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Electrochemical deposition of 5,10,15,20-tetrakis-(4-sulphonatophenyl)
porphyrin and its Co(II) derivative at a gold microelectrode array
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Abstract

This paper describes the fabrication and surface modification of gold microelectrode array structures. The modification is done by continuous
cycling of the electrode array in a pH 12 buffer solution containing 8.01 mmol L−1 5,10,15,20-tetrakis-(4-sulphonatophenyl)porphyrin tetrasodium
salt (H2TSPor). Incorporation of gold ions in the ligand during the potential cycling of the gold electrode is assumed. Only ring processes appear
in the current potential curves, which do not change with scan number, indicating a fast adsorption. A second modification was performed through
the electrodeposition of 5,10,15,20-tetrakis-(4-sulphonatophenyl)porphyrin Co(II) (CoTSPor) at a gold micro-electrode array.
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1. Introduction

Porphyrins are widespread compounds in nature. They are
important for several mechanisms in life: they catalyse enzy-
matic reactions and are, for instance, responsible for the oxygen
transport in the human body[1]. The major characteristics of the
porphyrin ring are its thermal and chemical stability, coupled
with its extensive redox chemistry. The aromatic ring structure
can be electrochemically oxidised and/or reduced[2].

Porphyrins have attracted wide research interest, including
that of electrochemists, because of their ability to act as elec-
tron transfer mediators. As a result the charge transfer kinetics
of the oxidation (or reduction) of some molecules, e.g. sodium
dithionite, can be increased by modifying bare electrodes with
porphyrins[3].

The use of electrodes with dimensions of micrometer range
increased appreciably at the end of the seventies[4–6]. In con-
trast to electrodes of conventional dimensions, the measured
current is considerably lower. As a result, the ohmic IR drop,
even in organic solvents with high resistance, can often be
kept sufficiently low[7–10] and voltammetric experiments can
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be performed with a specific ‘low current’ module. On
other hand, a better resolution and lower detection limits
obtained with microelectrodes and array structures becau
the enhanced mass transport of electroactive species from
diffusion [11,12].

The fabrication of microelectrodes and array structures is
documented in literature[13–15]. Random assemblies of micr
electrodes (RAM) are good enough for analytical purposes
calibration curves will be used for the analytical application

This paper describes, an easy way to construct micro
trode arrays as well as the modification of the array struc
by electrodeposition of 5,10,15,20-tetrakis-(4-sulphon
phenyl)porphyrin tetrasodium salt (H2TSPor). The adsorptio
at a gold electrode array structure in a pH 12 buffer s
tion, induced by potential cycling, is the subject of this arti
This method is further called electrodeposition. A continu
potential cycling of the electrode between two potentials
H2TSPor solution can lead to a modification of the bare e
trode. By measuring the current as a function of potentia
is possible to follow the adsorption process in situ. Chara
isation of the modified electrodes is done by electrochem
and spectroscopic methods, including Raman spectroscop
electrodeposition of CoTSPor, Co(II) incorporated into the
and, onto a gold macro electrode has been already des
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[16]. It was found that this deposition is initially controlled by
kinetic parameters leading to a nearly 100% coverage of the
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electrode surface. This article also describes the adsorption of
CoTSPor onto a gold array structure.

2. Experimental

2.1. Materials and methods

A saturated calomel reference electrode (SCE) with two com-
partments (radiometer) and a carbon counter electrode were
used. Gold wire, used to construct the array structure, was
obtained from Advent (UK). The gold array was pretreated by
mechanical and electrochemical polishing. Before its first use
the electrode surface was scoured briefly on SiC-emery paper
1200 grit to obtain a fresh surface. To smoothen this relatively
rough surface it is further subjected to sequential polishing on
polishing cloth covered with alumina (Buehler) powder of 1, 0.3
and 0.05�m particle size for, respectively 5, 10 and 20 min. To
remove any adherent Al2O3 particles the electrode surface was
rinsed thoroughly with doubly deionised water and cleaned in an
ultrasonic bath (Branson 3210) for 2 min. Finally, the electrode
was pretreated electrochemically by scanning between−0.15
and 1.29 V versus SCE in a 0.44 mol L−1 potassium nitrate solu-
tion for its characterisation and between−1.2 and 0.6 V versus
SCE in a pH 12 buffer solution for its modification, until five
subsequent scans were identical.
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2.2. Fabrication of the array configuration

At right angles to the cross-section of a cylindrically shaped
epoxy polymer, with a diameter of 21 mm and 1 cm length, 44
holes are drilled at 3 mm distance (Fig. 1). Through these holes,
Au-wire with a diameter of 25�m is woven. Two ways of prepar-
ing the array were used leading to a single woven and a double
woven structure. Finally, the former will have 44 spots, the latter
88. On one side of the Au woven epoxy piece, a layer of Ag-
cement enables the electrical contact between the gold wires
and the brass holder. A plastic cylinder was pushed over the
configuration and finally filled with epoxy monomer and hard-
ener. After hardening, the top layer of the polymer was removed,
in order to create an upper layer with Au spots on the surface.
These 44 (single woven) or 88 (double woven) spots can act
as electrode surfaces. All gold spots have a radius of 12.5�m
(491�m2 surface area).

3. Results and discussion

3.1. Characterisation of the array structure

The characteristics of both array structures, as well as the
reproducibility of electrode surface regeneration, were exam-
ined by electrochemical methods. This characterisation was first
c
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A PGSTAT20 potentiostat (ECO Chemie, Netherlands)
rolled by GPES 4.9 software package running on a Pen
I computer (Eknadata) was used to record the voltamm
urves. The apparatus was extended with a low current m
o perform voltammetry. Measurement of the pH of the s
ion was done with a Orion Benchtop pH-meter model 42
he H2TSPor and CoTSPor sodium salts were purchased
orphyrin Systems (L̈ubeck, Germany). The buffer solution
H 12 (Na2HPO4/NaOH), potassium nitrate (KNO3) and potas
ium ferrocyanide (K4(Fe(CN)6)) were purchased from Riede
e Häen. Prior to each experiment, pure nitrogen was bub

hrough the cell solution for 20 min.

Fig. 1. Fabricatio
e

arried out by multisweep cyclic voltammetry in 0.44 mol L−1

NO3. This test also served as a cleaning-activation proce
ig. 2shows the cyclic voltammograms (10th scan) record
44-array structure and a 88-array structure, respectively w
4 and 88�m× 491�m surface area. A well-defined oxidati
ave at 0.16 V and reduction peak at 0.26 V versus SCE c
bserved and are attributed to the oxidation of the gold su
nd the reduction of the gold oxide formed during surface
ation[17–20]. Both processes are adsorption phenomena
eak shaped voltammogram is obtained. As expected, the c
elated to the reduction peak in curve 2 (0.441�C) is two times
arger than the charge associated with the 44-array (0.216�C).

the array structure.
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Fig. 2. Current-potential curves obtained at a gold array electrode in a
0.44 mol L−1 KNO3 solution at a scan rate of 50 mV s−1 and a temperature
of 295.0 K. Curve 1 is recorded at the 44-array, curve 2 at the 88-array.

Reproducibility was examined after repeated cycles of cutting,
polishing and rinsing, as described in the experimental section.
Only small differences in cyclic voltammetric behaviour (maxi-
mum 8% variations in charges) between the measurements were
obtained.

The diffusion characteristics of the array structures were stud-
ied in a solution of a reversible redox system. InFig. 3 cyclic
voltammetric curves are shown of the oxidation/reduction of the
ferrocyanide/ferricyanide redox system at a gold 88-array. For
the study of the oxidation of ferrocyanide

Fe(CN)4−
6aq→ Fe(CN)3−

6aq+ e− (1)

and the reduction of ferricyanide

Fe(CN)3−
6aq+ e− → Fe(CN)4−

6aq (2)

solutions of potassium ferrocyanide in 0.44 mol L−1 KNO3 were
employed. The concentration was varied between 2.5× 10−5

and 1.1× 10−3 mol L−1 Fe(CN)4−
6aq. Oxidation peakIa and

reduction peakIc are the same as observed inFig. 2 and can
be attributed to the oxidation of the gold surface (Ia) and the
reduction of the gold oxide layer (Ic) formed during processIa.
Since the formation of gold oxides results in a modification of the
electrode surface, preference was given to the recording of cycli
voltammograms. By doing so, the gold surface will be identi-
cal before each addition of potassium ferrocyanide. Two othe
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waves, IIa and IIc, are observed inFig. 3 and can be attributed
to oxidation of ferrocyanide (IIa, Eq. (1)) and reduction of fer-
ricyanide (IIc, Eq.(2)) at the gold 88-array. In correlation with
literature data[21], the half wave potential for both processes is
202 mV versus SCE. Processes IIa and IIc show a sigmoidally
shaped transition to the diffusion limiting current (Il ) without
any peaks. This is in agreement with the diffusion characteristics
of planar microelectrodes, for which radial diffusion becomes
dominant[13].

For sufficiently small values of the scan rate, the limiting
current in cyclic voltammetry at an inlaid disc electrode (array
structure) is given by

Il = 4p n r F D c (3)

with Il the limiting current,p the number of spots in the array,
n the number of electrons,r the radius of the electrode,F the
Faraday’s constant,D the diffusion coefficient andc the concen-
tration of the electroactive species[13].

The influence of the concentration on the limiting current of
process IIa was investigated to determine whether Eq.(3) is valid
for the oxidation of potassium ferrocyanide at the gold array.
In theory, the relationship between logIl and logc should be
linear and the slope of the relationship equal to 1.Fig. 4shows
this relationship for the oxidation of ferrocyanide depicted in
Fig. 3(gold 88-array, curve 1) and the data obtained for the gold
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ig. 3. Cyclic voltammograms of potassium ferrocyanide at a gold 88-
n a 0.44 mol L−1 KNO3 solution at a scan rate of 50 mV s−1 and a tempe
ture of 295.0 K for Fe(CN)4−

6aq concentrations of: (1) 0; (2) 5.00× 10−5;
3) 7.50× 10−5; (4) 1.00× 10−4; (5) 1.49× 10−4; (6) 2.00× 10−4; (7)
.99× 10−4; (8) 3.99× 10−4; (9) 4.98× 10−4; (10) 5.97× 10−4; (11)
.96× 10−4; and (12) 7.95× 10−4 mol L−1.
c

r

4-array (curve 2). Process IIa can be considered as result
rom a diffusion-limited steady-state process at an inlaid
lectrode (88 as well as 44-array) because the value of theIl
ersus logc slope is close to 1. Since there is a differenc
umber of electroactive spots, the ratio of both intercepts sh
e in theory 0.956 (log(176nrFD)/log(352nrFD)). The value o

he intercept for curve 1 is 5.3207 and 5.5998 for curve 2.
atio of these two values is 0.950, close to the theoretical v
hus, the dependence on potassium ferrocyanide concen

ollows Eq.(3) for both arrays.

.2. Electrochemical deposition of H2TSPor at a gold array
tructure

Fig. 5 shows some of the 100 cyclic voltammetric sc
ubsequently and continuously recorded at a gold 44-arr
pH 12 buffer solution (curve 1) and a solution contain

ig. 4. Relationship between logIl and logc for the oxidation of ferrocyanid
t the gold 88-(1) and the gold 44-array (2).
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Fig. 5. Current-potential curves recorded at a gold disc electrode in a pH
12 buffer solution in the absence (curve 1) and presence (curves 2–4) of
8.01× 10−3 mol L−1 H2TSPor at a scan rate of 50 mV s−1 and a temperature of
298.0 K as a function of scan number. Scan numbers are (2) 2; (3) 40; and (4)
100.

8.01× 10−3 mol L−1 H2TSPor (curves 2–4). The peaks cor-
responding to the oxidation of the gold surface (Aa) and the
reduction of the gold oxide formed during surface oxidation
(Ac) [17–20], decrease when the electrode potential is cycled in
a H2TSPor solution. This is a first indication of adsorption of
H2TSPor onto the gold array structure, as covering the gold
surface with H2TSPor prevents its oxidation and subsequent
reduction. The decrease of the gold oxidation and reduction pro-
cesses is relatively small and as a result the amount of adsorbed
H2TSPor probably is quite low. There is only a small shift in
peak potential during the decrease of signalsAa and Ac, thus
these peaks are attributed to the gold processes only. The charge
under the peak associated with the gold reduction (Ac) of scan
100 recorded in a H2TSPor solution (curve 4) compared to the
charge of the same reduction process in curve 1 (in the absence
of H2TSPor), leads to a coverage of circa 30%.

The cyclic voltammetric scans do not change with scan num-
ber, indicating a fast adsorption of H2TSPor on the gold elec-
trode. In comparison with the adsorption of MTSPc’s on gold
[22], there is no reorganisation of the adsorbed layer, resulting in
a stable cyclic voltammogram. Due to the fact that four benzyl
groups of the H2TSPor molecule are perpendicularly oriented
towards the ring structure; no reorganisation is possible in which
columnar aggregates are formed.

Fig. 6 shows the cyclic voltammetric behaviour of differ-
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Fig. 6. Current-potential curves recorded at a gold disc electrode in a pH 12
buffer solution containing: 2.09 (1); 4.17 (2); and 6.26× 10−3 (3) mol L−1 of
H2TSPor at a scan rate of 50 mV s−1 and a temperature of 298.0 K (10th scan).

the H2TSPor modified electrode is scanned in a pH 12 buffer
solution in the absence of H2TSPor in solution. The first step in
the electrocatalytic reduction reaction at−1.13 V versus SCE
is supposed to be the ring reduction of adsorbed H2TSPor. The
next step is the reduction of H2TSPor present in solution at this
modified electrode.

The Raman spectroscopic analysis of a H2TSPor modified
gold electrode (gold electrode cycled in a 8.01× 10−3 mol L−1

H2TSPor solution during 100 scans) shows identical Raman
bands compared to the Raman spectrum of a CoTSPor modi-
fied electrode, which is shown and explained in literature[16].
In addition, the positions and bandwidth of the most intense
Raman bands are similar to those of the pure crystalline sub-
stances (1528, 1451, 748 and 681 cm−1) [16]. Important to note
is that the Raman spectrum of the H2TSPor modified gold elec-
trode is more similar to the spectrum of CoTSPor than to that
of H2TSPor powder. For the Raman spectra of CoTSPor and
H2TSPor is refered to literature data[4,22]. The similarity of
the spectra of a H2TSPor modified gold electrode and that of a
CoTSPor modified electrode indicates the incorporation of gold
atoms into the porphyrin ligand structure. This phenomenon is
already described for Ag incorporation into a porphyrin struc-
ture during an anodization step[23] but was never observed for
gold. Therefore it is assumed that a AuTSPor layer is formed
onto the gold electrode. Because of the similarities between the
Raman spectrum of a modified electrode and the spectrum of
t r the
i

nt H2TSPor concentrations at a gold electrode in a pH
uffer solution. As there is no central metal ion, only oxida
r reduction processes of the ligand structure are possibl
eaks observed inFigs. 5 and 6can thus be explained as ring p
esses of CoTSPor present in solution. So, these process
iffusion-controlled reactions. A well-defined reduction p
t −1.13 V versus SCE and two well-defined oxidation pe
t circa−0.5 and 0 V versus SCE can be observed, attrib

o the reduction and oxidation of the ring structure. The r
ionship between peak currents and concentration of H2TSPor
s linear and the correlation coefficient was never smaller
.993. These peaks are too high to be explained by the redu
r oxidation of adsorbed H2TSPor only. It is assumed that th
esult from an electrocatalytic reaction of H2TSPor in solution
his is confirmed by the fact that these peaks disappear
 n

he corresponding powder, physisorption is responsible fo
nteraction between surface and molecules.
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Fig. 7. Current-potential curve recorded at a gold 44-array in a pH 12 buffer
solution after hundred scan cycling in a 7.95 mmol L−1 CoTSPor solution at a
scan rate of 50 mV s−1. Inset: oxidation of Co(II) at a gold 44-array (1) and at a
gold 88-array (2).

3.3. Electrochemical deposition of CoTSPor at a gold array
structure

The electrodeposition of 5,10,15,20-tetrakis-(4-sulphonato-
phenyl)porphyrin Co(II), tetrasodium salt (CoTSPor) at gold
macroelectrodes in a pH 12 buffer solution has been the subject
of intensive investigation[16]. It was found that this deposition
is initially controlled by kinetic parameters leading to a nearly
100% coverage of the electrode surface in which the CoTSPor
molecules form a chaotic multilayer. After this initial stage, the
adsorption is completed and followed by a slow reorganisation of
the chaotic multilayer resulting in a thermodynamic more stable
configuration (aggregation of CoTSPor molecules). A hypothe-
sis regarding the electrodeposition of CoTSPor was based on the
electrochemical observations made while following the current-
potential behaviour as a function of scan number and CoTSPor
concentration[16].

In this study the electrochemical behaviour of CoTSPor at
a gold microelectrode array in alkaline solution is described.
A continuous potential cycling of the gold 44-array between
two potentials (−1.2 and 0.6 V versus SCE) in a 7.95 mmol L−1

CoTSPor pH 12 buffer solution at a scan rate of 50 mV s−1

leads, as is the case for a macroelectrode, to a modification of
the gold spots.Fig. 7 represents the cyclic voltammetric curve
obtained after hundred scans at a gold 44-array. Peaks due to
the Co(III)ads/Co(II)adsredox system (Ba andBc) and to the ring
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Fig. 8. The Co 2p XPS spectrum for a modified electrode after 100 scans in
CoTSPor. The dark line represents the curve fit.

voltammetric curves and prove the formation of an adsorbed
CoTSPor layer at the gold array structures. X-ray photoelec-
tron spectroscopic analysis of the modified electrode was carried
out, first of all to prove the adsorption by detecting the cobalt
atom and secondly to confirm the value of the coverage.Fig. 8
shows the Co2p XPS-spectrum of a CoTSPor modified elec-
trode. The dark line is the fitted curve. The cobalt 2p1/2 and
2p3/2 signals are present and give evidence of the deposition. The
doublet separation is typical for an oxidized state, +II. Based
on the atomic concentrations a value of 99.8% can be calcu-
lated, taking into account the molecular size of the CoTSPor
molecule.

4. Conclusion

The fabrication and characterisation of a gold microelec-
trode array structure is described in this paper. The electro-
chemical characterisation was done by cyclic voltammetry in
0.44 mol L−1 KNO3 solution containing different concentra-
tions of potassium ferrocyanide. The Fe(III)/Fe(II) redox system
behaves reversibly and shows a sigmoidally shaped steady-state
voltammetric response.

In addition, this article describes the modification of a gold
array structure by porphyrin ligand (H2TSPor). During the con-
tinuous potential cycling in a H2TSPor solution only ring pro-
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dentified as well as peaks due to gold oxidation and gold o
eduction (Aa andAc). As one can observe, the electrochemi
f the ligand is different from the CoTSPor-electrochemis
he inset ofFig. 7 shows that the adsorption processesBa,
hich represents the oxidation of Co(II)ads with formation of
o(III)ads, is dependent on the dimensions of the array.
ore gold spots at the array structure, the more CoTSPo

an be deposited on the surface. The charge under this
easured at the gold 44-array, is equal to 1.44× 10−8 C (curve
), nearly half of the value of the charge measured at the go
rray, 2.84× 10−8 C (curve 2). These charges correspond
oTSPor coverage of 1.57× 10−11 mol cm−2 (44-array) and
.10× 10−11 mol cm−2 (88-array). When the modified ele

rode is brought into a fresh buffer solution, peaks attrib
o the adsorbed CoTSPor (Ba and Bc) are still present in th
e
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cesses could be observed and it was assumed, based on
analysis of the modified electrode, that a AuTSPor laye
formed. The produced gold array structures were also m
fied by continuous potential cycling in a 7.95 mmol L−1 CoT-
SPor solution. The peaks observed during the deposition
be attributed to reactions of the Co(III)/Co(II) redox sys
or the catalytic ring oxidation and reduction of CoTSPor. T
modified gold array structure is expected to be a useful too
electrocatalysis and electroanalysis.
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