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Abstract

Let ∆ be a thick dual polar space and F a convex subspace of
diameter at least 2 of ∆. Every hyperplane G of the subgeometry F̃
of ∆ induced on F will give rise to a hyperplane H of ∆, the so-called
extension of G. We show that F and G are in some sense uniquely
determined by H. We also consider the following problem: if e is a
full projective embedding of ∆ and if eF is the full embedding of F̃
induced by e, does the fact that G arises from the embedding eF imply
that H arises from the embedding e? We will study this problem in
the cases that e is an absolutely universal embedding, a minimal full
polarized embedding or a Grassmann embedding of a symplectic dual
polar space. Our study will allow us to prove that if e is absolutely
universal, then also eF is absolutely universal.

Keywords: dual polar space, absolutely universal embedding, minimal full po-
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1 Introduction

In this paper, we make a study of a class of hyperplanes of dual polar spaces
and use a property of these hyperplanes to obtain some structural information
on the absolutely universal embedding of a fully embeddable thick dual polar
space.

Suppose ∆ is a dual polar space of rank n. If F is a convex subspace of
diameter δ of ∆, then the points and lines of ∆ which are contained in F
define a point-line geometry F̃ which is a dual polar space of rank δ. For
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every point x of ∆, there exists a unique point πF (x) in F nearest to x.

Suppose G is a hyperplane of F̃ and let H denote the set of all points of ∆ at
distance at most n− δ−1 from F together with all points x of ∆ at distance
n− δ from F for which πF (x) ∈ G. Then H is a hyperplane of ∆, called the
extension of G. If δ < n, then the extension is called proper. A hyperplane of
∆ is called reduced if it is not the proper extension of some other hyperplane
(of a convex subspace of ∆).

The first main theorem of this paper states that every hyperplane of a not
necessarily thick dual polar space ∆ is uniquely expressible as the extension
of a reduced hyperplane of a convex subspace of ∆.

Theorem 1.1 Let ∆ be a dual polar space of rank n ≥ 0, let H be a hyper-
plane of ∆, let Fi, i ∈ {1, 2}, be a convex subspace of ∆ and let Gi, i ∈ {1, 2},
be a reduced hyperplane of F̃i. If H is the extension of the hyperplane G1 of
F̃1 and the extension of the hyperplane G2 of F̃2, then F1 = F2 and G1 = G2.

From now on, we suppose that ∆ is a thick dual polar space of rank n ≥ 2
which is fully embeddable in a projective space. Then ∆ admits the so-called
absolutely universal embedding and the minimal full polarized embedding.
Besides these two embeddings, there is another full projective embedding
which will play a role in the main theorems of this paper, namely the Grass-
mann embedding of the symplectic dual polar space DW (2n− 1,F) where F
is a field. A hyperplane H of ∆ is said to arise from a full projective embed-
ding e : ∆→ Σ of ∆ if there exists a hyperplane α of Σ such that H consists
of all points of ∆ which are mapped by e into the hyperplane α.

In the literature, one can find plenty of constructions for hyperplanes of
dual polar spaces. A question which arises after hyperplanes have been con-
structed is whether they arise from projective embeddings. The next theorem
deals with the problem whether extensions of hyperplanes arise from embed-
dings (and which embeddings) if one knows that the original hyperplanes
arise from a(n) (certain) embedding.

Theorem 1.2 Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 2, let F be a convex subspace of diameter δ ∈ {2, . . . , n} of ∆, let G

be a hyperplane of F̃ and let H be the hyperplane of ∆ which extends the
hyperplane G of F̃ .

(1) If G arises from the absolutely universal of F̃ , then H arises from the
absolutely universal embedding of ∆.

(2) Suppose the projective space which affords the minimal full polarized

embedding of F̃ is finite-dimensional. If G arises from the minimal full polar-
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ized embedding of F̃ , then H arises from the minimal full polarized embedding
of ∆.

(3) Suppose ∆ ∼= DW (2n− 1,F) where F is some field. If G arises from

the Grassmann embedding of F̃ ∼= DW (2δ − 1,F), then H arises from the
Grassmann embedding of ∆.

If a hyperplane of a fully embeddable thick dual polar space ∆ of rank n ≥ 2
arises from some full projective embedding, then it also arises from the ab-
solutely universal embedding of ∆. So, Theorem 1.2(1) is equivalent with
the following statement: “If G arises from some full projective embedding of
F̃ , then H arises from some full projective embedding of ∆”. If all hyper-
planes of ∆ arise from a given projective embedding e, then e necessarily is
absolutely universal. The converse is false in general. It is possible that a
hyperplane of ∆ does not arise from its absolutely universal embedding.

Suppose e : ∆ → Σ is a full embedding of a thick dual polar space ∆
and F is a convex subspace of diameter at least 2 of ∆. Then e will induce
a full embedding eF of F̃ into a subspace ΣF of Σ. An interesting problem
is to determine which kind of embedding eF is, for a given full projective
embedding e of ∆. This problem has been solved in the case e is a minimal
full polarized embedding ([3, Theorem 1.6]) or the Grassmann embedding of
a symplectic dual polar space ([3, Proposition 4.10]).

Proposition 1.3 ([3]) Let ∆ be a fully embeddable thick dual polar space of
rank n ≥ 2 and let F be a convex subspace of diameter δ ∈ {2, . . . , n} of ∆.

(1) If e : ∆→ Σ is the minimal full polarized embedding of ∆, then eF is

isomorphic to the minimal full polarized embedding of F̃ .
(2) If ∆ ∼= DW (2n− 1,F) for some field F and e : ∆→ Σ is the Grass-

mann embedding of ∆, then eF is isomorphic to the Grassmann embedding
of F̃ ∼= DW (2δ − 1,F).

The following theorem provides an answer to the above problem in the case
that e is the absolutely universal embedding of ∆. Its proof will make use of
Theorem 1.2(1).

Theorem 1.4 Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 2, let ẽ denote the absolutely universal embedding of ∆ and let F be a
convex subspace of diameter δ ∈ {2, . . . , n} of ∆. Then eF is isomorphic to

the absolutely universal embedding of F̃ .

In the final section of this paper, we consider the following question for a full
polarized projective embedding e : ∆→ Σ of a thick dual polar space ∆.
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Let F be a convex subspace of ∆, let G be a hyperplane of F̃ and
let H be the hyperplane of ∆ obtained by extending G. Does the
fact that G arises from eF implies that H arises from e?

Theorem 1.2, Proposition 1.3 and Theorem 1.4 imply that the answer to the
above question is affirmative if e is the absolutely universal embedding of ∆,
the minimal full polarized embedding of ∆ in case ΣF is finite-dimensional or
the Grassmann embedding of ∆ in case ∆ is isomorphic to a symplectic dual
polar space. One might therefore wonder whether the answer is affirmative
for any full polarized embedding of ∆. We will show that this is not the case
by providing a class of counter examples.

2 Basic definitions and properties

Let Π be a polar space of rank n ≥ 1 (Veldkamp [21]; Tits [20, Chapter
7]). With Π, there is associated a dual polar space ∆ of rank n (Cameron
[2]). This dual polar space ∆ is the point-line geometry whose points are
the maximal (i.e., (n − 1)-dimensional) singular subspaces of Π and whose
lines are the next-to-maximal (i.e., (n − 2)-dimensional) singular subspaces
of Π, with incidence being reverse containment. There exists a bijective
correspondence between the set of nonempty convex subspaces of ∆ and the
set of possibly empty singular subspaces of Π. This correspondence is given as
follows: if α is a singular subspace of dimension n−1−δ, δ ∈ {0, . . . , n}, of Π,
then the set of all maximal singular subspaces of Π containing α is a convex
subspace of diameter δ of ∆. The dual polar spaces of rank 1 are precisely
the lines containing at least two points and the dual polar spaces of rank
2 are precisely the nondegenerate generalized quadrangles. By convention,
a dual polar space of rank 0 is a point-line geometry which consists of one
point (no lines).

Let ∆ be a dual polar space of rank n ≥ 0 with distance function d(·, ·).
The convex subspaces through a given point x of ∆ define a projective space
Res(x) of dimension n−1. The subspaces of dimension i ∈ {−1, 0, . . . , n−1}
of Res(x) correspond to the convex subspaces of diameter i+ 1 through x. If
x is a point and F a convex subspace, then F contains a unique point πF (x)
nearest to x and d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point y of F .
We call πF (x) the projection of x onto F . A convex subspace of diameter δ
of ∆ is called a quad if δ = 2 and a max if δ = n− 1. A dual polar space is
called thick if each of its lines has at least three points and if for every quad
Q and every point x ∈ Q, there are at least three lines through x contained
in Q.
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Let ∆ be a dual polar space of rank n ≥ 0 with point set P . A set
H 6= P of points of ∆ is called a hyperplane if it intersects each line in either
a singleton or the whole line. If x is a point of ∆, then the set Hx of all
points at distance at most n − 1 from x is a hyperplane of ∆, called the
singular hyperplane with deepest point x. If n = 0, then x is the unique point
of ∆ and Hx = ∅. The deepest point of a singular hyperplane is uniquely
determined by the hyperplane. Suppose F is a convex subspace of diameter
δ ∈ {0, . . . , n} of ∆ and G is a hyperplane of F̃ . If H denotes the set of
all points at distance at most n − δ − 1 from F together with all points x
at distance n − δ from F for which πF (x) ∈ G, then H is a hyperplane of
∆, called the extension of G (De Bruyn and Vandecasteele [12, Proposition
1]). If δ = 0, so F is a singleton {x} and G = ∅, then H is the singular
hyperplane of ∆ with deepest point x.

Again, let ∆ be a dual polar space. A full (projective) embedding of ∆ is
an injective mapping e from the point set P of ∆ to the set of points of a
projective space Σ satisfying the following two properties: (1) 〈e(P)〉Σ = Σ;
(2) e maps every line of ∆ to some line of Σ. A dual polar space is called fully
embeddable if it admits some projective embedding. Recall that if e : ∆→ Σ
is a full embedding of ∆ into a projective space Σ, then for every hyperplane
α of Σ, e−1(e(P) ∩ α) is a hyperplane of ∆. The hyperplane e−1(e(P) ∩ α)
is said to arise from e. A full embedding e of ∆ is called polarized if every
singular hyperplane of ∆ arises from e. Two full embeddings e1 : ∆ → Σ1

and e2 : ∆ → Σ2 of ∆ are called isomorphic (e1
∼= e2) if there exists an

isomorphism φ : Σ1 → Σ2 such that e2 = φ ◦ e1. If e : ∆ → Σ is a full
embedding of ∆ and if α is a subspace of Σ satisfying

(C1) 〈α, e(x)〉Σ 6= α for every point x of ∆,

(C2) 〈α, e(x1)〉Σ 6= 〈α, e(x2)〉Σ for any two distinct points x1 and x2 of ∆,

then there exists a full embedding e/α of ∆ into the quotient space Σ/α
mapping each point x of ∆ to 〈α, e(x)〉Σ. If e1 : ∆ → Σ1 and e2 : ∆ → Σ2

are two full embeddings, then we say that e1 ≥ e2 if there exists a subspace
α of Σ1 satisfying (C1), (C2) and e1/α ∼= e2.

If ∆ is thick and fully embeddable into a projective space Σ, then by
results of Kasikova and Shult [14, Section 4.6], Ronan [18, Proposition 3]
and Tits [20, 8.6], there exists, up to isomorphism, a unique full embedding

ẽ : ∆ → Σ̃, such that ẽ ≥ e for any full embedding e of ∆. (So, all full
embeddings of ∆ are defined over the same division ring.) The full embedding
ẽ is called the absolutely universal embedding of ∆. By Cardinali, De Bruyn
and Pasini [4, Corollary 1.8], ẽ is polarized. (For dual polar spaces of rank
2 or nondegenerate generalized quadrangles, this also follows from Johnson
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[13, Proposition 5.4].) If ∆ is thick and fully embeddable, then by Cardinali,
De Bruyn and Pasini [3, Theorem 1.4], there exists, up to isomorphism, a
unique full polarized embedding ē of ∆ such that e ≥ ē for any full polarized
embedding e of ∆. The embedding ē is called the minimal full polarized
embedding of ∆. If e : ∆ → Σ is a full polarized embedding of ∆ and P is
the point set of ∆, then also by [3], the subspace Re :=

⋂
x∈P < e(Hx) >Σ

satisfies the conditions (C1), (C2) and we have that ē ∼= e/Re. The subspace
Re of Σ is called the nucleus of e.

Suppose V is a vector space of dimension 2n ≥ 4 over a field F which is
equipped with a nondegenerate alternating bilinear form (·, ·). The subspaces
of V which are totally isotropic with respect to (·, ·) define a symplectic polar
space W (2n−1,F) and a symplectic dual polar space DW (2n−1,F). If F is

a convex subspace of diameter δ ≥ 2 of DW (2n− 1,F), then F̃ ∼= DW (2δ−
1,F). The function mapping each point < v̄1, v̄2, . . . , v̄n > of DW (2n− 1,F)
to the point < v̄1 ∧ v̄2 ∧ · · · ∧ v̄n > of PG(

∧n V ) defines a full embedding of
DW (2n− 1,F) into a [

(
2n
n

)
−
(

2n
n−2

)
− 1]-dimensional subspace of PG(

∧n V ).
This embedding is called the Grassmann embedding of DW (2n− 1,F). The
Grassmann embedding of DW (2n− 1,F) is polarized.

3 Proof of Theorem 1.1

Let ∆ be a dual polar space of rank n ≥ 0, let F be a convex subspace of diam-
eter δ ∈ {0, . . . , n} of ∆, let G be a hyperplane of F̃ and let H denote the hy-

perplane of ∆ which extends the hyperplane G of F̃ . If ∗1, ∗2, . . . , ∗k are k ≥ 2
objects of ∆ (like points or nonempty sets of points), then < ∗1, ∗2, . . . , ∗k >
denotes the smallest convex subspace of ∆ containing ∗1, ∗2, . . . , ∗k.

Lemma 3.1 (1) Let F ′ denote a convex subspace of ∆ containing F , let G′

denote the hyperplane of F̃ ′ obtained by extending the hyperplane G of F̃ .
Then the hyperplane H of ∆ is the extension of the hyperplane G′ of F̃ ′.

(2) Suppose δ 6= n. Let F ′ be a convex subspace of ∆ which meets F
and which contains a point at distance n − δ from F . If F ∩ F ′ ⊆ G, then
F ′ ⊆ H. If F ∩F ′ 6⊆ G, then F ′∩H is a hyperplane of F̃ ′ which is the proper

extension of the hyperplane F ∩ F ′ ∩G of F̃ ∩ F ′.

Proof. (1) Let δ′ ≥ δ be the diameter of F ′ and let x be an arbitrary
point of ∆. Then d(x, πF (x)) = d(x, F ) = d(x, πF ′(x)) + d(πF ′(x), F ) =
d(x, F ′) + d(πF ′(x), F ) and πF (x) = πF (πF ′(x)).

(a) Suppose d(x, F ′) ≤ n − δ′ − 1. Since d(πF ′(x), F ) ≤ δ′ − δ, we have
d(x, F ) ≤ n− δ′ − 1 + δ′ − δ = n− δ − 1 and x ∈ H.
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(b) Suppose d(x, F ′) = n−δ′ and d(πF ′(x), F ) < δ′−δ. Then πF ′(x) ∈ G′
and x ∈ H since d(x, F ) < n− δ′ + δ′ − δ = n− δ.

(c) Suppose d(x, F ′) = n− δ′ and d(πF ′(x), F ) = δ′ − δ. Then d(x, F ) =
n− δ. We have x ∈ H ⇔ πF (x) ∈ G⇔ πF (πF ′(x)) ∈ G⇔ πF ′(x) ∈ G′.

By (a), (b) and (c) above, H is the extension of the hyperplane G′ of F̃ ′.

(2) Let x be an arbitrary point of F ′ and let y ∈ F ∩ F ′. Since πF (x)
lies on a shortest path between x ∈ F ′ and y ∈ F ′, πF (x) ∈ F ∩ F ′. So,
for every point x of F ′, πF (x) = πF∩F ′(x) and d(x, F ) = d(x, F ∩ F ′). Also,
max{d(x, F ∩ F ′) |x ∈ F ′} = max{d(x, F ) |x ∈ F ′} = n − δ. Claim (2) of
the lemma immediately follows from these facts. �

The maximal value that d(x, F ) can attain if x ranges over all points of ∆ is
equal to n− δ. A convex subspace F ′ of diameter δ is called opposite to F if
every point of F ′ lies at maximal distance n− δ from F . If F ′ is opposite to
F , then F is also opposite to F ′ and the map F → F ′;x 7→ πF ′(x) defines an

isomorphism between F̃ and F̃ ′, with inverse map F ′ → F, x 7→ πF (x) (see
e.g. [7, Theorem 1.10]).

Lemma 3.2 Let x be a point at maximal distance n − δ from F and let F ′

denote a convex sub-2δ-gon through x for which F ′∩〈x, πF (x)〉 = {x}. Then
F ′ is opposite to F .

Proof. By connectedness of F ′ and an inductive argument, it suffices to
prove the following:

(∗) if y 6= x is a point of F ′ collinear with x, then d(y, F ) = n − δ and
〈y, πF (y)〉 ∩ F ′ = {y}.

Suppose d(y, F ) 6= n − δ. Since d(y, F ) ≤ n − δ and d(x, y) = 1, we
necessarily have d(y, F ) = n− δ−1. But then d(x, πF (y)) ≤ n− δ and hence
πF (x) = πF (y). So, the point y which is on a shortest path between x and
πF (x) must be contained in F ′ ∩ 〈x, πF (x)〉 = {x}, a contradiction.

Hence, d(y, F ) = n − δ. Since y 6∈ 〈x, πF (x)〉, d(y, πF (x)) = d(y, x) +
d(x, πF (x)) = n − δ + 1. Since 〈x, πF (x)〉 ∩ F ′ = {x} and 〈x, πF (x)〉 is a

max of ˜〈y, πF (x)〉, 〈y, πF (x)〉 intersects F ′ in at most a line (look at Res(x)).
Hence, 〈y, πF (x)〉 ∩ F ′ = xy. Since πF (y) is on a shortest path between y
and πF (x), 〈y, πF (y)〉 ∩ F ′ must be either {y} or xy. We prove that the
latter possibility cannot occur. If the last possibility would occur, then the
convex subspace 〈y, πF (y)〉 of diameter n− δ would contain πF (x) since this
point is contained on a shortest path between x and πF (y). This is however
impossible since d(y, πF (x)) = n− δ + 1. �
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Lemma 3.2 implies that every convex subspace admits an opposite convex
subspace (of the same diameter).

Lemma 3.1(1) implies that the pair (F,G) is usually not uniquely deter-
mined by the hyperplane H. However, we can say the following:

Proposition 3.3 Under the condition that G is a reduced hyperplane of F̃ ,
the convex subspace F of ∆ and the hyperplane G of F̃ are uniquely deter-
mined by H.

Proof. The proof of the proposition will take place in a number of steps.

Claim 1. Let F ′ be a convex subspace of diameter δ of ∆ opposite to F .
Then H ∩ F ′ is a reduced hyperplane of F̃ ′.
Proof. Since every point of F ′ lies at distance n − δ from F , we have
x ∈ H ∩ F ′ ⇔ x ∈ F ′ and πF (x) ∈ G ⇔ x ∈ πF ′(G). So, H ∩ F ′ = πF ′(G).
The claim then follows from the fact that the map F → F ′;x 7→ πF ′(x)

defines an isomorphism between F̃ and F̃ ′. (qed)

Claim 2. Let F ′ be a convex subspace of ∆ containing a point x at distance
at most n − δ − 1 from F . Then H ∩ F ′ is either F ′ or a hyperplane of F̃ ′

which is not reduced.
Proof. Put F ′′ :=< x, F >. Let G′′ denote the hyperplane of F̃ ′′ obtained
by extending the hyperplane G of F̃ . Then by Lemma 3.1(1), the hyperplane

H of ∆ is the extension of the hyperplane G′′ of F̃ ′′. The diameter of F ′′ is
equal to δ′′ := d(x, F ) + δ ≤ n− 1. If F ′ does not contain points at distance
n− δ′′ from F ′′, then F ′ ⊆ H. If F ′ contains points at distance n− δ′′ from
F ′′, then by Lemma 3.1(2), H ∩ F ′ is either F ′ or a hyperplane of F̃ ′ which
is not reduced. (qed)

Claim 3. Let F ′ be a convex subspace of ∆ of diameter at least δ+ 1. Then
H ∩ F ′ is either F ′ or a hyperplane of F̃ ′ which is not reduced.
Proof. Let x be a point of F . Since the diameter of F ′ is at least δ + 1,
d(x, F ′) ≤ n − δ − 1. So, F ′ contains a point at distance at most n − δ − 1
from F . The claim now follows from Claim 2. (qed)

Claim 4. The number δ is uniquely determined by H.
Proof. This is a corollary of Claims 1 and 3 and the fact that there exist
convex subspaces of diameter δ opposite to F . (qed)

Claim 5. Let y ∈ F \ G and let F ′ be a convex subspace of diameter n− δ
through y. If |F ′ ∩ F | ≥ 2, then F ′ ⊆ H. If F ′ ∩ F = {y}, then F ′ ∩ H is

the singular hyperplane of F̃ ′ with deepest point y.
Proof. Suppose |F ′ ∩ F | ≥ 2. Then F ′ ∩ F contains a line L. Since every
point of F ′ has distance at most n − δ − 1 from some point of L ⊆ F , we
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have F ′ ⊆ H. Suppose F ′ ∩ F = {y}. Let x be some point of F ′. Since
πF (x) is contained in some shortest path from x ∈ F ′ to y ∈ F ′, we have
πF (x) ∈ F ′∩F = {y}. Hence, πF (x) = y for every point x ∈ F ′. Since y 6∈ G,
this implies that a point x ∈ F ′ belongs to H if and only if d(x, y) ≤ n−δ−1.

As a consequence, F ′∩H is the singular hyperplane of F̃ ′ with deepest point
y. (qed)

Claim 6. Let x be a point of ∆ not belonging to H. Then there exists a
(necessarily unique) convex subspace Fx of diameter n − δ through x such

that: (i) Fx∩H is a singular hyperplane of F̃x; (ii) if F ′ is a convex subspace
of diameter δ through x, then F ′∩Fx = {x} if and only if H∩F ′ is a reduced

hyperplane of F̃ ′. Moreover, the deepest point of the singular hyperplane
Fx ∩H of F̃x belongs to F \G.
Proof. Since x 6∈ H, d(x, F ) = n − δ and πF (x) 6∈ G. Put Fx :=<
x, πF (x) >. Then Fx has diameter n − δ. We prove that Fx satisfies the
conditions (i) and (ii) of the claim. By Claim 5, Fx ∩ F = {πF (x)} and

Fx ∩H is the singular hyperplane of F̃x with deepest point πF (x) ∈ F \G.
Let F ′ be a convex subspace of diameter δ through x. If F ′ ∩ Fx = {x},

then by Lemma 3.2 and Claim 1, H ∩ F ′ is a reduced hyperplane of F̃ ′.
Suppose F ′∩Fx 6= {x}. Then F ′∩Fx contains a line L. This line L contains
a point at distance n− δ− 1 from πF (x) and so we can apply Claim 2. Since

x 6∈ H, H ∩ F ′ is a hyperplane of F̃ ′ which is not reduced.
So, the convex subspace Fx satisfies the conditions of the claim. Let α be

the (n− δ− 1)-dimensional subspace of Res(x) corresponding to Fx. By (ii),
then (δ − 1)-dimensional subspaces of Res(x) disjoint from α are precisely
those subspaces of Res(x) which correspond to a convex subspace F ′′ of

diameter δ through x for which F ′′∩H is a reduced hyperplane of F̃ ′′. Let A
denote this set of (δ − 1)-dimensional subspaces of Res(x). If F ′ is a convex
subspace of diameter n − δ through x satisfying the conditions (i) and (ii)
above, then the (n− δ− 1)-dimensional subspace α′ of Res(x) corresponding
to F ′ is disjoint from each of the members of A. Hence, α′ = α, namely
F ′ = Fx. This proves the uniqueness of Fx. (qed)

Now, for every point x of ∆ not belonging to H, let θ(x) denote the unique

deepest point of the singular hyperplane H ∩ Fx of F̃x.

Claim 7. We have {θ(x) |x 6∈ H} = F \G.
Proof. By Claim 6, {θ(x) |x 6∈ H} ⊆ F \ G. Now, let y be an arbitrary
point of F \G and let F ′ be a convex subspace of diameter n− δ through y
for which F ′ ∩ F = {y}. By Claim 5, θ(x) = y for every x ∈ F ′ at distance
n− δ from y. Hence, {θ(x) |x 6∈ H} = F \G. (qed)
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By Claims 4, 6 and 7, the set F \G is uniquely determined by H. Now, fix
a certain element y ∈ F \ G. Let Fy denote the set of all convex subspaces
of diameter n − δ through y not contained in H. The set Fy is uniquely
determined by H. By Claim 5, also F is uniquely determined by H: the
lines through y contained in F are precisely the lines through y which are
contained in none of the elements of Fy (look at Res(y)). It follows that also
G = F \ (F \G) is uniquely determined by H. �

Theorem 1.1 is precisely Proposition 3.3.

4 Proof of Theorem 1.2(1)

In order to prove Theorem 1.2(1), we need to recall some facts regarding
simple connectedness of hyperplane complements of dual polar spaces.

Suppose H is a hyperplane of a thick dual polar space ∆ of rank at
least 3. Let Γ1 be the graph whose vertices are the maxes of ∆ which are
not completely contained in H. Two distinct vertices M1 and M2 of Γ1 are
adjacent whenever M1 ∩M2 is not contained in H (so, M1 ∩M2 6= ∅). A
closed path M1,M2, . . . ,Mk = M1 of Γ1 is called good if M1∩M2∩· · ·∩Mk is
not contained in H. Let Γ2 be the graph whose vertices are the points of ∆
not contained in H. Two distinct vertices of Γ2 are adjacent whenever they
are collinear as points of ∆. A closed path in Γ2 is called good if there exists
a max of ∆ containing all its vertices. The complement ∆ \H of H in ∆ is
said to be simply connected if one of the following two equivalent conditions
are satisfied:
• every closed path in Γ1 decomposes into good closed paths;
• every closed path in Γ2 decomposes into good closed paths.

For more background information on the topic of simple connectedness (of
hyperplane complements of dual polar spaces), we refer to Pasini [17, Chapter
12] or Cardinali, De Bruyn and Pasini [4, Section 2]. The problem whether
hyperplane complements of thick dual polar spaces are simple connected
has been solved completely in two papers, one by Cardinali, De Bruyn and
Pasini [4] and another one by McInroy and Shpectorov [16]. The following
proposition can easily be extracted from these papers.

Proposition 4.1 ([4], [16]) Let ∆ be a thick dual polar space of rank at
least 3, every line of which is incident with at least 4 points. If H is a
hyperplane of ∆, then the complement ∆ \H of H in ∆ is simply connected.

In order to prove Theorem 1.2(1), we also need to invoke some results of
Ronan. The following is a consequence of Corollary 4 of Ronan [18].
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Proposition 4.2 Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 3 and let H be a hyperplane of ∆ such that the complement of ∆\H in ∆
is simply connected. Suppose also that for every max M of ∆ not contained
in H, M ∩H is a hyperplane of M̃ which arises from the absolutely universal
embedding of M̃ . Then H arises from the absolutely universal embedding of
∆.

We are now ready to prove Theorem 1.2(1). The following proposition is a
special case of Theorem 1.2(1), but it is equivalent to it in view of Lemma
3.1.

Proposition 4.3 Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 3 and let M be a max of ∆. Let G be a hyperplane of M̃ which arises
from the absolutely universal embedding of M̃ . Then the hyperplane H of
∆ which extends the hyperplane G of M̃ arises from the absolutely universal
embedding of ∆.

So, it suffices to prove Proposition 4.3. We will do this by induction on
n ≥ 3. So, suppose that ∆ is a thick dual polar space of rank n ≥ 3
and that Proposition 4.3 holds for all thick dual polar spaces ∆′ of rank
n′ ∈ {3, . . . , n− 1}.

Suppose also that ∆ is fully embeddable, that M is a max of ∆ and that G
is a hyperplane of M̃ which arises from the absolutely universal embedding
of M̃ . Let H be the hyperplane of ∆ which extends the hyperplane G of
M̃ . If every line of ∆ contains precisely three points, then H arises from
the absolutely universal embedding of ∆ by Ronan [18, Corollary 2]. We
will therefore suppose that every line of ∆ is incident with at least 4 points.
Then Proposition 4.1 implies that the complement ∆\H of H in ∆ is simply
connected. By Proposition 4.2, it suffices to prove that for every max M ′ of
∆ not contained in H, M ′ ∩H is a hyperplane of M̃ ′ which arises from the
absolutely universal embedding of M̃ ′.

Suppose first that M ′ is disjoint from M . Then M ′ ∩ H = πM ′(G).

Since G arises from the absolutely universal embedding of M̃ and the map
M → M ′;x 7→ πM ′(x) defines an isomorphism between M̃ and M̃ ′, πM ′(G)

arises from the absolutely universal embedding of M̃ ′.
Suppose next that M ′ meets M . Then M ∩M ′ is a max of M ′. If M ′∩M

is contained in G, then M ′ ⊆ H. Suppose therefore that M ′ ∩M intersects

G in a hyperplane U of M̃ ′ ∩M . Then M ′ ∩H is a hyperplane of M ′ which

is the extension of the hyperplane U of M̃ ′ ∩M . Suppose n = 3. Then M
and M ′ are quads, M ∩M ′ is a line, U is a point of M ∩M ′ and M ′ ∩H is a
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singular hyperplane of M̃ ′. So, the hyperplane M ′ ∩H of M̃ ′ arises from the
absolutely universal embedding of M̃ ′ (which is polarized). Suppose therefore

that n ≥ 4. Since G arises from the absolutely universal embedding of M̃ , the

hyperplane U of M̃ ∩M ′ arises from some projective embedding of M̃ ∩M ′

and hence also from the absolutely universal embedding of M̃ ∩M ′. By the
induction hypothesis, the hyperplane H∩M ′ of M̃ ′ arises from the absolutely
universal embedding of M̃ ′.

We can now apply Proposition 4.2 and conclude that H must arise from
the absolutely universal embedding of ∆.

5 Proof of Theorem 1.2(2)

Let ∆ be a thick dual polar space of rank n ≥ 2 with point set P . Then every
hyperplane of ∆ is a maximal proper subspace of ∆ by Blok and Brouwer
[1, Theorem 7.3] or Shult [19, Lemma 6.1]. If H is a hyperplane of ∆ arising
from some full embedding e : ∆→ Σ of ∆, then since H is a maximal proper
subspace of ∆, < e(H) >Σ is a hyperplane of Σ and H = e−1(e(P)∩ <
e(H) >Σ). So, if H1 and H2 are two distinct hyperplanes of ∆ arising from e,
then the hyperplanes < e(H1) >Σ and < e(H2) >Σ of Σ are distinct. We then
define [H1, H2]e as the set of all hyperplanes of the form e−1(e(P)∩A), where
A is some hyperplane of Σ through < e(H1) >Σ ∩ < e(H2) >Σ. Since H1 and
H2 arise from e, they also arise from the absolutely universal embedding ẽ of
∆ and we necessarily have [H1, H2]e = [H1, H2], where [H1, H2] := [H1, H2]ẽ.
We also define (H1, H2) := [H1, H2] \ {H1, H2}.

In order to prove Theorem 1.2(2), we will make use of the following
lemma. Notice that in the statement of this lemma the set (G1, G2) is well-
defined. Indeed, by Theorem 1.2(1) we know that G1 and G2 are hyperplanes
arising from the absolutely universal embedding of ∆. Also, G1 6= G2 since
G1 ∩ F ′ = πF ′(G1) 6= πF ′(G2) = G2 ∩ F ′ for every convex subspace F ′ of
diameter δ opposite to F (recall that the map F → F ′;x 7→ πF ′(x) defines

an isomorphism between F̃ and F̃ ′).

Lemma 5.1 Let ∆ be a fully embeddable thick dual polar space of rank n ≥ 2,
let F be a convex subspace of diameter δ ≥ 2 of ∆ and let G1, G2 be two
distinct hyperplanes of F̃ arising from the absolutely universal embedding of
F̃ . For every hyperplane G of F̃ , let G denote the hyperplane of ∆ which
extends G. Then (G1, G2) = {G |G ∈ (G1, G2)}.

Proof. By Lemma 3.1 and a straightforward inductive argument, it suffices
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to prove the lemma in the case that F is a max of ∆. So, in the sequel we
will indeed suppose that n ≥ 3 and that F is a max of ∆.

We show that for every H ∈ (G1, G2), there exists a hyperplane G of F̃
such that H = G. Notice that F ⊆ H since F ⊆ G1 and F ⊆ G2. Let x be
an arbitrary point of F . We show that either x⊥ ⊆ H or x⊥ ∩H = x⊥ ∩ F ,
where x⊥ denotes the set of points at distance at most 1 from x. If this were
not the case, then there would exist two distinct lines L1 and L2 through
x not contained in F such that L1 ⊆ H and L2 6⊆ H. Let Q denote the
unique quad through L1 and L2 and let L3 be the line Q ∩ F . Now, Q ∩H
is a hyperplane of Q̃ which is necessarily a proper subquadrangle of Q̃ since
L1, L3 ⊆ H and L2 6⊆ H. Let y denote a point of L3∩G1 and let L4 be a line
of Q ∩H through y distinct from L3. Since L4 is contained in H ∈ (G1, G2)
and G1, it is also contained in G2. So, y ∈ G2. Now, since y⊥ ⊆ G2 ∩ G1,
y⊥ ∩ Q would be contained in Q ∩ H, in contradiction with the fact that
Q ∩ H is a proper subquadrangle of Q̃. Hence, for every x ∈ F , x⊥ ∩ H
is either x⊥ or x⊥ ∩ F . Now, let G denote the set of all x ∈ F for which
x⊥∩H = x⊥. Then H = F ∪ (

⋃
x∈G x

⊥). Let F ′ be a max of ∆ disjoint from

F . Since F ′ ∩ H =
⋃
x∈G(x⊥ ∩ F ′) = πF ′(G) is a hyperplane of F̃ ′, G is a

hyperplane of F̃ and H = F ∪ (
⋃
x∈G x

⊥) = G. Since G = πF (H ∩ F ′), we
have

H = πF (H ∩ F ′). (1)

Now, let ẽ : ∆→ Σ̃ denote the absolutely universal embedding of ∆. Put
ΣF ′ :=< ẽ(F ′) >. By Theorem 1.2(1), the hyperplane Gi, i ∈ {1, 2}, arises

from ẽ. Hence, Ai :=< ẽ(Gi) > is a hyperplane of Σ̃. Since G1 and G2 are
distinct, G1 and G2 are distinct and hence also A1 and A2 are distinct. The
hyperplanes of Σ̃ through A1 ∩ A2 define a line in the dual space Σ̃∗ of Σ̃.
Since G1 ∩ F ′ = πF ′(G1) 6= πF ′(G2) = G2 ∩ F ′, the subspaces of ΣF ′ of the

form A ∩ΣF ′ , where A is some hyperplane of Σ̃ through A1 ∩A2 is a line of
the dual space Σ∗F ′ of ΣF ′ . From this, it follows that

(F ′ ∩G1, F
′ ∩G2) = {F ′ ∩H |H ∈ (G1, G2)}. (2)

Clearly,
(F ′ ∩G1, F

′ ∩G2) = (πF ′(G1), πF ′(G2)). (3)

Since the map F → F ′;x 7→ πF ′(x) defines an isomorphism between F̃ and

F̃ ′, we have

(πF ′(G1), πF ′(G2)) = {πF ′(G) |G ∈ (G1, G2)}. (4)

By (2), (3) and (4),

{F ′ ∩H |H ∈ (G1, G2)} = {πF ′(G) |G ∈ (G1, G2)}. (5)

13



By equations (1) and (5), (G1, G2) = {H |H ∈ (G1, G2)} = {πF (H ∩ F ′) |
H ∈ (G1, G2)} = {πF (πF ′(G)) |G ∈ (G1, G2)} = {G |G ∈ (G1, G2)}. �

In order to prove Theorem 1.2(2), we will also make use of the following
lemma. Observe that the sets (Hi−1, Gi) which occur in the statement of
this lemma are well-defined by an inductive argument and the fact that the
singular hyperplanes of ∆ arise from the absolutely universal embedding of
∆.

Lemma 5.2 Let ∆ be a fully embeddable thick dual polar space of rank n ≥ 2
and suppose the minimal full polarized embedding ē of ∆ is finite-dimensional.
Then a hyperplane H of ∆ arises from ē if and only if there exists a k ≥ 1
and hyperplanes H1, H2, . . . , Hk of ∆ satisfying:

(1) H1 is a singular hyperplane of ∆;
(2) for every i ∈ {2, . . . , k}, Hi ∈ (Hi−1, Gi) for some singular hyperplane

Gi of ∆ distinct from Hi−1;
(3) Hk = H.

Proof. Let ẽ : ∆ → Σ̃ denote the absolutely universal embedding of ∆
and let P denote the point set of ∆. Recall that ē ∼= ẽ/Rẽ, where Rẽ is
the nucleus of ẽ. The conditions of the lemma imply that Rẽ has finite co-
dimension in Σ̃. So, there exists an l ∈ N \ {0} and points x1, . . . , xl of ∆
such that Rẽ =

⋂
1≤i≤lAi, where Ai =< ẽ(Hxi

) >, i ∈ {1, . . . , l}.
Suppose H1, H2, . . . , Hk is a set of k ≥ 1 hyperplanes of ∆ satisfying the

conditions (1), (2) and (3) of the lemma. By induction on i ∈ {1, . . . , k}, we
immediately see that each Hi, i ∈ {1, . . . , k}, arises from ē.

Conversely, suppose that H is a hyperplane of ∆ arising from ē. Put
A =< ẽ(H) >. Then A ∈< A1, . . . , Al >

∗ in the dual space Σ̃∗ of Σ̃.
Let k be the smallest nonnegative integer such that there exists a set of
k hyperplanes of {A1, . . . , Al} generating a subspace of Σ̃∗ containing A.
Without loss of generality, one may suppose that A ∈< A1, . . . , Ak >

∗. Put
H1 := ẽ−1(ẽ(P) ∩ A1) and Gi := ẽ−1(ẽ(P) ∩ Ai) for every i ∈ {2, . . . , k}.
Since A ∈< A1, . . . , Ak >

∗, there exist hyperplanes H2, . . . , Hk of ∆ such
that Hk = H and Hi ∈ (Hi−1, Gi) for every i ∈ {2, . . . , k}. �

Definition. Let ∆ and ē be as in Lemma 5.2. If H is a hyperplane of ∆
arising from ē, then the smallest nonnegative integer k for which there exist
hyperplanes H1, H2, . . . , Hk of ∆ satisfying the conditions (1), (2) and (3) of
Lemma 5.2 is called the index of H.

We are now ready to prove Theorem 1.2(2). So, let ∆ be a fully embeddable
thick dual polar space of rank n ≥ 2, let F be a convex subspace of diameter

14



δ ∈ {2, . . . , n} of ∆ and suppose the projective space which affords the

minimal full polarized embedding ēF of F̃ is finite-dimensional. Let G be a
hyperplane of F̃ arising from ēF and let i be the index of G. We shall prove
by induction on i that the hyperplane H of ∆ which extends the hyperplane
G of F̃ arises from the minimal full polarized embedding e of ∆.

Suppose first that i = 1. Then G is a singular hyperplane of F̃ and H is
a singular hyperplane of ∆. Hence, H arises from ē.

Suppose i ≥ 2. Then H ∈ (H1, H2), where H1 is a hyperplane of index

i− 1 of F̃ arising from ēF and H2 is a singular hyperplane distinct from H1.
By the induction hypothesis, H1 and H2 arise from ē. Hence, by Lemma 5.1,
also H ∈ (H1, H2) arises from ē.

6 Proof of Theorem 1.2(3)

Let n ∈ N \ {0, 1} and let F be a field.

The following proposition is a special case of Theorem 1.2(3), but is equiva-
lent to it in view of Lemma 3.1.

Proposition 6.1 Let M be a max of the dual polar space DW (2n − 1,F),

n ≥ 3. Let G be a hyperplane of M̃ and let H be the hyperplane of ∆ which
extends the hyperplane G of M̃ . If G arises from the Grassmann embedding
of M̃ , then H arises from the Grassmann embedding of ∆.

So, it suffices to prove Proposition 6.1. Suppose M is a max of DW (2n−1,F),

where n ≥ 3, let G be a hyperplane of M̃ arising from the Grassmann
embedding of M̃ and let H be the hyperplane of DW (2n−1,F) which extends

the hyperplane G of M̃ . We need to prove that H arises from the Grassmann
embedding of ∆.

If F is not isomorphic to F2, then by Cooperstein [6, Theorem B], De
Bruyn and Pasini [11, Corollary 1.2] and Kasikova and Shult [14, Section
4.6], the Grassmann embedding of DW (2n−1,F) is absolutely universal. By
Theorem 1.2(1), we then know that H arises from the Grassmann embedding
of ∆. So, it remains to show that H arises from the Grassmann embedding of
∆ in the special case that F is isomorphic to F2. In fact, the reasoning which
we will give below works for any field F which admits a quadratic Galois
extension F′. So, let F and F′ be like that and let θ be the unique nontrivial
element in the Galois group Gal(F′/F).

Consider in PG(2n − 1,F′) a Hermitian variety H whose equation with
respect to a suitable reference system is given by (X1X

θ
2 − X2X

θ
1 ) + · · · +
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(X2n−1X
θ
2n − X2nX

θ
2n−1) = 0. With this Hermitian variety H there is asso-

ciated a Hermitian polar space H(2n− 1,F′/F) and a Hermitian dual polar
space DH(2n − 1,F′/F). The dual polar space DW (2n − 1,F) can be iso-
metrically embedded as a full subgeometry in DH(2n − 1,F′/F), see De
Bruyn [9]. The dual polar space DH(2n− 1,F′/F) admits a full embedding
e1 into Σ1 = PG(

(
2n
n

)
− 1,F) which is called the Grassmann embedding of

DH(2n− 1,F′/F), see Cooperstein [5] and De Bruyn [8]. The embedding e1

induces an embedding e2 of DW (2n−1,F) into a subspace Σ2 of Σ1 which is
isomorphic to the Grassmann embedding of DW (2n− 1,F), see [9, Theorem
1.1].

Lemma 6.2 If K2 is a hyperplane of DW (2n−1,F) arising from the Grass-
mann embedding of DW (2n − 1,F). Then there exists a hyperplane K1 of
DH(2n−1,F′/F) arising from the Grassmann embedding of DH(2n−1,F′/F)
such that K2 = K1 ∩ P2, where P2 denotes the point set of DW (2n− 1,F).

Proof. Let A2 be the hyperplane of Σ2 such that K2 = e−1
2 (e2(P2)∩A2), let

A1 be a hyperplane of Σ1 intersecting Σ2 in A2 and put K1 := e−1
1 (e1(P1) ∩

A1), where P1 denotes the point set of DH(2n−1,F′/F). Then K2 = K1∩P2.
�

Now, the max M of DW (2n − 1,F) is contained in a unique max M ′ of

DH(2n − 1,F′/F). Observe that M̃ ∼= DW (2n − 3,F) and M̃ ′ ∼= DH(2n −
3,F′/F). Moreover, the inclusion of M into M ′ defines a full isometric em-

bedding of M̃ into M̃ ′. By Lemma 6.2, there exists a hyperplane G′ of M̃ ′

arising from the Grassmann embedding of M̃ ′ such that G = G′ ∩M . Now,
let H ′ be the hyperplane of DH(2n− 1,F′/F) which extends the hyperplane

G′ of M̃ ′. Then we have H ′∩P2 = H. By Cardinali, De Bruyn and Pasini [3,
Theorem 4.1], the Grassmann embedding of DH(2n− 1,F′/F) is isomorphic
to the minimal full polarized embedding of DH(2n− 1,F′/F) (the finiteness
assumption in [3] is not essential). So, by Theorem 1.2(2), H ′ arises from
the Grassmann embedding of DH(2n − 1,F′/F). So, there exists a hyper-
plane B1 of Σ1 such that H ′ = e−1

1 (e1(P1) ∩ B1). Put B2 = B1 ∩ Σ2. Since
H = H ′ ∩ P2, H = e−1

2 (e2(P2) ∩ B2). Hence, H arises from the Grassmann
embedding of DW (2n− 1,F), as we needed to prove.

7 Proof of Theorem 1.4

Lemma 7.1 Let ∆ be a fully embeddable thick dual polar space of rank n ≥ 2.
Let e be a full embedding of ∆ which is not isomorphic to the absolutely
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universal embedding ẽ of ∆. Then there exists a hyperplane H of ∆ which
arises from ẽ, but not from e.

Proof. Let Σ̃ be the projective space which affords the absolutely universal
embedding ẽ. Then there exists a nonempty subspace U of Σ̃ satisfying the
conditions (C1) and (C2) of Section 2 such that ẽ/U ∼= e. Now, let A be a

hyperplane of Σ̃ not containing U and let H be the hyperplane ẽ−1(ẽ(P)∩A)
of ∆, where P denotes the point set of ∆. Then H arises from ẽ, but not
from e. �

Now, let ∆ be a fully embeddable thick dual polar space of rank n ≥ 2 with
point set P , let ẽ : ∆ → Σ̃ denote the absolutely universal embedding of ∆
and let F be a convex subspace of diameter δ ∈ {2, . . . , n} of ∆. We will

prove that the embedding eF : F̃ → ΣF of F̃ induced by ẽ is isomorphic to
the absolutely universal embedding ẽF of F̃ . It suffices to prove this in the
case that F is a max of ∆ (otherwise apply a straightforward induction).

Suppose eF is not isomorphic to the absolutely universal embedding of F̃ .
By Lemma 7.1, there exists a hyperplane G of F̃ which arises from ẽF , but
not from eF . Let F ′ be a max disjoint from F and put G′ := πF ′(G). Since

the map F → F ′;x 7→ πF ′(x) defines an isomorphism between F̃ and F̃ ′, the

hyperplane G′ of F̃ ′ arises from the absolutely universal embedding ẽF ′ of F̃ ′.
Now, let H be the hyperplane of ∆ which extends the hyperplane G′ of F̃ ′.
By Theorem 1.2(1), H arises from the absolutely universal embedding ẽ of

∆. So, there exists a hyperplane A of Σ̃ such that H = ẽ−1(ẽ(P)∩A). Since
G = H∩F , we have G = ẽ−1(ẽ(F )∩(A∩ΣF )), i.e. G = e−1

F (eF (F )∩(A∩ΣF )).
So, G arises from eF , a contradiction. Hence, eF must be isomorphic to the
absolutely universal embedding of F̃ .

8 Construction of some special embeddings

Consider the following question for a full polarized embedding e : ∆→ Σ of
a thick dual polar space ∆ of rank n ≥ 2.

Let F be a convex subspace of ∆, let G be a hyperplane of F̃ and
let H be the hyperplane of ∆ obtained by extending G. Does the
fact that G arises from eF implies that H arises from e?

As explained in Section 1, our main results imply that the answer to the
above question is affirmative if e is the absolutely universal embedding of ∆,
the minimal full polarized embedding of ∆ in case ΣF is finite-dimensional or
the Grassmann embedding of ∆ in case ∆ is isomorphic to a symplectic dual
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polar space. One might therefore wonder whether the answer is affirmative
for any full polarized embedding of ∆. We show that this is not the case. A
source for counter examples will be provided in Proposition 8.2 below. We
will need the following lemma.

Lemma 8.1 Let e : ∆ → Σ be a full polarized embedding of a thick dual
polar space ∆ of rank n ≥ 2 and let F be a convex subspace of diameter
δ ≥ 2 of ∆. Then eF is polarized and ReF

⊆ Re.

Proof. The fact that eF is polarized was proved in Cardinali, De Bruyn and
Pasini [3, Theorem 1.5].

For every point y of F , let H ′y denote the singular hyperplane of F̃ with
deepest point y. For every point y of F , there exists a point x at distance
n − δ from F such that y = πF (x); for such a point x, there holds that
H ′y ⊆ Hx and < eF (H ′y) >⊆< e(Hx) >. If x is a point at distance at most
n− δ − 1 from F , then F ⊆ Hx and < eF (F ) >⊆< e(Hx) >. It follows that
ReF

=
⋂
y∈F < e(H ′y) >⊆

⋂
x∈P < e(Hx) >= Re. Here, P denotes the point

set of ∆. �

Proposition 8.2 Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 3 and let F1 be a convex subspace of diameter δ ∈ {2, . . . , n − 1} of
∆. Suppose the absolutely universal embedding and the minimal full polar-
ized embedding of F̃1 are not isomorphic. Then there exists a full polarized
embedding e of ∆ and a hyperplane G of F̃1 such that:

(1) G arises from eF1;

(2) the hyperplane H of ∆ which extends the hyperplane G of F̃1 does not
arise from e.

Proof. Let ẽ : ∆→ Σ̃ denote the absolutely universal embedding of ∆. Let
F2 be a convex subspace of diameter δ opposite to F1. Since δ < n, F1 and
F2 are disjoint. By Theorem 1.4, ẽi := ẽFi

, i ∈ {1, 2}, is isomorphic to the

absolutely universal embedding of F̃i. Put R := Rẽ and Ri := Rẽi
, i ∈ {1, 2}.

By Lemma 8.1, < R1, R2 >⊆ R. Let ēi, i ∈ {1, 2}, denote the minimal

full polarized embedding of F̃i. Since ē1 and ẽ1 are not isomorphic, R1 6= ∅
and there exists a hyperplane G of F̃1 which arises from ẽ1 but not from ē1

(recall Lemma 7.1). Let H denote the hyperplane of ∆ which extends the

hyperplane G of F̃1. By Theorem 1.2(1), H arises from ẽ. So, there exists a

hyperplane A of Σ̃ such that H = ẽ−1(ẽ(P)∩A), where P denotes the point
set of ∆. Since F1 ⊆ H, R1 ⊆ A.

Since the map F1 → F2;x 7→ πF2(x) defines an isomorphism between F̃1

and F̃2, H∩F2 = πF2(G) is a hyperplane of F̃2 arising from ẽ2 but not from ē2.
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So, A∩R2 is a hyperplane of R2. Since < R1, R2 >⊆ R, A∩R is a hyperplane
of R containing R1. Since G does not arise from ē1, < ẽ1(G) > intersects R1

in a hyperplane α of R1. Now, let β be a hyperplane of R through α not
containing R1. Since R1 ⊆ A, A∩R and β are two distinct hyperplanes of R.
Hence, β is not contained in A. Since β ⊂ R, β satisfies the conditions (C1)
and (C2) of Section 2 and the embedding e := ẽ/β is polarized, see Cardinali,
De Bruyn and Pasini [3, Lemma 2.1]. Since β ∩ R1 = α ⊆< ẽ1(G) >, the
hyperplane G arises from eF1 . Since β is not contained in A, H does not
arise from e. �

There are examples known of fully embeddable thick dual polar spaces of rank
at least 2 for which the absolutely universal embedding and the minimal full
polarized embedding are not isomorphic:

(i) the Hermitian dual polar space DH(2n−1, 4), n ≥ 3 (Li [15]; Cardinali,
De Bruyn and Pasini [3, Theorem 4.1]);

(ii) the symplectic dual polar space DW (2n−1,F), where F is a field whose
characteristic is a prime p and n ≥ 2(p− 1) (Cooperstein [6, Theorem
B]; De Bruyn [10, Corollary 2.1]; De Bruyn and Pasini [11, Corollary
1.2]).

So, the situation mentioned in Proposition 8.2 can occur if ∆ is a symplectic
or Hermitian dual polar space of suitable rank over a suitable field.
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1998.

[2] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75–85.

[3] I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embed-
dings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7–23.

[4] I. Cardinali, B. De Bruyn and A. Pasini. On the simple connectedness
of hyperplane complements in dual polar spaces. Discrete Math. 309
(2009), 294–303.

[5] B. N. Cooperstein. On the generation of dual polar spaces of unitary
type over finite fields. European J. Combin. 18 (1997), 849–856.

19



[6] B. N. Cooperstein. On the generation of dual polar spaces of symplectic
type over finite fields. J. Combin. Theory Ser. A 83 (1998), 221–232.

[7] B. De Bruyn. Near polygons. Frontiers in Mathematics. Birkhäuser Ver-
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