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The paper deals with a two-dimensional numerical model for the evaluation of the electromagnetic
hysteretic behavior of thin magnetic sheets when applying a unidirectional magnetic field. The time
variation of the magnetization vector m in each space point obeys the Landau-Lifshitz equation. The
effective field is the result of several contributions: the applied field, the magnetostatic field, the
anisotropy field, and the exchange field. Microstructural features, such as grain size and
crystallographic texture, are introduced in the micromagnetic model by dividing the geometry in
subregions, each with its own magnetic preferable directions. In the article, numerical experiments
are presented aiming at low-frequency applications. The presented micromagnetic model is used to
study magnetic memory material properties. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2165585�
I. INTRODUCTION

Ferromagnetic polycrystalline material can be magne-
tized by an externally imposed time varying magnetic field.
However, between the magnetization of the material and the
applied magnetic field, there exists no unique relation: no
single-valued magnetization curve is described, but instead a
magnetization loop or a hysteresis loop. The shape of these
magnetization loops is determined mainly by the imposed
magnetic field on the one hand and the composition and
microstructural material properties on the other. In particular,
these properties concern the density of dislocations, the size,
and size partitioning of the present crystal grains, crystallo-
graphic texture, etc. Indeed, during the magnetization pro-
cess, the mobility of the magnetic domain walls is affected
by these microstructural quantities.

The presented two-dimensional micromagnetic model is
based on the Landau-Lifshitz formalism,1 which describes
the electromagnetic action at the level of magnetic dipoles,
resulting in the damped precession movement of the local
magnetization vector with constant amplitude. We recall that,
by means of the local effective field, the formalism allows us
to account for both the magnetic short-distance effect �e.g.,
exchange field and anisotropy field� and the magnetic long-
distance effects �magnetostatic field, imposed magnetic
field�, after defining the abovementioned microstructural
properties in each point of the material.

Starting from a predefined microstructural state, the mi-
cromagnetic model must permit us to describe the macro-
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scopic magnetic behavior in the form of magnetization loops,
caused by a time varying magnetic field. The resulting mac-
roscopic magnetic behavior as well as the magnetic dipole
configuration at each time point is used to study magnetic
memory material properties included in the micromagnetic
model.

II. MAGNETIC MEMORY BEHAVIOR

Hysteresis modeling handles the problem of how to con-
struct �predict� the transition curves, which correspond to
any changes of the magnetic field H. In spite of the variety of
characteristics among different magnetic materials some gen-
eral features are observed in their magnetization processes.
These features have been described already in 1905,2 and are
known as Mandelung’s rules. Considering the hysteresis
curves in Fig. 1, these experimentally established rules can
be stated as follows:

�1� The path of any transition �reversal� curve is uniquely
determined by the coordinates of the reversal point, from
which this curve emanates.

�2� If any point 4 of the curve 3-4-1 becomes a new reversal
point, then the curve 4-5-3 originating at point 4 returns
to the initial point 3 �“return-point memory”�.

�3� If the point 5 of the curve 4-5-3 becomes the newest
reversal point and if the transition curve 5-4 extends
beyond the point 4, it will pass along the part 4-1 of
curve 3-4-1, as if the previous closed loop 4-5-4 did not

exist at all �“wiping-out property”�.
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III. MICROMAGNETIC MODEL

The conventional theory of ferromagnetic materials is
based on the assumption, following Landau and Lifshitz,1

that the magnetization of magnetic dipoles m varies with the
position, but that it has a fixed temperature-dependent mag-
nitude �m�=Ms �below Curie temperature�. The evolution of
m is governed by the Landau-Lifshitz �LL� equation

�m

�t
=

�G

1 + �2m � Heff −
��G

1 + �2

m

Ms
� �m � Heff� �1�

with � and �G the damping constant and the gyromagnetic
constant, respectively. The static micromagnetic equilibrium
condition is usually formulated as m�Heff=0.

For the present study we considered a two-dimensional
model of a thin ferromagnetic sheet with thickness d. Here,
we assume all quantities being invariant in the z direction,
while keeping the three-dimensional character of the LL
equation �1�. The x axis is chosen orthogonal to the sheet.
Consequently, for a static micromagnetic equilibrium, the z
component of m and Heff must be zero in order to avoid
magnetic charges at infinity on the z direction. In equilib-
rium, the walls appearing in the domain structure will be of
Néel type, resulting in large magnetic charges in the walls
and high corresponding magnetostatic fields. To overcome
these high magnetostatic fields, large external magnetic fields
must be applied in order to run through hysteresis loops.

The effective field Heff is given by

Heff = Hexch + Hani + Hms + Ha �2�

with the exchange and anisotropy fields

Hexch =
2A
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with A the exchange stiffness and the anisotropy energy
�ani=K1��1
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2�.
Here, �i is the direction cosine of the m vector with

FIG. 1. Transition curves illustrating Mandelung’s rules.
respect to the ith crystallographic preferable direction �cubic
structure�, while � j �j=x, y, or z� refer to the direction cosine
of m with respect to the �x ,y ,z�-coordinate system. K1 and
K2 are anisotropy constants.

The magnetostatic field follows from � ·Hms=−� ·m
and ��Hms=0 using two-dimensional Green’s functions:

Hms = −
1

2�
�

S
� �mx,my,0�

�� − ���2
− 2

�m · �� − ������ − ���
�� − ���4

�d��.

�5�

Here, �=xex+yey and ��=x�ex+y�ey. S is the area for which
0�x�d, −	�y� +	. The applied field Ha is the quasi-
static unidirectional field, enforced along the y direction.

For the space discretization, we considered a polycrystal
structure of the thin ferromagnetic sheet consisting of a large
number of interacting basis cells and periodic in the y direc-
tion. Each cell contains one single magnetization vector m
and has predefined easy axes for the magnetization, as, e.g.,
shown in Fig. 2. Notice that two preferable directions are
always lying in the xy plane, while the third is along the z
direction. This is favorable as the z component of m must be
zero for a static micromagnetic equilibrium in order to avoid
magnetic charges at infinity in the z direction. The space
derivatives appearing in Eqs. �3� and �4� are approximated
by a classical finite difference method. Using the periodicity
in the y direction, the magnetostatic field �Eq. �5�� is calcu-
lated by fast Fourier transforms in order to save computa-
tional time.3

For the time discretization the quasistatic applied field
Ha is approximated with a piecewise constant time function.
It is assumed that at the moment the applied field Ha jumps
from a constant value to the next one, the material is in static
micromagnetic equilibrium. Using the LL equation �1�, the
magnetization dynamics in each basis cell is computed
through time stepping until a new static micromagnetic equi-
librium is obtained corresponding with the new constant
value for the applied field. The magnetization dynamics is
evaluated analytically at �ti , ti+1� by introducing, in each ba-
sis cell, a local �u ,v ,w� system, with an axis along Heff�ti�.
In the local �u ,v ,w� system at time step ti, one has Heff�ti�
=aeu and m�ti�=uieu+viev+wiew. At the next time step ti+1

= ti+
t, we obtain m�ti+1�=ui+1eu+vi+1ev+wi+1ew from Eq.
�1� with

ui+1 = Ms
eacMs
t�Ms + ui� − e−acMs
t�Ms − ui�

acMs
t −acMs
t , �6�

FIG. 2. Scheme of the micromagnetic model of an thin ferromagnetic sheet.
Periodical structure in the y direction is shown.
e �Ms + ui� + e �Ms − ui�
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vi+1 = Ms
2�vi cos�a
t� − wi sin�a
t��

eacMs
t�Ms + ui� + e−acMs
t�Ms − ui�
, �7�

wi+1 = Ms
2�vi sin�a
t� + wi cos�a
t��

eacMs
t�Ms + ui� + e−acMs
t�Ms − ui�
, �8�

where Heff�t�=Heff�ti� for ti� t� ti+1, a=�GHeff�ti� / �1+�2�,
and c=� /Ms. In order to improve the rate of convergence, �
is chosen to be 1.

IV. EVALUATION OF MEMORY BEHAVIOR FOR THE
MICROMAGNETIC MODEL

For the evaluation of the magnetic memory behavior
during the magnetization processes in the thin ferromagnetic
sheet, several numerical experiments were performed. Con-
sider the data �0Ms=2.16 T, A=1.5�10−11 J m−3, K1

=0.48�105 J m−3, K2=−0.50�105 J m−3, �G=−2.21
�105 mA−1 s−1 �pure iron �see Ref. 3, p 518��. We divide
one period of the polycrystal structure into N=64 basis
cells—squares of 10 nm—and choose the microstructural
features as shown in Fig. 2. Numerical data are given below
for the case when the magnetic field of Fig. 3 is applied. The
applied magnetic field is approximated by a piecewise con-
stant function, considering 2800 equidistant time intervals. In
each time interval, the applied field takes the constant value
Ha,k. At the beginning of each time interval k, where the
applied magnetic field jumps from Ha,k to Ha,k+1, micromag-
netic dynamics are calculated by time stepping equation �1�,
using 
t=10−12 s. After 45 steps �in an average way�, the
next micromagnetic equilibrium is reached. Figure 4 shows
the state of the magnetic dipoles in the sheet at the time
points of local extrema or at the time points when minor
loops are closed. Notice the recovery of the microstructural
state of time point c when reaching time point e and the state
of time point a when reaching time point f . This recovery
guarantees the same value for the macroscopic
magnetization—the average of the dipole magnetization vec-
tors in one period of the crystallographic structure—and con-
sequently the closing of the minor loops.

FIG. 3. The applied quasistatic magnetic field Ha along the y direction.
V. CONCLUSIONS

For the presented micromagnetic model, we observe that
when a time-varying magnetic field with local minima and
maxima is applied, numerical experiments reveal that �1� mi-
nor hysteretic loops in the resulting macroscopic magnetiza-
tion are indeed closed �return-point memory�, �2� the closed
minor loops are completely erased from the memory
�wiping-out property�, and �3� the magnetic domain structure
at the starting point of a minor loop is recovered exactly
when this loop is closed.
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FIG. 4. The micromagnetic equilibria in the time points a, b, c, d, e, and f
of Fig. 3. The arrows show the orientation of the local magnetic dipoles m
while the gray scale gives the energy density �high density: white, low
density: black�.
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