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Abstract

In a recent paper [7] George Gasper proved some expansion formulas for terminating
balanced hypergeometric series of type 4F3 with unit argument. In this article we show how
one easily derives such expansion formulas from the Biedenharn-Elliot identity for the Lie
algebra su(1, 1). Furthermore, we give a rather systematic method for determining when two
apparently different expansion formulas are the same up to transformation formulas. This
is a rather nice application of the so-called invariance groups of hypergeometric series. The
method extends to other cases; we briefly indicate how it works in the case of expansion
formulas for 3F2-series. We conclude with some basic analogues and show their relation with
the Askey-Wilson polynomials.
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1 Introduction

The Biedenharn-Elliot identity is well known in the quantum theory of angular momentum, i.e. in

the context of the Lie algebra su(2) [4–6]. This identity however is also valid and essentially the

same for the Lie algebra su(1, 1); see [5, pp. 456–460] for a way to derive it. In fact, because

of the different nature of the representation labels, it is, for mathematical applications (not

necessarily related to the Biedenharn-Elliot identity), sometimes more convenient to work with

su(1, 1) rather than with su(2), as is for instance pointed out in [11,16].

The Biedenharn-Elliot identity has some (mathematical) applications; it can be used to derive

recurrences for 6j-symbols (that have an interpretation in terms of Racah polynomials) and this

leads to the three-term recurrence for Racah polynomials [14, 18]. In [11] it was used to derive

a convolution identity for Wilson polynomials.

In the case of su(1, 1), the Biedenharn-Elliot identity is given by:

Uk12,k3,k13

k4,k14,k34
Uk1,k2,k12

k34,k14,k24
=
∑

k23

Uk1,k2,k12

k3,k13,k23
Uk1,k23,k13

k4,k14,k24
Uk2,k3,k23

k4,k24,k34
, (1)

where k23 is restricted to the range k2 + k3 up to min(k13 − k1, k24 − k4). The parameters k

are the so-called representation labels of su(1, 1); they are positive real numbers, labelling the

positive discrete series representations of su(1, 1) [14, Theorem 1.2]. Briefly, a Racah coefficient

Uk1,k2,k12

k3,k,k23
determines the basis transition between two so-called coupled bases. These coupled

bases arise by decomposing the tensor product of three irreducible representations (k1), (k2)

and (k3) in two different ways. In case we work with positive discrete series representations all

labels are positive real numbers and one has that the four differences

k12 − k1 − k2, k23 − k2 − k3, k − k12 − k3, and k − k1 − k23

are nonnegative integers [14, 18]. This also determines the summation range in (1).

An explicit expression for the related recoupling or Racah coefficients of su(1, 1) is known [10,15]:

Uk1,k2,k12

k3,k,k23
= C 4F3

(

k1 + k2 + k12 − 1, k2 + k3 + k23 − 1, k1 + k2 − k12, k2 + k3 − k23

2k2, k1 + k2 + k3 + k − 1, k1 + k2 + k3 − k
; 1

)

, (2)
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where C is a numerical constant that is given by:

C =
(

(2k2)k12−k1−k2
(2k3)k−k12−k3

(2k2)k23−k2−k3
(2k1)k−k1−k23

× (k1 + k23 + k − 1)k−k1−k23

)1/2(
(2k1)k12−k1−k2

(k1 + k2 + k12 − 1)k12−k1−k2
(2k12)k−k12−k3

× (k12 + k3 + k − 1)k−k12−k3
(2k3)k23−k2−k3

(2k23)k−k1−k23
(k2 + k3 + k23 − 1)k23−k2−k3

× (k12 − k1 − k2)!(k − k12 − k3)!(k − k1 − k23)!(k23 − k2 − k3)!
)

−1/2

× (k + k1 + k2 + k3 − 1)k23−k2−k3
(k − k1 − k2 − k3)!.

(3)

In (2) and (3) we have used the standard notation for (generalized) hypergeometric series and

Pochhammer symbols [2, 13]. We draw attention to the fact that the 4F3-series in (2) is termi-

nating because the last two numerator parameters (k1 + k2 − k12 and k2 + k3 − k23) are negative

integers. Although the last denominator parameter, k1 + k2 + k3 − k, is also a negative inte-

ger, the series is still well defined because this last parameter is smaller than the numerator

parameter responsible for the termination. These facts follow from the representation theory of

su(1, 1) [12]. Furthermore, the 4F3-series is balanced or Saalschützian, meaning that the sum of

the numerator parameters plus one equals the sum of the denominator parameters [1, Chapter

2].

For such balanced series an extensive transformation theory exists [1, 8]. In particular one has

the following transformation (limit q ↑ 1 in Sears’ transformation [8, III.16]):

4F3

(

−n, a, b, c

d, e, f
; 1

)

=
(a)n(e + f − a − b)n(e + f − a − c)n

(e)n(f)n(e + f − a − b − c)n

× 4F3

(

−n, e − a, f − a, e + f − a − b − c

e + f − a − b, e + f − a − c, 1 − n − a
; 1

)

,

(4)

provided d + e + f = 1 − n + a + b + c.

In [7, Formula 2.9] Gasper gave the following expansion formula, which involves three of these

Saalschützian series:

4F3

(

α, β, n + ν,−n

γ, δ, ε
; 1

)

=
(γ − µ)n(1 + ν − γ)n

(γ)n(1 + ν + µ − γ)n

×
n
∑

l=0

(ν + µ − γ)l

l!

(µ)l(λ + δ − α − β)l(λ + ε − α − β)l(n + ν)l(−n)l(1 + ν + µ − γ)2l

(1 + ν − γ)l(ε)l(δ)l(1 + µ − γ − n)l(n + 1 + ν + µ − γ)l(ν + µ − γ)2l

× 4F3

(

λ − α, λ − β, l + ν + µ − γ,−l

µ, λ + δ − α − β, λ + ε − α − β
; 1

)

4F3

(

α + β − λ, λ − µ, n + l + ν, l − n

γ − µ, l + δ, l + ε
; 1

)

,

(5)

when α + β + ν + 1 = γ + δ + ε. More precisely, Gasper derived the q-analogue of (5) and

some similar expansions. These expansions lead to q-analogues of Erdélyi’s fractional integral

representations of hypergeometric functions and extensions of them.
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In Section 2 we show how to derive identities such as (5) in a straightforward way from the

Biedenharn-Elliot identity. A problem then arises: how to recognize which identities are “essen-

tially different” (this notion is made explicit in the beginning of Section 3). We give a possible

way of handling this using a simple realization of the invariance group of (4) (and trivial per-

mutations of numerator and denominator parameters); this is done in Section 3. In the last

Section, we give a q-analogue of a (which we believe to be) new expansion formula and we also

relate these expansion formulas to the Askey-Wilson polynomials rewriting them as connection

coefficient or convolution identities.

2 Expansion formulas from the Biedenharn-Elliot identity

The expansion formula (5) has one 4F3-series on the left side and two on the right side. The

Biedenharn-Elliot identity on the other hand has two 4F3-series on the left side and three on the

right side. When we are able, by imposing a particular constraint on the parameters, to sum

one 4F3-series (hence reducing it to a simple numerical factor) on both the left and right side

of (1), we will end up with a formula analogous to (5). Note that since we are only dealing with

terminating series questions of convergence do not arise; thus when we say that one can “sum“

a series, we mean that one can write it in closed form, i.e. without a summation sign.

The easiest way to ensure that a hypergeometric series is summable is to set one of its numerator

parameters equal to zero. Consider the recoupling coefficients on the left side of (1):

Uk12,k3,k13

k4,k14,k34
→ 4F3

(

k12 + k3 + k13 − 1, k3 + k4 + k34 − 1, k12 + k3 − k13, k3 + k4 − k34

2k3, k12 + k3 + k4 + k14 − 1, k12 + k3 + k4 − k14
; 1

)

(6)

Uk1,k2,k12

k34,k14,k24
→ 4F3

(

k1 + k2 + k12 − 1, k2 + k34 + k24 − 1, k1 + k2 − k12, k2 + k34 − k24

2k2, k1 + k2 + k34 + k14 − 1, k1 + k2 + k34 − k14
; 1

)

. (7)

We thus see that the constraints

k12 = k1 + k2 k34 = k3 + k4 (8a)

k13 = k12 + k3 k24 = k34 + k2 (8b)

immediately lead to a summable hypergeometric series on the left side. Two of these constraints

(the ones on the first line) also lead to a numerator parameter zero in one of the hypergeometric

series on the right side of (1). The other two constraints ensure that one of the numerator

parameters equals a denominator parameter, reducing one 4F3-series to a 3F2-series with unit

argument, that is summable because it is Saalschützian [13, Formula III.2].
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Consider the constraint k12 = k1 + k2. We perform a shift on the summation variable and set

k23 = k2 +k3 + l. Furthermore we set k13 = n+k3 +k12, with both l and n nonnegative integers.

Finally, we assume that k13 − k1 ≤ k24 − k4. The (remaining) variables are renamed in terms of

α, β, . . ., as follows:

k1 = (ν − µ)/2 k2 = (1 + µ − γ)/2 k3 = γ/2

k4 = (1 + α + β − γ)/2 k12 = (1 + ν − γ)/2 k13 = (1 + 2n + ν)/2

k14 = (γ + 2δ − α − β − ν)/2 k23 = (1 + 2l + µ)/2 k24 = (γ + 2λ − α − β − µ)/2

k34 = (1 + α − β)/2.

The above substitution is the solution of a linear system of equations that ensures that the

non-vanishing 4F3 on the left side of (1) coincides with the left side of (5) and that introduces

the variables µ and λ in a simple way on the right side.

A priori one has that certain linear combinations of α, β, . . . are nonnegative integers. E.g. in

the process of the simplification of the numerical factors one encounters the following:

(γ + λ − α − β − µ − 1)!

(γ + λ − α − β − µ − 1 − l)!
= (−1)l(1 + α + β + µ − γ − λ)l, (9)

and
(δ + l)γ+λ−α−β−µ−1−l

(δ)−β(δ − β)γ+λ−α−µ−1
=

(δ + l)γ+λ−α−β−µ−1−l

(δ)γ+λ−α−β−µ−1
=

1

(δ)l
. (10)

Simplifying the numerical factors (3) in this way, the square roots also disappear and one arrives

at the following expansion formula:

4F3

(

α, β, n + ν,−n

γ, δ, ε
; 1

)

=
n
∑

l=0

(−1)l (−n)l

l!

(λ)l(1 + α + β + µ − γ − λ)l(n + ν)l(µ)l

(δ)l(ε)l(µ)2l

× 4F3

(

α, β, l + µ,−l

γ, λ, 1 + α + β + µ − γ − λ
; 1

)

4F3

(

l + n + ν, l + λ, 1 + l + α + β + µ − γ − λ, l − n

1 + 2l + µ, l + δ, l + ε
; 1

)

,

(11)

with α+β+ν+1 = γ+δ+ε. In this formula n is a nonnegative integer and all other parameters

are arbitrary real numbers because we are dealing with a rational identity in these parameters.

In an analogous way, considering the constraint k13 = k12 + k3, setting k23 = k2 + k3 + l and
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k12 = n + k1 + k2, we arrive at the expansion formula:

4F3

(

α, β, n + ν,−n

γ, δ, ε
; 1

)

=
(γ + δ + λ − α − β)n(1 + ν + λ − δ)n

(δ)n(ε)n

×

n
∑

l=0

(−1)l (−n)l

l!

(γ + λ − α)l(γ + λ − β)l(1 + µ − γ)l(γ − n − ν)l(µ)l

(γ)l(γ + δ + λ − α − β)l(1 + ν + λ − δ)l(µ)2l

× 4F3

(

λ, γ + λ − α − β, l + µ,−l

1 + µ − γ, γ + λ − β, γ + λ − α
; 1

)

× 4F3

(

l + γ + λ − α, l + γ + λ − β, 1 + l + n + ν + µ − γ, l − n

1 + 2l + µ, l + γ + δ + λ − α − β, 1 + l + ν + λ − δ
; 1

)

,

(12)

with, again, α + β + ν + 1 = γ + δ + ε.

The remaining two constraints lead (by a careful choice of the performed substitutions) to the

same expansion formula as the constraint on the corresponding line of (8).

3 Comparison of expansion formulas using invariance groups

In the previous section, we derived two expansion formulas (11) and (12). Together with (5)

we now have three of these formulas. But is this really the case? We mean the following: can

one of these formulas be obtained from another by a renaming of the variables and (repeated)

application of (4) together with permutations of the numerator and denominator parameters?

Doing this by “trial and error” is not an easy task due to the many possibilities one has to

consider. We describe here a (more or less) systematic method based on the knowledge of the

invariance group of (4).

It is well known that transformations of hypergeometric series generate so-called invariance

groups; for various transformations these invariance groups have been studied [17]. In [3] the

invariance group of (4) is determined to be S6, the permutation group on six elements. Explicitly:

the function

(x1 + x2 + x3 + x4)n(x1 + x2 + x3 + x5)n(x1 + x2 + x3 + x6)n

× 4F3

(

x1 + x2, x1 + x3, x2 + x3,−n

x1 + x2 + x3 + x4, x1 + x2 + x3 + x5, x1 + x2 + x3 + x6
; 1

)

,

with x1 + x2 + x3 + x4 + x5 + x6 = 1 − n is symmetric in the variables x1, . . . , x6.

We introduce twelve independent variables xi and yi with i = 1, . . . , 6; the variables xi (resp. yi)

correspond to the first (resp. second) hypergeometric series on the right side of the expansion
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formulas. Stated otherwise, we compare

4F3

(

x1 + x2, x1 + x3, x2 + x3,−l

x1 + x2 + x3 + x4, x1 + x2 + x3 + x5, x1 + x2 + x3 + x6
; 1

)

× 4F3

(

y1 + y2, y1 + y3, y2 + y3, l − n

y1 + y2 + y3 + y4, y1 + y2 + y3 + y5, y1 + y2 + y3 + y6
; 1

)

with the right side of (5) ((11) or (12)). This yields twelve independent linear equations between

the nine free parameters on the right side of (5) (α, β, ν, γ, δ, µ, λ, n and the summation variable

l) and the twelve variables xi, yi. This system is overdetermined and hence has no solutions for

the parameters α, β, . . ., unless the twelve variables xi, yi satisfy three linear constraints; these

are found be eliminating the nine free parameters from the twelve linear equations.

Doing this for the three formulas (5), (11) and (12) yields the following:



















x1 − x4 + y2 − y3 = 0

x4 + x6 + y3 + y5 = 1

x4 + x5 + y3 + y6 = 1

,



















x1 − x4 + y4 − y3 = 0

x4 + x6 + y1 + y3 = 1

x4 + x5 + y2 + y3 = 1

and



















x1 − x4 + y4 − y1 = 0

x4 + x6 + y1 + y3 = 1

x4 + x5 + y1 + y2 = 1

(13)

These constraints are of the same form, yet different and not equivalent. It is thus not possible

to solve the parameters of one formula directly in terms of the parameters of another formula.

We remark that in the computation of the constraints (13), we have fixed the order of the

numerator and denominator parameters as in the formulas (5) ((11) and (12)). We hold on to

this fixed order for the rest of this section.

However, the permutation (in cycle notation) g = (1, 3, 5)(2, 6, 4), when applied to the variables

yi, carries the constraints of (12) into those of (5). If we thus want the constraints of (12) to equal

those of (5), we have to perform the transformation corresponding to the inverse permutation

g−1 = (1, 5, 3)(2, 4, 6) on the second 4F3-series of (12). We have:

4F3

(

l + γ + λ − α, l + γ + λ − β, 1 + l + n + ν + µ − γ, l − n

1 + 2l + µ, l + γ + δ + λ − α − β, 1 + l + ν + λ − δ
; 1

)

=

(γ − 2n − ν − µ)n−l(l − n + γ + δ − β − ν)n−l(l − n + γ + δ − α − ν)n−l

(1 + 2l + µ)n−l(l + γ + δ + λ − α − β)n−l(1 + l + ν + λ − δ)n−l

× 4F3

(

δ − n − ν − λ, 2γ + δ + λ − 1 − n − α − β − ν − µ, l − n + γ − ν, l − n

γ − 2n − ν − µ, l − n + γ + δ − β − ν, l − n + γ + δ − α − ν
; 1

)

.

(14)

Now, we prime the parameters of (5) and solve the parameters of the transformed formula (12)

(using (14)) in terms of those primed parameters. We have the following system of linear

7



equations:



























































λ′ − α′ = λ α′ + β′ − λ′ = δ − n − ν − λ

λ′ − β′ = γ + λ − α − β λ′ − µ′ = 2γ + δ + λ − 1 − n − α − β − ν − µ

l + ν ′ + µ′ − γ′ = l + µ n + l + ν ′ = l − n + γ − ν

µ′ = 1 + µ − γ γ′ − µ′ = γ − 2n − ν − µ

λ′ + δ′ − α′ − β′ = γ + λ − β l + δ′ = l − n + γ + δ − β − ν

λ′ + ε′ − α′ − β′ = γ + λ − α l + ε′ = l − n + γ + δ − α − ν

(15)

Solving this system for the non-primed parameters, we find the unique solution:































α = δ′ − α′ δ = 1 − n + β′ − γ′

β = 1 + β′ + ν ′ − γ′ − δ′ ε = 1 − n − α′

ν = 1 − 2n − γ′ µ = ν ′ + µ′ − γ′

γ = 1 + ν − γ′ λ = λ′ − α′

(16)

Substituting this in the transformed formula (12) gives on the right side the same hypergeometric

series as in (5) and on the left side (omitting the primes):

4F3

(

δ − α, 1 + β + ν − γ − δ, 1 − n − γ,−n

1 + ν − γ, 1 − n + β − γ, 1 − n − α
; 1

)

=
(γ)n(δ)n(ε)n

(1 + ν − γ)n(γ − β)n(α)n
4F3

(

α, β, n + ν,−n

γ, δ, ε
; 1

)

.

(17)

After substitution of (16) in and simplification of the numerical factors in (12), (14) and (17)

we have deduced (5) from (12); these two are thus not really different. Note that, once the

transformation (14) and the substitution (16) are known, the verification that (12) yields (5) is

almost trivial. The method using the invariance group shows us these in a relatively easy way;

indeed, finding the permutation g is much easier than finding (14) directly.

Next, we compare (11) and (5) in the same way. Performing the permutation g = (1, 5)(2, 6, 4)

on the variables yi takes the constraints for (11) into those of (5). Perform the transformation

corresponding to the inverse permutation g−1 on the second 4F3 of (11); prime the parameters

of (5); solve the system of equations and you get the following unique solution:































α = λ′ − α′ δ = 1 − n + λ′ − γ′

β = λ′ − β′ ε = 1 − n + λ′ − α′ − β′

ν = 1 − 2n + µ′ − γ′ µ = ν ′ + µ′ − γ′

γ = µ′ λ = δ′ + λ′ − α′ − β′

(18)
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At first sight it looks like we have a similar result as before. There is however one major

difference: the solution for α, β, . . ., ε also contains references to µ′ and λ′ so that it is impossible

to transform the new left side of (11) into that of (5). Of course, there are other permutations

that carry the constraints of (11) into a set equivalent to those of (5), but not too many. All

these permutations suffer from the same problem as the permutation g, so in this way we cannot

rewrite (11) as (5).

In the process of trying to transform (11) into (5) one could also reverse the order of summation

on the right side of (11), i.e. replace l by n − l. This changes the role of the variables x and y

in the constraint. Here, again, there are some permutations that carry this constraint into that

of (5), but again, none of them succeeds in rewriting (11) as (5), so therefore the expansion

formulas (5) and (11) are essentially different.

When browsing through [7] one sees that there is one other formula in the article that a priori

could be equivalent to (5) or (11), namely [7, Formula 3.4]. We repeat it here:

4F3

(

α, β, n + ν,−n

γ, δ, ε
; 1

)

=
(γ − λ)n(1 + ν − γ)n

(γ)n(1 + ν + λ − γ)n

×
n
∑

l=0

(ν + λ − γ)l(λ)l(ε − α)l(δ − µ)l(n + ν)l(−n)l(1 + ν + λ − γ)2l

l!(1 + ν − γ)l(δ)l(µ + ε − α)l(1 + λ − γ − n)l(1 + n + ν + λ − γ)l(ν + λ − γ)2l

× 4F3

(

α − µ, β, l + ν + λ − γ,−l

λ, δ − µ, ε
; 1

)

4F3

(

µ, β − λ, n + l + ν, l − n

γ − λ, l + δ, l + µ + ε − α
; 1

)

,

(19)

with, as usual, α + β + ν + 1 = γ + δ + ε. Calculating the three linear constraints for this

expansion formula one gets


















x2 + x4 + y1 + y3 = 0

x4 + x6 + y3 + y5 = 1

x1 + x5 + y2 + y6 = 1,

(20)

which is clearly of a different form than the constraints we have previously met. Therefore we

conclude that (19) is essentially different from both (5) and (11).

Limit transitions from these expansion formulas for 4F3-series give expansion formulas for 3F2-

series. E.g. letting ν → ∞ (and hence also ε → ∞) in (5) yields the following formula (which

is [7, Formula 1.6]):

3F2

(

α, β,−n

γ, δ
; 1

)

=
n
∑

l=0

(

n

l

)

(µ)l(λ + δ − α − β)l(γ − µ)n−l

(γ)n(δ)l

× 3F2

(

λ − α, λ − β,−l

µ, λ + δ − α − β
; 1

)

3F2

(

α + β − λ, λ − µ, l − n

γ − µ, l + δ
; 1

)

.

(21)

Different-looking formulas of this sort can be obtained by taking different limits. Also here,

since there exists 72 transformations on terminating 3F2-series with unit argument, it may be
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difficult to see which formulas are really different. The knowledge of transformation invariance

groups is in this case also helpful. One knows [17] that the function

(x1 + x2 + x3 + x4)n(x1 + x2 + x4 + x5)n 3F2

(

x1 + x2, x1 + x4,−n

x1 + x2 + x3 + x4, x1 + x2 + x4 + x5
; 1

)

, (22)

with 1 − n = x1 + x2 + x3 + x4 + x5 + x6 is invariant (up to a sign factor) under the subgroup

G of S6 generated by (2, 4) and (1, 2, 3, 4, 5, 6).

Introducing again twelve variables xi and yi we will now end up, since we have ten linear

equations and eight free parameters, with two linear constraints between these twelve variables.

We can then proceed as in the 4F3-case; we only have to pay attention to the fact that the

permutation must belong to the group G.

Letting β → ∞ (and hence also ε → ∞) in (11) yields, after rewriting ν as β − n, the following

expansion formula for 3F2-series:

3F2

(

α, β,−n

γ, δ
; 1

)

=
n
∑

l=0

(

n

l

)

(λ)l(β)l(µ)l

(δ)l(µ)2l

× 3F2

(

α, l + µ,−l

γ, λ
; 1

)

3F2

(

l + β, l + λ, l − n

1 + 2l + µ, l + δ
; 1

)

.

(23)

Using the method of invariance groups, it is easy to see that this formula is essentially different

from (21) since the constraints for (21) and (23) are respectively given by

{

x3 + x6 + y4 + y5 = 1

x1 + x6 + y2 + y5 = 1
and

{

x3 + x6 + y1 + y4 = 1

x2 + x5 + y2 + y3 = 1
(24)

4 q-analogues and interpretation in terms of Askey-Wilson poly-

nomials

In [7] a q-analogue of (5) is given:

4ϕ3

(

α, β, qnν, q−n

γ, δ, ε
; q, q

)

=
(γ/µ, qν/γ; q)n

(γ, νµq/γ; q)n
µn

×
n
∑

l=0

(q−n, νµ/γ, µ, λδ/αβ, λε/αβ, νqn; q)l(νµq/γ; q)2l

(q, νq/γ, ε, δ, µq1−n/γ, νµqn+1/γ; q)l(νµ/γ; q)2l

(

εδ

λν

)l

× 4ϕ3

(

λ/α, λ/β, qlνµ/γ, q−l

µ, λδ/αβ, λε/αβ
; q, q

)

4ϕ3

(

αβ/λ, λ/µ, qn+lν, ql−n

γ/µ, qlδ, qlε
; q, q

)

,

(25)

with γδε = qαβν. In (25) we used the standard notation of Gasper and Rahman [8] for basic

hypergeometric series and q-shifted factorials.
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The Biedenharn-Elliot identity is also valid in the case Uq(su(1, 1)); the Racah coefficients are

in this case given by terminating balanced 4ϕ3-series [10, Proposition 4.9]. The same method as

before can be used to find a q-analogue of (11):

4ϕ3

(

α, β, qnν, q−n

γ, δ, ε
; q, q

)

=
n
∑

l=0

(−1)lq(l+1)l/2 (q−n; q)l

(q; q)l

(λ, qαβµ/γλ, qnν, µ; q)l

(δ, ε; q)l(µ; q)2l

× 4ϕ3

(

α, β, qlµ, q−l

γ, λ, qαβµ/γλ
; q, q

)

4ϕ3

(

ql+nν, qlλ, q1+lαβµ/γλ, ql−n

q1+2lµ, qlδ, qlε
; q, q

)

,

(26)

with γδε = qαβν. Notice how (11) is indeed obtained from this by letting q ↑ 1.

Both these formulas can be interpreted in terms of the Askey-Wilson polynomials [9]:

pn(x; a, b, c, d|q) = (ab, ac, ad; q)na−n
4ϕ3

(

q−n, abcdqn−1, a exp(iθ), a exp(−iθ)

ab, ac, ad
; q, q

)

, (27)

with x = cos θ.

Indeed, if we rewrite the parameters of (25) as follows:


















α = e exp(iθ) β = e exp(−iθ) ν = efcd/q

γ = ef δ = ec ε = ed

µ = ab λ = ae

(28)

then we get the following connection coefficient formula for Askey-Wilson polynomials:

pn(x; e, f, c, d|q) = (ab/e)n (ec, ed, cd, ef/ab; q)n

(abcd; q)n

×

n
∑

l=0

(q/f)l (q
−n; q)l

(q; q)l

(abcd/q, qn−1efcd; q)l(abcd; q)2l

(cd, ec, ed, qnabcd, q1−nab/ef ; q)l(abcd/q; q)2l

× 4ϕ3

(

e/a, e/b, qn+l−1efcd, ql−n

ef/ab, qlec, qled
; q, q

)

pl(x; a, b, c, d|q).

(29)

In this formula, two of the parameters (c and d) of the Askey-Wilson polynomials are identical,

while the other two may vary. This is a special case of the connection coefficient formula [8,

Formula 7.6.2], where only one parameter is identical.

Next, we show that (26) can be rewritten as a sort of convolution identity for Askey-Wilson

polynomials. First, we transform the second 4ϕ3 on the right side to get rid of the factors ql

in the denominator parameters since we want the parameters of the Askey-Wilson polynomials

to be independent of the summation variable l. Application of Sears’ transformation [8, III.16]

yields:

4ϕ3

(

ql+nν, qlλ, q1+lαβµ/γλ, ql−n

q1+2lµ, qlδ, qlε
; q, q

)

=
(qlλ, q1−nαβ/γλ, ν/µ; q)n−l

(qlδ, q1+lαβν/δγ, q−l−n/µ; q)n−l
4ϕ3

(

δ/λ, ε/λ, q−n−l/µ, ql−n

q1−nαβ/γλ, ν/µ, q1−n/λ
; q, q

)

.

(30)
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Performing the following substitution:



















α = a exp(iθ) β = a exp(−iθ) ν = abc2e2/q

γ = ab δ = ace exp(iθ′) ε = ace exp(−iθ′)

µ = abcd/q λ = ac

(31)

with cos θ = x and cos θ′ = y yields the following convolution identity for Askey-Wilson polyno-

mials:

pn(x; a, ce exp(iθ′), b, ce exp(−iθ′)|q)

=

n
∑

l=0

(−1)n(ce)n−lql+(n

2
) (q−n, qn−1abc2e2; q)l

(q, abcdql−1; q)l

(abql; q)n−l

(q1−n−l/abcd; q)n−l

× pl(x; a, b, c, d|q)pn−l(y; e, q1−n/ace, ce/d, q1−n/bce|q).

(32)

In the q-case one can also consider limit transitions and try to interpret these in terms of

e.g. continuous dual q-Hahn polynomials or (on a lower level in the Askey-scheme) big q-Jacobi

polynomials. We will not dwell on this.
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