the groups, and as power is not normally distributed these data were (natural) log 

transformed. The effect of comorbidities in ADHD cases (i.e. oppositional defiant disorder 

[ODD], conduct disorder [CD], and anxiety disorder [AD]) was assessed by comparing 

comorbid and non-comorbid cases using t-tests. 

 Familiality of power within ADHD-differentiating frequency bands was assessed using 

one-way ANOVA to compare ADHD probands with their unaffected probands and the 

controls. Following Nigg et al., (2004) we divided the siblings into two groups – those with 

proband siblings who had high power within these bands (scored in the worst 20
th

 

percentile for control children) which we called “impaired” and those that did not meet this 

inclusion threshold, which we called unimpaired probands. It was predicted that to show 

familiality, siblings of “impaired” ADHD cases would not differ from ADHD cases in terms of 

the power in ADHD-differentiating frequency bands but would differ from controls, while 

the opposite would be the case for the siblings of the “unimpaired” probands.  

Results 

 ADHD cases and controls did not differ in age or gender. The ADHD cases had lower 

estimated full scale IQ, had more symptoms of ADHD and higher levels of conduct problems 

(see Table 1). On the 2-CR RT task, the ADHD cases and controls showed similar mean RTs. 
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ADHD cases were found to make more errors and had higher SD of RT. These effects were 

unchanged after controlling for IQ. 

 Figure 1 plots the grand average FFTs of the time-series RT data for ADHD cases and 

controls superimposed on the 1/f distribution along with the p values for 1 sample t tests of 

FFT against 1/f values. For controls significant differences from the 1/f model did occur at a 

number of frequencies (.16 - 17 Hz and .20 -.26 Hz) but only band .20-.26 Hz met the 

stringent criteria used here. For ADHD cases nominal significant differences (p < 0.05) from 

the 1/f model were identified in the bands .16-.19 Hz, .23 - .26 Hz and .28-.30 Hz in the 

ADHD FFT. Only the frequency bands .16-.19 Hz and .23-.26 Hz met our stringent criteria. 

 Figure 2 directly compares the grand average FFTs of the time-series RT data for 

ADHD cases and controls and plots the p values for differences between the two groups at 

each point in the frequency spectrum. Differences reached nominal statistical significance (p 

< 0.05) in a number of bands (06-.07 Hz, .14-.16 Hz, .20-.26 Hz, .30 -.32Hz). Only bands .14-

.16Hz (cycles 6-7 seconds: 1022 consecutive significant results) and .20-.26 Hz (cycles 4-5 

seconds: 1656 consecutive significant results) met the stringent criteria. Table 1 reports the 

case control differences for the area under the curve of the different ADHD-differentiating 

frequency bands. There were no significant differences between comorbid and non-

comorbid cases for any of these disorders in any of the outcome variables.  

 Familiality Analysis: Probands, unaffected siblings and controls did not differ in age. 

Although there was a smaller proportion of boys in the sibling group compared to the 

proband or the control group (see Table 2), a multivariate ANOVA with gender entered as 

the independent variable found no significant effect of gender on any of the measures of 

variability (F(1,173) = .547, p = .461 ns). Siblings were reported to have more ADHD 

symptoms and conduct difficulty scores at intermediate levels between probands and 
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controls scores. Siblings generally displayed IIV scores that were intermediate between 

probands and controls (SD of RT and differentiating frequencies). These results were 

unchanged by statistically controlling for IQ. When we looked at the siblings of “impaired” 

and “non-impaired” probands we found evidence for within family correlations on SD of RT 

and the frequency band from .20-.26 Hz (see Table 3). That is, in both cases “impaired” 

children differed significantly from controls but not from probands in terms of IIV, while the 

reverse was the case for the unimpaired children. These effects remained significant after 

controlling for age and IQ.  

Discussion 

 This study replicates previous findings of increased IIV (SD of RT) in ADHD and 

suggests that this variability has a low frequency periodic structure that is distinctive relative 

to controls. One band in particular (.20-.26 Hz: cycles 4-5 seconds) seemed especially 

important given that it demonstrated the greatest difference in the FFT spectrum between 

ADHD cases and controls and overlapped with a band on which ADHD cases power differed 

significantly from the predicted 1/f distribution, suggesting that this power peak could not 

be accounted for by 1/f noise. Finally, this band provided the strongest evidence of 

familiality.  

 This frequency band is somewhat higher than that typically found to differentiate 

ADHD children from controls in previous studies (Castellanos et al. 2005; Di Martino et al. 

2008). However these analyses have used data from the Eriksen flanker task and this task 

may not be ideally placed to assess periodicity in time series data. It places high demands on 

interference control, has multiple trial types of varying difficulty (three different stimulus 

types and two different directions for each stimulus), and samples performance infrequently 

(3 second ISI). Crucially because of its slow ISI our ADHD-differentiating frequency (.20 -.26 
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Hz) cannot be observed in the data obtained from the Eriksen Flanker task given its 

temporal parameters (i.e. only frequencies lower than .17 Hz could be identified given a 3 

second ISI). Interestingly Johnson et al. (2007) who used a sustained attention task with a 

similar ISI to the task we use here, reported that the RT fluctuations in a group of impaired-

ADHD children (defined by the number of commission errors) were best distinguished from 

an unimpaired-group and controls by power in the frequency band of .07-.33Hz (cycles 3–14 

seconds) –  importantly, the band found in the current study overlaps with the frequency 

band identified in prior work. Furthermore, although Di Martino et al. (2008) controlled for 

multiple trial types by regressing out their effects from the RT time-data series, the impact 

of these methods on the FFT is unclear. Although, investigations of frequency domain 

variability in RT data must allow sufficient time for participant responses, which means that 

stimuli cannot be presented at extremely fast rates, utilising tasks with faster ISIs will allow 

a larger portion of the frequency spectrum to be examined and this will clarify the 

frequency bands which are able to best distinguish between ADHD cases and controls. The 

best possible tasks are probably those with continuous rather than discrete measures of 

performance. For instance, deviation from target plotted against time on a visual tracking 

task may provide the optimal measure of the periodic nature of performance lapses in 

ADHD.  

 The proband-sibling analysis provided evidence about the potential importance of 

this ADHD differentiating-frequency band as a putative endophenotype. First we examined 

the differences in the power in this band between probands, unaffected siblings and 

controls. Second we looked at whether this measure was specifically related to RT variability 

in unaffected family members.  The findings were consistent with previous research (e.g. 

Nigg et al., 2004) in showing evidence for familiality for SD of RT: unaffected siblings of 
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children with ADHD were found to exhibit intermediate SD of RT scores between probands 

and control children (the difference between unaffected sibilings and controls was non-

significant), and siblings of probands who showed impaired SD of RT also exhibited greater 

SD of RT than control children or siblings of unimpaired-probands. We extended this 

analysis by showing a very similar familial pattern in terms of spectral power in the 

frequency band .20 - .26 Hz. These data provide the first evidence that lower frequency 

fluctuations in RT data may be familial, and because siblings had intermediate scores 

between probands and controls, may have value as an ADHD endophenotype. Future 

research needs to extend this design to genetically informative-designs and studies to 

establish its relationship with measures of genetic and environmental risk.  

 The current study differed from previous studies in that it used a data driven 

approach to identify the boundaries to ADHD-differentiating frequency bands rather than 

theoretically pre-defined frequency bands founded upon mathematical models of the 

properties of RT spectra and other physiological systems such as neuronal oscillations (see 

Penttonen and Buzsáki 2003; Buzsáki and Draguhn 2004). The ADHD-differentiating band 

found in the current study overlapped with these bands to some degree (i.e. .20-.26 Hz 

overlaps with the slow 2 frequency band [0.2-0.5 Hz]). The convergence of mathematical 

model-based and data-driven approaches to defining frequency band boundaries is an 

important consideration for future research, with particular relevance for concurrent RT and 

physiological data recordings, such as EEG.   

 The finding of periodic fluctuations in RT in the current study is in keeping with 

models that see ADHD as the result of alterations in context-dependent dynamic processes 

(Sonuga-Barke et al. 2010b). In general, IIV in RT performance in ADHD is theoretically 

rather non-specific. It has been argued at different times to reflect deficits in state-
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regulation (Sergeant et al. 1999; Sonuga-Barke et al. 2010b), time perception (Castellanos 

and Tannock 2002) and executive dysfunction (Barkley, 1997). The current finding and those 

previously reported of a low frequency periodic signature to this variability, while 

potentially consistent with all these models, is specifically predicted by a recent neuro-

biological model of attentional lapses in impaired states and systems, such as that seen in 

ADHD. In this model, periodic spontaneous lapses in attention occur when very low 

frequency brain activity typically seen in the default network of the resting brain (for a 

review see the following: Raichle et al. 2001; Fox and Raichle 2007; Sonuga-Barke and 

Castellanos 2007; Broyd et al. 2009) is not effectively attenuated during the transition from 

rest to task, and thus intrudes into and interferes with brain processes required for 

performance (e.g. Sonuga-Barke and Castellanos 2007). Indeed imaging studies have shown 

increased SD of RT in patients with ADHD is associated with reduced deactivation of the 

default network (Fassbender et al. 2009; Helps et al. 2009; Helps et al. 2010). Likewise EEG 

studies have shown reduced attenuation of resting state very low frequency EEG activity in 

ADHD participants with the onset of tasks (Helps et al. 2009; Helps et al. 2010), and that this 

low frequency activity is synchronised with RT fluctuations to a greater extent for 

participants who do not deactivate ‘default-mode’ activity effectively and who exhibit high 

levels of ADHD symptoms (Helps et al. 2009). In the current study, the frequency band that 

best differentiated patients from controls and provided the most convincing evidence of 

familiality is faster (.20 to .26 Hz; cycles of 4-5 seconds) than the neuronal oscillations 

typically associated with the default-mode network, as defined by hemodynamic and 

electrophysiological recordings (<0.1 Hz, see Fox and Raichle 2007; Helps et al. 2008; Helps 

et al. 2009; Helps et al. 2010).  Nevertheless, a direct assessment of the relationship 

between these faster neuronal oscillations (4-5 second cycles) using EEG or BOLD signal data 
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(which is limited to very low frequency bands by its sampling rate) and 4-5 second cycle 

fluctuations in RT data, has yet to be conducted.  Future research utilising tasks with fast ISIs 

and concurrent EEG recordings will be able to answer these questions more directly.   

 In sum, we have shown that children with ADHD exhibit greater IIV than controls: 

More specifically, they show periodic fluctuations in RT in time-series data.  We highlight the 

potential importance of a particular frequency band (.20-.26 Hz: cycles 4-5 seconds) that 

strongly differentiated ADHD cases from controls, was different from 1/f noise and showed 

evidence of heritability. 
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Table 1: Group characteristics and task performance for cases and controls 

 Cases (N=69) 

Mean (SD) 

Controls 

(N=50)  

Mean (SD) 

Test df Test 

statistic 

p Effect size 

(Cohen’s d) 

% Boys 81% 66% χ
2
   1  3.53  .060  

Age 11.66 (1.74) 12.16 (2.25) t 117   .588  .558  

IQ (WISC) 

Vocabulary score 

Performance score 

Estimated Full Score 

 

 8.80 (2.88) 

 9.23 (2.52) 

90.0 (13.4) 

 

  9.82 (3.47) 

 10.48 (2.57) 

101.0 (15.2) 

 

t 

t 

t 

 

117 

117 

117 

 

 1.75 

 2.64 

 2.63 

 

 .082 

 .009 

 .010 

 

SDQ 

Parent Reported 

Hyperactivity 

Conduct Problems 

Total difficulties 

Teacher Reported 

Hyperactivity 

Conduct problems 

Total difficulties 

 

 

8.20 (1.87) 

5.64 (2.36) 

22.1 (6.53) 

N=59 

6.78 (2.85) 

2.72 (2.36) 

14.86 (7.56) 

 

 

1.98 (1.68) 

1.32 (1.71) 

6.38 (4.41) 

N=37 

1.35 (1.36) 

.32 (.709) 

3.65 (3.29) 

 

 

t 

t 

t 

 

t 

t 

t 

 

 

117 

117 

117 

 

94 

94 

94 

 

 

18.7 

11.0 

14.6 

 

10.8 

  6.00 

  8.51 

 

 

<.001 

<.001 

<.001 

 

<.001 

<.001 

<.001 

 

Scores from RT task 

Number directional errors 

Number omission errors 

Mean RT (ms) 

Mean SD of RT (ms)  

Mean power .06-.07 Hz 

Mean power .14-.16 Hz 

Mean power .20-.26 Hz 

Mean power .30-.32 Hz 

 

30.0 (13.67) 

6.16 (4.45) 

363 (75.4) 

164 (75.6) 

6.57 (1.42) 

6.81 (1.09) 

7.58 (.884) 

5.36 (1.08) 

 

18.7 (15.1) 

2.18 (3.16) 

366 (76.1) 

104 (47.0) 

5.56 (1.55) 

6.08 (1.03) 

6.97 (.910) 

4.81 (1.09) 

 

t 

t 

t 

t 

t 

t 

t 

t 

 

117 

117 

117 

117 

117 

117 

117 

117 

 

 4.24 

 4.05 

  .162 

 4.97  

4.05 

3.91 

3.95 

3.10 

 

<.001 

<.001 

 .872 

<.001 

<.001 

<.001 

<.001 

.002 

 

1.43 

1.05 

.04 

.98 

.68 

.69 

.68 

.51 
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Table 2: Group characteristics and task performance for probands, siblings and controls 

 Probands (N=64) 

Mean (SD) 

Siblings (N=56) 

Mean (SD) 

Controls (N=50) 

Mean (SD) 

Test df Test statistic p Post-hoc comparisons Effect size 

(Cohen’s d) 

% Boys 84% 52% 66% χ
2
 2 13.5 .001   

Age 12.09 (2.28) 11.91 (2.99) 12.16 (2.25) F 2,167 .138 .871   

IQ (WISC) 

Vocabulary score 

Performance score 

Estimated Full Score 

 

8.10 (2.68) 

9.23 (2.40) 

93.8 (12.0) 

 

9.32 (2.31) 

9.54 (2.78) 

96.67(12.5) 

 

  9.82 (3.47) 

 10.48 (2.57) 

101.0 (15.2) 

 

F 

F 

F 

 

2,167 

2,167 

2,167 

 

2.22 

3.45 

4.18 

 

.112 

.034 

.017 

 

C > P 

C > P 

C > P 

 

.56 

.50 

.53 

SDQ 

Parent Reported 

Hyperactivity 

Conduct Problems 

Total difficulties 

Teacher Reported 

Hyperactivity 

Conduct problems 

Total difficulties 

 

 

8.28 (1.86) 

5.70 (2.30) 

22.41 (6.43) 

N=54 

6.85 (2.73) 

2.72 (2.33) 

14.87 (7.27) 

 

 

3.64 (2.61) 

2.32 (2.45) 

9.11 (7.62) 

N=44 

3.52 (2.71) 

1.43 (1.91) 

7.84 (6.62) 

 

 

1.98 (1.68) 

1.32 (1.71) 

6.38 (4.41) 

N=37 

1.35 (1.36) 

.32 (.709) 

3.65 (3.29) 

 

 

F 

F 

F 

 

F 

F 

F 

 

 

2,167 

2,167 

2,167 

 

2,131 

2,131 

2,131 

 

 

162 

 64.6 

107.4 

 

59.5 

18.2 

38.0 

 

 

<.001 

<.001 

<.001 

 

<.001 

<.001 

<.001 

 

 

P >S , C 

P >S > C 

P >S > C 

 

P >S > C 

P >S > C 

P >S > C 

 

 

2.08, 3.56 

1.42, .48 

1.89, .45  

 

1.22, 1.07 

.61,.85 

1.01, .85 

Scores from RT task 

No. of directional errors 

No. of omission errors 

Mean RT (ms) 

Mean SD of RT (ms) 

Mean power .06-.07 Hz 

Mean power .14-.16 Hz 

Mean power .20-.26 Hz 

Mean power .30-.32 Hz 

 

29.3 (13.5) 

4.92 (4.30) 

357 (74.0) 

157 (70.8) 

6.57 (1.42) 

6.81 (1.09) 

7.58 (.884) 

5.36 (1.08) 

 

19.5 (11.7) 

3.02 (3.61) 

399 (88.8) 

127 (60.3) 

6.02 (1.39) 

6.43 (1.03) 

7.25 (.925) 

5.03 (1.01) 

 

18.7 (15.1) 

2.18 (3.16) 

366 (76.1) 

104 (47.0) 

5.56 (1.55) 

6.08 (1.03) 

6.97 (.910) 

4.81 (1.09) 

 

F 

F 

F 

F 

F 

F 

F 

F 

 

2,167 

2,167 

2,167 

2,167 

2,167 

2,167 

2,167 

2,167 

 

11.6 

8.06 

4.53 

10.60 

6.91 

6.31 

6.52 

3.92 

 

<.001 

<.001 

.012 

<.001 

.001 

.002 

.002 

.022 

 

P > S, C 

P > S, C 

S > P, C 

P > S > C 

P > S, C 

P > C 

P > C 

P > C 

 

.78, .74 

.48, 0.74 

.52, .40 

.46,.43 

.39, .68 

.69 

.68 

.51 

Note. Post-hoc comparisons are shown where p < .05; P = proband, S = sibling, C = control
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Table 3: Variability scores in frequencies of significance for probands, impaired- and unimpaired-sibs, and controls. 

         Group comparisons and 

effect size (Cohen’s d) 

 Probands 

Mean (SD) 

Impaired-

sib 

Mean (SD) 

Unimpaired

-sib 

Mean (SD) 

Controls 

Mean (SD) 

 

Test 

 

df 

Test 

statistic 

 

p 

 

P > C 

 

I-S > C 

 

U-S >C 

Mean SD of RT 157 (70.8) 147 (75.2) 127 (64.6) 104 (47.0) F 3,174 5.89 .001 � .90 � .70 � .41 

Power .06 -.07 Hz 6.57 (1.42) 5.90 (1.63) 6.04 (1.34) 5.56 (1.55) F 5, 159 4.05 .008 � .68 � .22 � .33 

Power .14 - .16 Hz 6.81 (1.09) 6.36 (1.19) 6.46 (.998) 6.08 (1.15) F 5, 159 3.99 .009 � .65 � .20 � .35 

Power .20 - .26 Hz 7.58 (.883) 7.43 (1.01) 7.21 (.893) 6.97 (.910) F 5, 159 3.80 .011 � .68 �.48 � .27 

Power .30 - .32 Hz 5.36 (1.08) 4.97 (.772) 5.12 (1.11) 4.81 (1.09) F 5, 159 2.30 .080 � .51 � .17 � .28 

Note. P = proband, I-S = Impaired-sibling, U-S = unimpaired-sibling, C = control. All analyses control for IQ. � indicates significant group 

difference (p< .05) � indicates non-significant group difference (p> .05) 
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Figure 1: Mean FFT and fitted 1/f function for control (top left) and ADHD groups (top right), and the probability of the FFT differing from the 

predicted model (one sampled t-tests) for controls (bottom left) and ADHD groups (bottom right) 
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Figure 2: FFT of RT data for cases and controls (above), and the t statistic p value for each difference (below) 


