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Abstract

We investigate the behaviour of an asynchronous optical buffer by means of a
continuous-time queueing model. Through a limit procedure, previously obtained
results for a discrete-time queueing model are translated to a continuous-time set-
ting. We also show that the same results can be obtained by a direct analysis using
Laplace transforms. Closed-form expressions are obtained for the cases of exponen-
tially distributed burst sizes, deterministic burst sizes and mixtures of deterministic
burst sizes.

The performance of asynchronous optical buffers shows the same characteristics as
that of synchronous optical buffers: a reduction in throughput due to the creation of
voids on the outgoing channel and a burst loss probability that is strongly influenced
by the choice of fiber delay line granularity. The optimal value of the latter depends
on the burst size distribution and the offered load.

Key words: Burst Switching; Fiber Delay Lines; Loss Probability; Optical Buffers;
Generating Functions; Performance Models

1 Introduction

All-optical packet-switching is a promising network technology. Nowadays, ma-
jor cities are connected by dense wavelength division multiplexing (DWDM)

1 This document is a post-print of W. Rogiest, K. Laevens, D. Fiems and H.
Bruneel, A Performance Model for an Asynchronous Optical Buffer, Performance
Evaluation 62 (2005), pp. 313-330.
2 Supported by the Flemish Government through the IWT-GBOU Project “Optical
Networking and Node Architectures”.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55753901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


links, enabling transmission capacities well beyond the Tbit/s. Packet switch-
ing over these optical links, however, requires that the transmission speeds over
the links are matched by equivalent switching capacities in the nodes. As cur-
rent packet switches perform data processing in the electronic domain, there
is a growing discrepancy between channel capacity and switching capacity.
All-optical packet switching (OPS) could alleviate the problem, by processing
data in the optical domain [1]. As mature technology is expected to be still
a few years away [2], optical burst switching (OBS) has been proposed as an
intermediate solution [3, 4, 5].

Both optical packet and optical burst switching suffer from (output port)
contention in the switches and therefore equally require contention resolution.
Whenever two or more data packets arrive at a network node at the same
time and contend for the same output, external blocking occurs. All packets
but one are perceived as superfluous, and have to be dealt with. Next to the
obvious choice of dropping all excess packets, literature [6, 7] typically presents
three solutions: buffering, deflection routing or wavelength conversion. Optical
buffering uses fiber delay lines (FDLs) to delay the light, and is regarded as
the most effective [7], but comes with the additional cost of the FDLs.

Analytic results concerning the loss and queueing behaviour of optical buffer
systems are given in, amongst others, [8, 9, 10]. In [8], an asynchronous FDL
buffer with Poisson arrivals of exponentially distributed burst lengths is in-
vestigated. Synchronous FDL buffers are studied in [9] and [10] by means of
a probability generating functions (pgf’s) approach. In particular, the latter
paper concerns the performance analysis of a synchronous optical buffer. The
results obtained therein will constitute a starting point for our current con-
tribution, dealing with the asynchronous case. Compared to a slotted (i.e.,
synchronous) network, an unslotted network is expected to be technologically
more complex due to control issues. However, an unslotted network could turn
out opportune, for reasons of robustness and flexibility. We refer to e.g. [11] for
more details. As for the numerical results included in this paper, we remark
that, in evaluating the performance of an asynchronous optical buffering, a
comparison can be made with the performance of the synchronous case. This
comparison is not included here, and we refer to [12] for this approach.

This paper is structured as follows. In the next section, the mathematical
model is described and the assumptions we make are given. In Section 3, we
derive results for an infinite buffer in equilibrium. We present two approaches,
yielding the same results. Either one can use a limit procedure, starting from
results for a synchronous system (which are briefly recapitulated), or one can
analyze the evolution equation of the asynchronous system directly. In Sec-
tion 4, heuristics are discussed that allow calculating the burst loss probability
in a finite optical buffer, relying on results for the corresponding infinite sys-
tem. Three special examples of burst size distributions are treated in Section 5.
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For these special cases, closed-form expressions for the performance measures
of interest are obtained, allowing us to compare the accuracy of the proposed
heuristics with simulation results. Conclusions are drawn in Section 6.

2 Model

We study a single outgoing channel, where contention is resolved by means of
an FDL buffer. The FDL buffer cannot delay bursts for an arbitrary period of
time, but only for multiples of a basic unit D, called the granularity. Buffers of
this type are said to be degenerate, and contain (N +1) FDLs with lengths kD
for k = 0, . . . , N . Each incoming burst is routed to the shortest of these FDLs
such that the burst will not overlap on departure with bursts from the other
FDLs. If such an FDL cannot be found, the burst is dropped. In our model,
we assume each FDL is a single piece of fiber, which implies that each burst
travels through its assigned FDL only once, and that several bursts might be
travelling through a single FDL at the same time (without overlapping, how-
ever). Further, this puts no limitations on the sizes of the bursts that can be
accepted. Other implementations, where e.g. a burst travels in a fixed-length
loop of size D for a number of times (as imposed by the scheduling), require
less fiber, but can e.g. not delay bursts that are longer than D. This limitation
could result in suboptimal performance in some cases, given that the optimal
granularity D can be less than the (average) burst size, see below. Also, the
number of bursts that can be accepted simultaneously in such structure, is
typically upper-bounded by the number of loops that are available.

Typically, bursts are delayed for more time than strictly needed. This extra
delay results in so-called voids, i.e., periods during which the output channel
remains unused, despite of the fact that the system is not empty. Void-filling
policies (VFP) could be used to minimize this loss in throughput, but we do
not consider these here.

For ease of analysis, we will assume in Section 3 that the buffer has an infinite
amount of FDLs at its disposal, i.e., N = ∞. Heuristics are then obtained in
Section 4 for finite N , based on the results for N = ∞. Studying the system
with infinite buffer size, and the evolution over time of its buffer contents, one
can distinguish three important variables. Numbering bursts in the order of
their arrival, the first variable, the burst inter-arrival time τk, captures the
time between the kth arrival instant and the next. The second variable is the
burst size Bk, measuring the time needed for transmission of the kth burst.
The third important variable is the scheduling horizon Hk as observed by the
kth burst upon arrival. This quantity represents the time between the instant
of arrival, and the earliest instant by which the previous burst (and all its
predecessors) will have left the system.
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Fig. 1. Evolution of the scheduling horizon H.

The relation between these variables is illustrated in Figure 1, and can be
described by the following equation:

Hk+1 =
[

Bk + D
⌈

Hk

D

⌉

− τk

]+

(1)

The expression dxe is the ceiling of x, i.e., the smallest integer greater than or
equal to x. The notation [x]+ is standard shorthand for max(x, 0). When the
kth burst sees a scheduling horizon Hk upon arrival, it will have to be delayed
for at least that amount to avoid contention. Since the buffer is degenerate, this
delay cannot be realized exactly (in general), the closest match being given
by D dHk/De. Delaying and transmitting this burst pushes the scheduling
horizon (just after arrival) to Bk + D dHk/De. Taking then into account the
burst inter-arrival time τk, and the possibility that the system becomes empty,
one easily obtains equation (1). Note that it is valid for both continuous-time
(CT) and discrete-time (DT) systems.

To analyze equation (1), we need to impose certain restrictions on the distri-
bution of τk and Bk. We assume the τk to form a sequence of iid (independent
and identically distributed) random variables (rv’s), having a common mem-
oryless distribution. The burst sizes Bk also form a sequence of iid rv’s, and
can have a general distribution. In the below, every time both CT and DT
variables occur under the same name, we denote DT variables with a prime,
e.g. D′, and leave CT variables unchanged, e.g. D. In DT, we will use the
probability generating function (pgf) of the probability mass function (pmf),
in CT we use the Laplace-Stieltjes transform (LST) of the probability density
function (pdf). For the burst sizes Bk, this means we have

B(z) = E[zB′

k ] =
∞
∑

n=1

znPr[B′
k = n]
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and

B∗(s) = E[e−sBk ] =
∫ ∞

0
e−sx b(x)dx

As for the inter-arrival times, being memoryless, we have a geometric distri-
bution in DT, with mean 1/p, and an exponential distribution in CT, with
arrival intensity λ,

Pr[τ ′
k = n] = p · p̄n−1 , n = 1, 2, ... and Pr[τk ≤ x] = 1 − e−λx , x ≥ 0

(We use the standard notation p̄ = 1−p.) The expressions for the correspond-
ing pgf and Laplace transform are

τ(z) = E[zτ ′

k] =
pz

1 − p̄z
and τ ∗(s) = E[e−sτk ] =

λ

λ + s

3 Analysis

In this section, we take a look at the infinite system. All derivations assume
the system is stable. On this condition, the distributions of Hk converge, for
k → ∞, to a unique stochastic equilibrium distribution, independent of the
initial system conditions. The pgf and Laplace transforms obtained are as-
sociated with this equilibrium. By H we will denote a generic rv following
that distribution (and likewise for other rv’s involved). Stability requires the
offered load ρ to be below some maximum value ρmax, that is, typically less
than unity, unlike in conventional queues, see e.g. [13]. This is also commented
upon below.

We present two approaches to obtain, among others, the Laplace transform
of H in the continuous-time setting. One consists in taking appropriate limits
for the slot size becoming infinitely small, mapping results from the discrete-
time setting to the continuous-time setting. The other consists in directly
analyzing the evolution equation (1) in continuous time. Before continuing,
we note that two separate non-linear effects can be observed in (1): the oper-
ation [x]+ and dxe. The former effect, related to the non-negativeness of the
buffer content, one could call the queueing effect, and requires us to analyze
H = [B + F − τ ]+. The latter effect, related to the finite granularity of the

FDLs, one could call the FDL effect, and calls for analysis of F = D
⌈

H
D

⌉

.
Note how values of H are mapped to multiples of D. Below, we will refer
to the former effect as “the queueing effect” and to the latter as “the FDL
effect” respectively. Both will first be analyzed separately. Results will then
be combined to yield the overall solution.
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3.1 Results for synchronous systems

In [10], both the queueing effect [x]+ and the FDL effect dxe were studied
in a discrete-time setting. The queueing effect yielded the following relation
between the pgfs of the variables involved:

H(z) =
p

z − p̄
B(z)F (z) + K ′ z − 1

z − p̄
(2)

The FDL effect leads to following relation:

F (z) =
∑

k

1

D′

zD′

− 1

zεk − 1
H(zεk) (3)

where symbols εk = e j 2πk/D′

represent the D’ different complex D’th roots of
unity, and the summation index k runs over −D′/2 < k ≤ D′/2 (taking on
integer values only). Note that in [10], the summation ran over 0 ≤ k < D′.
For our present purposes, however, using −D′/2 < k ≤ D′/2, turns out to be
more convenient.

Using the property that F (zεk) = F (z), which follows directly from the fact
that the random variable F is always an integer multiple of D′, one can com-
bine (2) and (3). With the identity

xD′−1

zD′ − xD′
=
∑

k

1

D′

1

(zεk) − x
(4)

the expression simplifies to

F (z) = K ′

(

p̄D′−1(zD′

− 1)

zD′ − p̄D′

)

·

(

1 −
∑

k

1

D′
·
zD′

− 1

zεk − 1

pB(zεk)

(zεk) − p̄

)−1

(5)

The constant K ′ follows from the normalization condition F (1) = 1, as

K ′ =





1

p
− E[B′] −

D′ − 1

2
−
∑

k6=0

1

εk − 1

p

εk − p̄
B(zεk)



 ·

(

Dp̄D′−1

1 − p̄D′

)−1

Having determined F (z), H(z) then follows readily from (2).

3.2 Limit procedure

Our scope is to derive, for the asynchronous system, H∗(s), the LST of the
equilibrium distribution of the scheduling horizon H as seen by arrivals. In
this subsection, we discuss a limit procedure, to retrieve H∗(s) from H(z).
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To correctly convert results from discrete time to continuous time, one should
first observe quantities in the discrete domain. A distinction can be made
between time-related quantities and counting-related quantities. The former
scale with the slot size ∆, the latter do not. For example, the scheduling
horizon H ′ (in slots) actually represents H ′∆ in absolute time. We can also
find a simple relation between the pgf and LST, as

H∗(s) = E[e−sH ] = lim
∆→0

E[(e−s∆)H′

] = lim
∆→0

H(e−s∆)

i.e., we need to substitute z by e−s∆ in the pgf H(z) before taking the limit
∆ → 0. The average inter-arrival time 1/p scales as 1/(λ∆), the granularity
size as D′∆ = D. Applying this limit procedure on the DT solution (2) for
the queueing effect yields

H∗(s) =
λ

λ − s
F ∗(s)B∗(s) − K

s

λ − s
(6)

(In taking the limit, here and in the following, the rules of de l’Hôpital need
to be applied frequently, to deal with e.g. indeterminate forms of type 0/0.)

Concerning the FDL effect, equation (3) results in

F ∗(s) =
∑

k

1

D

1 − e−sD

s + j 2πk/D
H∗(s + j 2πk/D) (7)

where k now runs from −∞ to +∞.

Note that F ∗(s) is periodical too, in the sense that

F ∗(s) = F ∗(s + j 2πn/D)

for any n ∈ Z. This property now allows combining (6) and (7) to yield

F ∗(s)=

(

−K
∑

k

1

D

1 − e−sD

λ − (s + j 2πk/D)

)

·



1 −
∑

k

1

D

1 − e−sD

t

λB∗(t)

λ − t

∣

∣

∣

∣

∣

t=s+j 2πk/D





−1

(8)

A further simplification can be made by using

∑

k

1

D

1

λ − (s + j 2πk/D)
= −

1

1 − e(λ−s)d
(9)

which follows from applying the limit procedure on (4) (where x = 1). We
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then find

F ∗(s) =

(

K
1 − e−sD

1 − e(λ−s)D

)

·



1 −
∑

k

1

D

1 − e−sD

t

λB∗(t)

λ − t

∣

∣

∣

∣

∣

t=s+j 2πk/D





−1

(10)

This is exactly the expression we would have found applying the limit proce-
dure directly to equation (5).

The remaining unknown constant K can be determined, either by applying
the limit procedure once more, or by ensuring normalization of F ∗(s). The
final result reads

K =





1

λ
− E[B] −

D

2
−
∑

k6=0

λ

t − λ

B∗(t)

t

∣

∣

∣

∣

∣

t=s+j 2πk/D



 ·
(

−
D

1 − e−λD

)−1

(11)

Equations (6), (10) and (11) together fully specify H∗(s).

3.3 Direct approach

To consolidate the results of Subsection 3.2, we show how they can also be ob-
tained directly. The complexity of the transform-based solution of the queue-
ing effect, mentioned in the above, critically depends on the exact form of the
LST of τ . (The same goes, in terms of the pgf of τ , for the discrete-time case,
as discussed in e.g. [14].) For exponentially distributed τ , the complexity is
limited, and results in

H∗(s) =
λ

λ − s
B∗(s)F ∗(s) − K

s

λ − s

i.e., the result we obtained via the limit procedure. A direct proof is rather
straightforward. Introducing, for convenience, an auxiliary rv G = B+F , with
pdf g(t) (t > 0) and LST G∗(s) = B∗(s)F ∗(s), one has
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H∗(s) =
∫ ∞

0
g(t)dt

∫ ∞

0
τ(x)dx e−s[t−x]+

=
∫ ∞

0
g(t)dt

∫ ∞

0
τ(x)dx e−s(t−x)

+
∫ ∞

0
g(t)dt

∫ ∞

t
τ(x)dx

(

e−s·0 − e−s(t−x)
)

= G∗(s)τ ∗(−s) +
∫ ∞

0
g(t)dt

∫ ∞

t
λ e−λx dx

(

1 − e−st e+sx
)

= G∗(s)
λ

λ − s
+
∫ ∞

0
g(t)dt

(

e−λt − e−st λ

λ − s
e−(λ−s)t

)

= G∗(s)
λ

λ − s
+ G∗(λ)

(

1 −
λ

λ − s

)

= G∗(s)
λ

λ − s
− K

s

λ − s

The second non-linearity to tackle, is the FDL effect, as stated above. The
transform-based solution can be obtained by expressing F ∗(s) as

F ∗(s) = h(0) +
+∞
∑

k=0

∫ D

0+

h(u + kD) e−s(k+1)D du

Rewriting the sum in the right-hand side by introducing the comb function
∑

l δ〈t − lD〉 we have

F ∗(s)= h(0) +
+∞
∑

k=0

∫ D

0+

du h(u + kD) e−s(k+1)D

·
∫ D

0+

dx e−s(u−x)
+∞
∑

l=−∞

δ〈(u − x) − lD〉

Note that the only Dirac pulse actually having an effect is the one for u−x = 0,
i.e., for l = 0. Using the Fourier expansion

+∞
∑

k=−∞

δ〈x − kD〉 =
+∞
∑

k=−∞

1

D
e j 2πkx/D

and rearranging some terms, we can proceed as
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F ∗(s)= h(0) +
+∞
∑

k=0

∫ D

0+

du h(u + kD) e−s(k+1)D

·
∫ D

0+

dx e−s(u−x)
+∞
∑

l=−∞

1

D
e−j 2πl(u−x)/D

= h(0) + e−sD
∫ D

0+

dx
+∞
∑

l=−∞

1

D
e(s+j 2πl/D)x

·
+∞
∑

k=0

∫ D

0+

du h(u + kD) e−s(u+kD)−j 2πlu/D

= h(0) + e−sD
+∞
∑

l=−∞

1

D

e(s+j 2πl/D)D −1

s + j 2πl/D

·
+∞
∑

k=0

∫ D

0+

du h(u + kD) e−(s+j 2πl/D)·(u+kD)

In the last step we used the obvious identity

e−(j 2πl/D)kD = 1

for any l, k ∈ Z, which allowed us to arrive at an expression in terms of u+kD
only in the integral for u. That integration then, combined with the sum over
k, amounts to integrating over (0,∞), i.e.,

F ∗(s)= h(0) + e−sD
+∞
∑

l=−∞

1

D

e(s+j 2πl/D)D −1

s + j 2πl/D

∫ ∞

0+

dt h(t) e−(s+j 2πl/D)t

= h(0) +
+∞
∑

l=−∞

1

D

1 − e−sD

s + j 2πl/D
(H∗(s + j 2πl/D) − h(0))

Using identity (9) once more, we find that the terms involving h(0) cancel out,
yielding

F ∗(s) =
∑

l

1

D

1 − e−sD

s + j 2πl/D
H∗(s + j 2πl/D)

as before.

4 Heuristics for the burst loss probability

Results up to now related to an optical buffer of infinite size. In order to obtain
the burst loss probability (BLP) in a finite system, i.e., a system with only
(N + 1) fiber delay lines (realizing delays in the set {0, D, . . . , ND}) one can
rely on heuristics, as explained next.

10



For conventional queues, fed by a Poisson process of bursts of iid size, a relation
exists between (the distributions of) the unfinished work in an infinite system
and that in a finite system of, say, capacity M, see e.g. [15]. This relation leads
to an expression for the loss ratio (LR) in the finite system of the form

LR =
(1 − ρ)

ρ

Pr[W∞ > M ]

1 − Pr[W∞ > M ]
(12)

where W∞ denotes the unfinished work in the infinite system (as seen by
arrivals). When dealing with degenerate buffers, one can translate this into a
heuristic for the BLP

BLP ≈
(1 − ρeq)

ρeq

Pr[H∞ > ND]

1 − Pr[H∞ > ND]
(13)

Here, H∞, the scheduling horizon in an infinite optical buffer, fulfills the role
of W∞, ND is the capacity of the system and ρeq is the so-called equivalent
load, i.e., the load on the system taking into account the overhead created by
the voids. (Note that formula (12) assumes only excess unfinished work is lost,
i.e., bursts arriving at a nearly full system can still be partially buffered, while
in our model, a burst that cannot be delayed sufficiently long due to lack of
an appropriate delay line, is dropped entirely.)

We can again combine results of the synchronous FDL buffer [10] with the limit
procedure to find expressions for the unknown quantities ρeq and Pr[H∞ >
ND] in heuristic (13).

The equivalent load in the synchronous setting is given by

ρ′
eq = p



E[B′] +
D′ − 1

2
+
∑

k6=0

1

εk − 1

pB(εk)

εk − p̄



 (14)

The limit procedure then easily leads to the equivalent load in the asyn-
chronous setting. One finds

ρeq = λ



E[B] +
D

2
+
∑

k6=0

λ

t − λ

B∗(t)

t

∣

∣

∣

∣

∣

t=s+j 2πk/D





The equivalent load thus involves the mean burst size, (about) half the delay
line granularity, and a term taking into account the finer details of the burst
size distribution (through its pgf B(z) or LST B∗(t)). One can show that the
asynchronous system becomes unstable when λ is such that ρeq = 100%.

The tail probabilities Pr[H∞ > ND] that appear in heuristic (13) can be
computed by an (approximate) inversion of the LST H∗(s), using a single-
pole approximation. It was shown in [10] that for synchronous buffers one
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has

Pr[H∞ > ND′] ≈
cst′

zND′

0

Here, z0 is the dominant pole of H(z) (and of F (z)). It is real, positive and
larger than 1. This approximate geometric behaviour occurs under rather mild
conditions on the burst size distribution, a sufficient condition is e.g. for the
burst size pgf to be a rational function. Note, however, that the analysis in e.g.
Section 3 only requires that E[B] < ∞ (and that the system is stable). When,
for instance, the burst size distribution possesses a heavy tail, the distribution
of H∞ would not decay geometrically as above, but would have a heavy tail
too. This would require a different approximate inversion formula.

The constant cst′ follows from residue theory and is given by

cst′ = −
1

z0

D′

zD′

0 − 1

(

lim
z→z0

F (z)(z − z0)
)

Applying the limit procedure once more, we find that for asynchronous buffers

Pr[H∞ > ND] ≈
cst

γN

where we introduced γ = e−s0D = lim∆→0 zD′

0 for convenience. Here, s0 denotes
the dominant pole of H∗(s) and F ∗(s) along the negative real line. In general, a
simple bisection algorithm (with possibly an initial search for the appropriate
starting interval) suffices to determine γ numerically. In some cases, an explicit
expression can also be found, see e.g. below.

For small BLP, a modified heuristic

BLP ≈ (1 − ρeq)
Pr[H∞ > ND]

1 − Pr[H∞ > ND]
(15)

(i.e., dropping the factor ρeq in the denominator) turns out to be more ac-
curate. In the following, we will refer to (13) as “heuristic A” and to (15) as
“heuristic B” respectively.

It is worth to point out that the same heuristics can also be used to eval-
uate the BLP in overloaded systems, i.e., when the equivalent load exceeds
100%. Strictly speaking, no equilibrium distribution then exists for e.g. H∞.
The transform H∗(s) that is used to approximate Pr[H∞ > ND], however,
remains a proper function. Formally then, one can still compute the quantities
Pr[H∞ > ND], the only caveat being that γ is then to be found in the inter-
val [0, 1), i.e. s0 > 0. The expression for the constant cst remains the same.
(When the equivalent load is exactly 100%, s0 = 0 and γ = 1. In principle,
this requires somewhat modified expressions. Here, we do not pursue this issue
further.)
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For severely overloaded systems, there is a rather simple, intuitive heuristic.
In e.g. conventional queues, when ρ → ∞, the loss ratio will approximately
equal

LR ≈
ρ − 1

ρ

Since such a system will be busy nearly always, the carried load will be close
to one. The lost load then equals ρ− 1, leading directly to the above approxi-
mation. As ρ → ∞, the (formal) value for Pr[W∞ > M ] → ∞, thus the same
limit is retrieved in formula (12). Not surprisingly then, for degenerate buffers,
heuristic A turns out to be more accurate than heuristic B when ρeq � 1. This
will be illustrated shortly by means of a few numerical examples.

5 Special cases

In this section, we take a look at the BLP for three special cases for the burst
size distribution: exponential, deterministic and a mixture of deterministics.
For all three of them, the infinite sum appearing in a.o. equations (10) and
(11), can be removed. One obtains closed-form formulas for the LST H∗(s)
and for the performance measures derived therefrom. Results given here were
obtained via the limit procedure. Formulas for the corresponding discrete-time
systems are given in [16]. Their derivation relied on identities resulting from
the partial fraction expansion of appropriately constructed rational functions.
At the time of writing, we were unable to verify whether similar identities
(involving infinite sums) can be used to simplify e.g. equation (5) for F ∗(s)
directly. Here, we merely state the important formulae, especially focussing
on those needed in the above mentioned heuristics for the BLP.

5.1 Exponentially distributed burst sizes

As was the case for the inter-arrival times τ , exponentially distributed burst
sizes can be considered as the limit (for slot sizes going to zero) of geometrically
distributed burst sizes. If we denote the mean burst size by the standard
notation E[B] = µ−1, the LST of the burst size distribution then takes on the
well-known form B(s) = µ

µ+s
. Expression (10) for F ∗(s) simplifies significantly

to

F ∗(s) =
1 − e−(s+µ)D

1 − e−µD
·

γ − 1

γ − e−sD
with γ =

µ + λ

µ e−µD +λ e+λD

The constant cst appearing in the approximation for the tail distribution be-
comes

cst =
1 − γ e−µD

γ (1 − e−µD)
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We further obtain

ρeq = 1 +
λD

µ + λ

(

λ

1 − e−µD
+

µ

1 − e+λD

)

for the equivalent load.

A similar expression was found in e.g. [17]. In that paper, the authors derive
an expression for the LST of the distribution of the equivalent burst size Beq,
i.e., the burst size taking into account the voids created due to the degenerate
structure of the FDL buffer. The analysis proceeds along somewhat different
lines than followed here, but results for e.g. the equivalent load are the same.
No explicit expression was derived for the LST of the scheduling horizon,
however. Taking the LST of Beq as the authors obtained it, and using it in the
classical Pollaczek-Khinchin formula for the unfinished work in the M/G/1
system, see e.g. [18], does not yield H∗(s) as given here. This comes as no
surprise, given that the equivalent burst size depends on the scheduling horizon
as seen by the arriving burst, i.e., we are not dealing with a conventional
M/G/1 system here. Rewriting equation (1) as

Hk+1 = [Hk + Beq,k − τk]
+ with Beq,k = Bk + D

⌈

Hk

D

⌉

− Hk

the dependence between Hk and Beq,k explicitly shows up.

Note further that, in this case, it is straightforward to verify that

ρeq = 1 ⇔ γ = 1 ⇔ s0 = 0

as mentioned above. The condition under which ρeq = 1 fully agrees with the
one that can be found by taking the appropriate limit of the condition derived
in [13] for the synchronous case.

With these formulas at hand, one can easily calculate the BLP via one of
the heuristics given above. Some numerical results are shown in Figure 2.
It compares results from simulation (points connected by dotted lines) with
those obtained via heuristic A (solid gray curves) or heuristic B (solid black
curves). The mean burst size E[B] was set to 50 µs, which corresponds to circa
60 kbytes at 10 Gbps. The granularity D varied from 0 to 100 µs (in steps of 5
µs during the simulations). The number of available FDLs was set to N = 20.
The figure shows results for different input load levels ρ = λE[B].

The heuristics are a bit pessimistic, i.e., they overestimate the BLP. Heuristic
B is more accurate for low input load levels, but does not converge to the right
asymptotic value when ρeq � 1, as predicted. (Here, ρeq → ∞ as D → ∞).
For these high loads, heuristic A performs better. Compared to the method
discussed in [8], one gains somewhat in accuracy, especially for low load values
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Fig. 2. BLP for exponentially distributed burst sizes (N = 20).

or small buffer sizes. Furthermore, since for this special case, explicit formulae
were obtained, the numerical complexity involved in our results is close to
zero.

There is an optimal granularity D (in terms of BLP) , shifting to lower values
for higher input load levels, as was the case in synchronous systems, see [10].
As we will illustrate next, the optimal value also depends on the burst size
distribution.

5.2 Deterministic burst sizes

In this case, all burst are of length B. In order to proceed, we need to express B
as aD− b, where a ≥ 1 and 0 ≤ b < D. That is, a = dB/De and b = aD − B.
With this convention, the limit procedure yields

F ∗(s) =
−
(

a
(

1 − e−λD
)

− e−λ(D−b)
) (

1 − e−sD
)

e−saD e−λ(D−b) (1 − e−sD) + (e−λD − e−sD) (1 − e−saD)

The equivalent load is now given by

ρeq = 1 + λD

(

a −
e−λ(D−b)

1 − e−λD

)

and reaches 100% when

a =
e−λ(D−b)

1 − e−λD
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Fig. 3. BLP for deterministic burst sizes (N = 20).

again in agreement with what one would obtain by taking the appropriate
limit of the condition given in [13] for this specific case.

The dominant pole γ = e−s0D now has to be determined as the solution of

γa e−λ(D−b)(1 − γ) + (e−λD −γ)(1 − γa) = 0

For ρeq < 100% it is the solution in (1,∞), for ρeq > 100% it is the solution
in (0, 1).

Finally, the constant needed in the approximation of Pr[H∞ > ND] is given
by

cst =
−
(

a
(

1 − e−λD
)

− e−λ(D−b)
)

aγa(γ − e−λD) − γ(1 − γa) − γa(γ + γa − a) e−λ(D−b)

Some results for this case are given in Figure 3, which shows similar curves as
in Figure 2. Again, the (mean) burst size was set to 50 µs, the granularity D
varied from 0 to 100 µs, and the number of available FDLs was set to N = 20.
The shape of the curves is substantially different from the ones in Figure 2,
and the BLP can be more than an order of magnitude smaller. Again, heuristic
B is more accurate for lower values of the BLP, but does not converge to the
correct limit for ρeq � 1. There are now several “local optima”, when B is a
multiple of D, i.e., for b = 0. The global optimum value of D is again function
of the load, but not in a continuous fashion, as was the case for exponentially
distributed burst sizes.
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5.3 Mixtures of deterministic burst sizes

It is rather straightforward to extend the above results to mixtures of e.g.
deterministic burst sizes. Burst lengths then take on a limited number of
values Bi (i = 1, . . . , R) with probabilities αi (

∑

αi = 1). We again express
each Bi as aiD − bi as above. The limit procedure results in

F ∗(s) = −

(

R
∑

i=1

αi

{(

ai

(

1 − e−λD
)

− e−λ(D−bi)
) (

1 − e−sD
)}

)

·

(

R
∑

i=1

αi

{

e−saiD e−λ(D−bi)
(

1 − e−sD
)

+
(

e−λD − e−sD
) (

1 − e−saiD
)}

)−1

and

ρeq = 1 + λD

(

R
∑

i=1

αi

{

ai −
e−λ(D−bi)

1 − e−λD

})

The dominant pole γ = e−s0D has to be determined from

R
∑

i=1

αi

{

γai e−λ(D−bi)(1 − γ) + (e−λD −γ)(1 − γai)
}

= 0

The constant needed in the approximation of Pr[H∞ > ND] is given by

cst =
−
∑R

i=1 αi

{

ai

(

1 − e−λD
)

− e−λ(D−bi)
}

∑R
i=1 αi {aiγai(γ − e−λD) − γ(1 − γai) − γai(γ + γai − ai) e−λ(D−bi)}

Results for R = 2 are shown in Figure 4. Burst sizes were B1 = 45 µs and
B2 = 65 µs with probability α1 = 0.75 and α2 = 0.25 respectively, the average
burst size being 50 µs again. The shape of the curves shows clear similarities
with that of the ones in Figure 3, and the “local optima” induced by the
predominant 45 µs burst sizes can easily be distinguished. However, the optima
are not as pronounced as in the (single-valued) deterministic case, due to the
presence of the 65 µs burst sizes. The “local optima” induced by the latter can
be observed as “knees” in the curves. The example learns that the presence
of different burst sizes alleviates the tight connection between average burst
size and optimal granularity.

To conclude this section, Figure 5 shows results for varying buffer depths N .
The overall shape of the curves does not change drastically with N , but the
global optimum granularity can. For N = 5 and N = 10, the optimum is at
D = 45 µs, while for N = 20, it is at D = 22.5 µs. In the latter case especially,
the optimum is rather broad, so that a nearly constant BLP is observed for
all values of D between 22.5 µs and 45 µs.
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Fig. 4. BLP for a mixture of deterministic burst sizes (N = 20).
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Fig. 5. BLP for a mixture of deterministic burst sizes (ρ = 60%).

6 Conclusions

Expressions for various performance measures for asynchronous optical buffers
were derived by taking the limit of corresponding results for synchronous ones
obtained elsewhere. An analysis directly in continuous time seems feasible too,
but appears to be slightly more complex than the limit procedure (at least
to the authors’ opinion). Heuristics were developed to determine the BLP in
finite systems, based on (approximate inversion of) the LST of the scheduling
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horizon in an infinite system. Three special cases of burst size distributions
were used to establish the accuracy of these heuristics. For these special cases,
the resulting formulas turned out to be relatively simple, i.e., not involving
infinite sums, allowing for easy numerical evaluation.

The numerical examples given revealed that the BLP is rather sensitive to the
choice of the granularity D, as was the case for synchronous optical buffers.
The optimal granularity depends not only on the burst size distribution, but
also on the offered load and the buffer depth.

In future work, the authors hope to report on results for more realistic models
of optical buffers and the traffic that is offered to them. Possible extensions
could consider correlated traffic, systems with multiple wavelengths at their
output or systems using void-filling policies, and non-degenerate FDL struc-
tures, where the realizable delays are not necessarily a multiple of some gran-
ularity D. For some of these extensions, exact or approximate analytic results
seem within reach, while for others an analytic approach might turn out to be
unfeasible.
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