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Abstract

We construct the multiplicatively renormalizable effective potential for the mass dimen-
sion two local composite operator Aa

µ
Aµa in linear covariant gauges. We show that the

formation of
〈
Aa

µ
Aµa

〉
is energetically favoured and that the gluons acquire a dynamical

mass due to this gluon condensate. We also discuss the gauge parameter independence of
the resultant vacuum energy.
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1 Introduction.

In a previous paper [1], we took the first step towards constructing a renormalizable effective
potential for the local composite operator (LCO) A2

µ ≡ Aa
µAµa in linear covariant gauges. It

was shown within the algebraic renormalization formalism [2, 3] that A2
µ is multiplicatively

renormalizable to all orders in perturbation theory. At the same time, the anomalous dimension
of A2

µ was explicitly computed to 2-loops in the MS scheme as a function of the gauge fixing
parameter, α, where α = 0 corresponds to the Landau gauge. The computation exploited the
fact that in linear covariant gauges the operator does not mix, for example, with ghost operators
of dimension two with the same quantum numbers.

The operator A2
µ has recently received widespread interest in Yang-Mills theory in the Landau

gauge. Its relevance has been advocated both from a theoretical point of view as well as from
lattice simulations [4, 5, 6, 7, 8]. Analytic results in favour of a non-zero value for the condensate〈
A2

µ

〉
in the Landau gauge have been obtained recently, [9, 10]. Further, the inclusion of quarks

has been considered in [11]. Motivated by the result of [12] it has been shown in [13] that A2
µ is

multiplicatively renormalizable to all orders in the Landau gauge, but its anomalous dimension
is given by a combination of the gauge beta function, β(a), and the anomalous dimension, γA(a),
of the gluon field, according to the relation [12, 13]

γA2(a) = −

(
β(a)

a
+ γA(a)

)
, a =

g2

16π2
. (1)

An important consequence of the formation of the
〈
A2

µ

〉
condensate in the Landau gauge is

the dynamical generation of a gluon mass mgluon ≈ 500MeV [9]. Lattice simulations of the
SU(2) gluon propagator in the Landau gauge report mgluon ≈ 600MeV, [14]. Gluon masses
have also been extracted from lattice methods in the Laplacian [15, 16] and Maximal Abelian
gauges [17, 18]. Earlier the pairing of gluons was discussed in connection with mass generation
as a result of the instability of the perturbative Yang-Mills vacuum [19, 20, 21, 22, 23]. A
dynamical gluon mass might also be important, for example, in connection with the glueball
spectra, [24, 25]. A dimension two gluon condensate

〈
A2

i

〉
was already introduced in [25], where

the Coulomb gauge was considered. Furthermore, a dynamical gluon mass is part of a certain
criterion for confinement introduced by Kugo and Ojima, [26, 27]. For a recent review see [28].

It is no coincidence that the Landau gauge is employed in the search for a gluon condensate of
mass dimension two. As is well known, there does not exist a local, gauge-invariant operator
of mass dimension two in Yang-Mills theories. However, a non-local gauge invariant dimen-
sion two operator can be constructed by minimizing A2

µ along each gauge orbit [29, 30, 31],

A2
min ≡ (V T )−1 minU

∫
d4x

(
AU

µ

)2

where V T is the space time volume and U is a generic

SU(N) transformation. This operator A2
min is related to the so-called fundamental modular

region (FMR), which is the set of absolute minima of (V T )−1
∫

d4x
(
AU

µ

)2

. In the Landau

gauge, ∂µAaµ = 0, so that A2
min and A2

µ coincide within the FMR. As such, a gauge invariant

meaning can indeed be attached to
〈
A2

µ

〉
in the Landau gauge, as it was also expressed in [9].

Another interesting property of the Landau gauge is that the operator A2
µ is BRST invariant

on-shell. If one considered alternative gauges to the Landau gauge, one could search for a class
of gauges in which the operator A2

µ can be generalized to a mass dimension two operator while
maintaining the on-shell BRST invariance. Doing so, one should consider a class of non-linear
covariant gauges, which are the so-called Curci-Ferrari gauges [32, 33], where A2

µ is generalized

to the mixed gluon-ghost operator
(

1
2
Aa

µAµa + αcaca
)

[34, 35]. The latter operator is indeed
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BRST invariant on-shell [34, 35], and has been proven to be multiplicatively renormalizable
to all orders [36], and to give rise to a dynamical gluon mass in the Curci-Ferrari gauge [37].

Moreover, in [38], the physical meaning of
(

1
2
Aa

µAµa + αcaca
)

was discussed, based on on-shell

BRST invariance.

In the Maximal Abelian gauge, which is a renormalizable gauge in the continuum [39, 40],

one should consider the operator
(

1
2
Aβ

µAµβ + ξcβcβ
)

where the group index β labels the off-

diagonal generators of SU(N) with β = 1, . . . ,N(N − 1) and ξ is the gauge parameter of the
Maximal Abelian gauge. This operator also enjoys the property of being both BRST invariant
on-shell [34, 35] and multiplicatively renormalizable to all orders [36, 41]. Although the effective

potential for the condensate
〈

1
2
Aβ

µAµβ + ξcβcβ
〉

has not yet been obtained, we expect it to have

a non-vanishing vacuum expectation value, which would result in a dynamical mass for the off-
diagonal gluons. This is based on the close similarity between the Maximal Abelian gauge and
the Curci-Ferrari gauge and hence the results of [37].

More commonly, the Landau gauge is a special case of the well known linear covariant gauges.
Although the operator A2

µ is not even BRST invariant on-shell in these gauges, it is still renor-
malizable to any order in perturbation theory [1]. This is due to the fact that, thanks to the
additional shift symmetry, c → c + const, of the antighost in the linear covariant gauges, the
composite operator A2

µ does not mix into the dimension two ghost operator cc. In this article,

we will construct the effective potential for the dimension two condensate
〈
A2

µ

〉
in linear gauges

and show that a non-vanishing value of
〈
A2

µ

〉
is energetically favourable, resulting in dynamical

gluon mass generation.

The paper is organized as follows. In section 2, we briefly review the local composite operators
formalism and explicitly calculate the 1-loop effective potential. In section 3, we discuss the
gauge parameter independence of the vacuum energy which requires an extension of the LCO
formalism. The behaviour of the gluon propagator is discussed briefly in section 4 whilst we
provide concluding comments in section 5.

2 LCO formalism and effective potential for A2
µ.

2.1 Construction of a renormalizable effective action for A2
µ.

We begin with the Yang-Mills action in linear covariant gauges

S = SY M + SGF+FP (2)

= −
1

4

∫
d4xF a

µνF aµν +

∫
d4x

(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb
)

,

where
Dab

µ ≡ ∂µδab − gfabcAc
µ , (3)

is the covariant derivate in the adjoint representation. In order to study the local composite
operator A2

µ, we introduce it into the action by means of a BRST doublet [2] of external sources
(J, λ), namely

SJ = s

∫
d4x

(
1

2
λA2

µ +
ζ

2
λJ

)
=

∫
d4x

(
1

2
JA2

µ + λAa
µ∂µca +

ζ

2
J2

)
, (4)

where s denotes the BRST nilpotent operator acting as

sAa
µ = −Dab

µ cb ,
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sca =
1

2
gfabccbcc ,

sca = ba ,

sba = 0 ,

sλ = J ,

sJ = 0 . (5)

According to the local composite operator technique [9, 42, 43, 44], the dimensionless parameter

ζ is needed to account for the divergences present in the vacuum Green function
〈
A2

µ(x)A2
ν(y)

〉
,

which turn out to be proportional to J2. As is apparent from the expressions (2) and (4), the
action (SY M + SGF+FP + SJ) is BRST invariant

s (SY M + SGF+FP + SJ) = 0 . (6)

As was shown in [1], the action (SY M + SGF+FP + SJ) enjoys the property of being multiplica-
tively renormalizable to all orders of perturbation theory.

To obtain the effective potential, we set the source λ to zero and consider the renormalized
generating functional

exp−iW(J) =

∫
[Dϕ] exp iS(J) , (7)

with

S(J) = SY M + SGF+FP + SCT +

∫
d4x

(
Z2J

A2
µ

2
+ (ζ + δζ)

J2

2

)
, (8)

where ϕ denotes the relevant fields and SCT is the usual counterterm contribution. Also, δζ

is the counterterm accounting for the divergences proportional to J2. The bare quantities are
given by [1]

Aµa
o = Z

1/2

A Aµa , ca
o = Z1/2

c ca , ca
o = Z1/2

c ca , ba
o = Z

−1/2

A ba ,

go = Zgg , αo = ZAα , ζo = Zζζ , Jo = ZJJ ,

(9)

where Zζζ = ζ + δζ and ZJ = Z2

ZA
. The functional W(J) obeys the renormalization group

equation (RGE)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ
+ η(g2, ζ)

∂

∂ζ

)
W(J) = 0 , (10)

where

β(g2) = µ
∂

∂µ
g2 ,

γα(g2) = µ
∂

∂µ
ln α = µ

∂

∂µ
ln Z−1

A = −2γA(g2) ,

γA2(g2) = µ
∂

∂µ
ln ZJ ,

η(g2, ζ) = µ
∂

∂µ
ζ . (11)

From the bare Lagrangian, we infer that

ζoJ
2
o = µ−ε(ζ + δζ)J2 , (12)
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where we will use dimensional regularization throughout with the convention that d = 4 − ε.
Hence

µ
∂

∂µ
ζ = η(g2, ζ) = 2γA2(g2)ζ + δ(g2, α) , (13)

with

δ(g2, α) =

(
ε + 2γA2(g2, α) − β(g2)

∂

∂g2
− αγα(g2, α)

∂

∂α

)
δζ . (14)

Now, we are faced with the problem of the hitherto arbitrary parameter ζ. As explained in
[9, 42, 43, 44], setting ζ = 0 would give rise to an inhomogeneous RGE for W(J)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ

)
W(J) = δ(g2, α)

∫
d4x

J2

2
, (15)

and a non-linear RGE for the effective action Γ for the composite operator A2
µ. This problem

can be overcome by making ζ a function of g2 and α so that, if g2 runs according to β(g2) and α

according to γα(g2), ζ(g2, α) will run according to (13). This is accomplished by setting ζ equal
to the solution of the differential equation

(
β(g2)

∂

∂g2
+ αγα(g2, α)

∂

∂α

)
ζ(g2, α) = 2γA2(g2)ζ(g2, α) + δ(g2, α) . (16)

Since ζ(g2, α) now automatically runs according to its RGE, W(J) obeys the homogeneous
renormalization group equation

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ

)
W(J) = 0 . (17)

The final step in the formal construction of the effective potential for
〈
A2

µ

〉
is the removal of the

J2 terms from the Lagrangian by means of a renormalized Hubbard-Stratonovich transformation.
By this procedure, the energy interpretation of the effective action is made explicit again and
the conventional 1PI machinery applies. We insert unity written as

1 =
1

N

∫
[Dσ] exp


i

∫
d4x


− 1

2Zζζ

(
σ

g
− Z2

A2
µ

2
− ZζζJ

)2



 , (18)

with N the appropriate normalization factor, in (7) to arrive at the Lagrangian

L(Aµ, σ) = −
1

4
F 2

µν + LGF+FP + LCT −
σ2

2g2Zζζ
+

1

2

Z2

g2Zζζ
gσA2

µ −
1

8

Z2
2

Zζζ

(
A2

µ

)2

, (19)

while

exp−iW(J) =

∫
[Dϕ] exp iSσ(J) , (20)

Sσ(J) =

∫
d4x

(
L(Aµ, σ) + J

σ

g

)
. (21)

Now, the source J appears as a linear source term for σ
g . From (7) and (20), one has the following

identification
δW(J)

δJ

∣∣∣∣
J=0

= −

〈
A2

µ

2

〉
= −

〈
σ

g

〉
, (22)

where we will not write the renormalization factors from now on. This equation states that the

gauge condensate
〈
A2

µ

〉
is related to the expectation value of the field σ, evaluated with the new

action,
∫

d4xL(Aµ, σ), of (19).

Although we have not considered the contribution from (massless) quark fields in the previous
analysis, it can be checked that the results remain unchanged if matter fields are included.
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2.2 Explicit calculation of the 1-loop effective potential.

Firstly, we will determine the renormalization group function δ(g2, α) as defined in (14). All
the following results will be within the MS scheme. The value for β(g2) can be found in the
literature. In d dimensions, one has

β(g2) = −εg2 − 2
(
β0g

4 + β1g
6 + O(g8)

)
,

β0 =
1

16π2

(
11

3
CA −

4

3
TF Nf

)
,

β1 =
1

(16π2)2

(
34

3
C2

A − 4CF TF Nf −
20

3
CATF Nf

)
. (23)

where the Casimirs of the colour group are defined by Tr(T aT b) = TF δab, T aT a = CF I,
facdf bcd = CAδab and Nf is the number of quark flavours. For γα(g2), we use the relation
γα(g2) = −2γA(g2). The anomalous dimension γA(g2) of the gluon field in linear covariant
gauges was calculated at three loops in MS in [45]. Adapting that result to our convention, the
anomalous dimension of the gauge parameter is

γα(g2) = a0g
2 + a1g

4 + O(g6) ,

a0 =
1

16π2

(
CA

(
13

3
− α

)
−

8

3
TF Nf

)
,

a1 =
1

(16π2)2

(
C2

A

(
59

4
−

11

4
α −

1

2
α2

)
− 10CANfTF − 8CF NfTF

)
. (24)

The anomalous dimension, γA2(g2), of the composite operator A2
µ was calculated in [1] and reads

γA2(g2) = γ0g
2 + γ1g

4 + O(g6) ,

γ0 =
1

6

1

16π2
[(35 + 3α) CA − 16TF Nf ] ,

γ1 =
1

24

1

(16π2)2

[(
449 + 33α + 18α2

)
C2

A − 280CATF Nf − 192CF TF Nf

]
. (25)

In order to determine δ(g2, α), we still require the counterterm δζ. In principle, this can be
directly calculated from the divergences in W(J) when the propagator for a gluon with mass
J is used. However, a less cumbersome way to compute δζ was described in [11]. It is based
on the fact that the divergences arise in the O(J2) term and therefore that part of the Green’s
function which contains these divergences is equivalent to the Green’s function with a double
insertion of the JA2

µ operator. More specifically, one has two external J insertions with a
non-zero momentum flowing into one insertion where the only internal couplings are those of
the usual QCD action. Moreover, one does not require massive propagators but instead can
use massless fields which simplifies the calculation. Therefore one is reduced to computing a
massless two-point function for which the Mincer algorithm, [46], was designed. We used the
version written in Form, [47, 48], where the Feynman diagrams are generated by Qgraf, [49],
to determine the divergence structure to three loops. Although we only require the result to two
loops the extra loop evaluation in fact acts as a non-trivial check on the two loop result. This is
because the emergence of the correct double and triple poles in ε at three loops, in a way which
is consistent with the renormalization group, verifies that the single and double poles of the two
loop expression for δζ are correct. We found

δζ =
2

ε

NA

16π2

(
−

3

2
−

α2

2

)
+

NAg2

(16π2)2

[
4

ε2

(
CA

(
35

8
+

3

8
α +

3

8
α2 +

3

8
α3

)
− 2TF Nf

)

+
2

ε

(
CA

(
−

139

12
−

5

8
α −

1

2
α2 −

1

8
α3

)
+

8

3
TF Nf

)]
+ O(g4) , (26)
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where NA is the dimension of the adjoint representation of the colour group. Assemblying our
results leads to

δ(g2, α) = δ0 + δ1g
2 + O(g4) ,

δ0 =
NA

16π2

(
−3 − α2

)
,

δ1 =
1

6

NA

(16π2)2

(
CA

(
−278 − 15α − 12α2 − 3α3

)
+ 64TF Nf

)
. (27)

As a check we see that δ(g2, α) contains no poles for ε → 0. Further, the expressions (27) lead
to the same results which were obtained earlier in the case of the Landau gauge (α = 0), as can
be inferred from [9] without quarks and [11] with quarks.

From the renormalization group functions (23), (24), (25) and (27), it is easy to see that the
equation (16) can be solved for by expanding ζ(g2, α) in a Laurent series as

ζ(g2, α) =
ζ0(α)

g2
+ ζ1(α) + O(g2) . (28)

Substituting this expression in equation (16), we obtain

2β0ζ0 + αa0

∂ζ0

∂α
= 2γ0ζ0 + δ0 , (29)

2β1ζ0 + αa0

∂ζ1

∂α
+ αa1

∂ζ0

∂α
= 2γ0ζ1 + 2γ1ζ0 + δ1 . (30)

Thus (29) gives

ζ0(α) =
2αC0 + 3

(
78 − 26α2 + 3α3 + 18α ln |α|

)
CANA + 48

(
α2 − 3

)
NANfTF

2 ((3α − 13)CA + 8NfTF )2
, (31)

with C0 a constant of integration. As a consequence of the already rather complicated structure
of ζ0, we will determine ζ1 without quarks present corresponding to Nf = 0 since the expression
for ζ1 with Nf 6= 0 is several pages long. Using Mathematica, we find

ζ1(α) = −
1

1220736π2(13 − 3α)4

(
−1220736π2α35/13 |−13 + 3α|4/13 C1

+ 12716C0α
2

(
−442 − 132α + 54α2 − 1287

(
1 −

3α

13

)4/13

α2F1

[
4

13
,

4

13
;
17

13
;
3α

13

])
CA

+

(
1697175909

(
1 −

3α

13

)4/13

α3
3F2

[
4

13
,

4

13
,

4

13
;
17

13
,
17

13
;
3α

13

]

+ 3335904

(
1 −

3α

13

)4/13

α4
3F2

[
17

13
,
17

13
,
17

13
;
30

13
,
30

13
;
3α

13

]

+ 17
(
−396870474 + 368850105α − 48761440α2 + 2066214α3 + 1928718α4

− 1004751α5 + 60588α6 − 12894024

(
1 −

3α

13

)4/13

α2
2F1

[
−

9

13
,−

9

13
;

4

13
;
3α

13

]

− 833976

(
1 −

3α

13

)4/13

α4
2F1

[
4

13
,
17

13
;
30

13
;
3α

13

]
− 8926632α2 ln |α|

+ 2059992α3 ln |α| + 833976

(
1 −

3α

13

)4/13

α4
2F1

[
4

13
,
17

13
;
30

13
;
3α

13

]
ln |α|

− 43758α3 (−1961 + 702 ln |α|)
))

NA

)
, (32)
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where C1 is a constant of integration and the (generalized) hypergeometric function is

pFq [a1, · · · , ap; b1, · · · , bq; z] =
+∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
, (33)

where
(a)k = a(a + 1) · · · (a + k − 1) , (34)

is the Pochhammer symbol. We note that ζ0(α = 0) = 9NA

13CA
and ζ1(α = 0) = 161

832

NA

π2 , which
recovers the Landau gauge results of [9, 11]. Further, the constants of integration C0 and C1 do
no enter the Landau gauge results.

From expression (19), we deduce that the tree level gluon mass is provided by

m2 =
gσ

ζ0

, (35)

while the 1-loop effective potential becomes

V1(σ) =
σ2

2ζ0

(
1 −

ζ1

ζ0

g2

)
+

1

2
ln det

[
δab
(

δµν(∂2 + m2) −

(
1 −

1

α

)
∂µ∂ν

)]

=
σ2

2ζ0

(
1 −

ζ1

ζ0

g2

)
+

NA

2

[
(d − 1)tr ln

(
∂2 + m2

)
+ tr ln

(
∂2 + αm2

)]
. (36)

In dimensional regularization and using the MS scheme, one finds

V1(σ) =
σ2

2ζ0

(
1 −

ζ1

ζ0

g2

)
+

3NA

64π2

g2σ2

ζ2
0

(
−

5

6
+ ln

gσ

ζ0µ
2

)

+
NA

64π2

α2g2σ2

ζ2
0

(
−

3

2
+ ln

αgσ

ζ0µ
2

)
, (37)

where µ is the renormalization scale. It can be easily checked that the infinities in the effective
potential cancel when the counterterms are included.

Next, we look for a non-trivial minimum of the effective potential, which amounts to solving the
gap equation dV

dσ = 0. To avoid possibly large logarithms, we will set µ2 = m2 = gσ
ζ0

in the gap
equation,

dV

dσ

∣∣∣∣
µ2=

gσ
ζ0

=
σ

ζ0

(
1 −

ζ1

ζ0

g2

)
+

3NA

32π2

g2σ

ζ2
0

(
−

5

6

)
+

3NA

64π2

g2σ

ζ2
0

+
NA

32π2

α2g2σ

ζ2
0

(
−

3

2
+ ln α

)
+

NA

64π2

α2g2σ

ζ2
0

= 0, (38)

and use the RGE to sum leading logarithms. Defining y ≡ g2N
16π2 , we find as a solution of (38)

σ = 0 or y =
CAζ0

16π2ζ1 + NA

2
(1 + α2 − α2 ln |α|)

. (39)

The first solution corresponds to the trivial vacuum, while the second one leads to

m = ΛMSe
3

22y , (40)

where the 1-loop formula for the coupling constant

g2(µ) =
1

β0 ln µ2

Λ2

MS

, (41)
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was used. The vacuum energy is given by

Evac = −
1

2

NA

64π2

(
3 + α2

)
m4 . (42)

We now consider the numerical evaluation of our results and restrict ourselves to the colour
group SU(3). For SU(N) one has TF = 1

2
, CF = N2−1

2N , CA = N and NA = N2 − 1. For
completeness, we quote the results for the Landau gauge α = 0.

yLandau =
36

187
≈ 0.193 , (43)

mLandau = e
17
24 ΛMS ≈ 2.031ΛMS , (44)

ELandau

vac = −
3

16π2
e

17
6 Λ4

MS
≈ −0.323Λ4

MS
. (45)

The results for general α are displayed in the Figures 1-3. For the moment, we have set
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Figure 1: y as a function of α.

-0.7 -0.6-0.5-0.4-0.3-0.2-0.1 0
a

2

2.2

2.4

2.6

2.8

3

3.2

3.4

m

-0.2 -0.1 0 0.1 0.2
a

2.02

2.04

2.06

2.08

m

0 0.2 0.4 0.6 0.8 1
a

1.4

1.6

1.8

2

m
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Figure 3: Evac as a function of α.

C0 = C1 = 0. Evidently, y should certainly be positive and also relatively small to have a
sensible expansion. Hence, we conclude from Figure 1 that we should restrict the range of
values for α further. We also see that m becomes rapidly larger and Evac becomes rapidly
more and more negative as α gets more negative. A more urgent problem is the fact that the
vacuum energy Evac depends on the gauge parameter α. Since Evac is a physical quantity, it
should be independent on the gauge parameter α. In the next section, we shall give a detailed

9



account of this gauge parameter dependence. We shall see that it is related to the impossibility
of evaluating the effective potential to arbitrary high loop orders. Further, we shall provide a
simple way to circumvent this problem and obtain a vacuum energy which is independent of α.

3 Investigation of the gauge parameter dependence.

One possible explanation as to why Evac depends on α could reside in the values of the constants
of integration C0 and C1 we have chosen. With another choice for these constants, it could be
that Evac does not depend in α, or equivalently Evac = ELandau

vac
. This can be investigated by

considering the expression (42) for Evac(α,C0, C1). In order to have the same Evac for each value
of α, we should solve the following equation

dEvac

dα
= 0 ⇔ 2αm4 + 4(α2 + 3)m3 dm

dα
= 0

⇔ α −
3

11y2
(3 + α2)

(
∂y

∂α
+

∂y

∂ζ0

∂ζ0

∂α
+

∂y

∂ζ1

∂ζ1

∂α

)
= 0 , (46)

in terms of C0 and C1. However, the solutions of this equation depend on α, and this is not
allowed since C0 and C1 should be α independent constants. This means that the α-dependence
of Evac cannot be eliminated by a suitable choice of C0 and C1.

3.1 BRST symmetry and gauge parameter independence.

Let us now turn to a more general analysis. Consider again the generating functional (20). We
have the following identification, ignoring the overall normalization factors

exp−iW(J) =

∫
[Dϕ] exp iSσ(J)

=
1

N

∫
[DϕDσ] exp i


S(J) +

∫
d4x


− 1

2ζ

(
σ

g
−

A2
µ

2
− ζJ

)2



 , (47)

where S(J) and Sσ(J) are given respectively by (8), and (21). Since

d

dα

1

N

∫
[Dσ] exp


i

∫
d4x


− 1

2ζ

(
σ

g
−

A2
µ

2
− ζJ

)2



 =

d

dα
1 = 0 , (48)

we find

−
dW(J)

dα
=

〈
s

∫
d4x

(
cb

2

)〉

J=0

+ terms proportional to J , (49)

which follows by noticing that

dS(J)

dα
=

∫
d4x

(
baba

2
+

∂ζ

∂α

J2

2

)

= s

∫
d4x

(
cb

2

)
+ terms proportional to J . (50)

We see that the first term in the right hand side of (50) is an exact BRST variation. As such, its
vacuum expectation value vanishes. This is the usual argument to prove the gauge parameter
independence in the BRST framework [2]. Of course, this is based on the assumption that the
BRST symmetry is not broken. Notice therefore that there does not exist an operator G with

10



A2
µ = sG, so that a non-vanishing vacuum expectation value for the condensate

〈
A2

µ

〉
does not

break the BRST invariance. Indeed, from

sσ =
g

2
sA2

µ = −gAa
µ∂µca , (51)

one can easily check that

s

∫
d4xL(Aµ, σ) = 0 , (52)

so that we have a BRST invariant σ-action.

The rest of the argument is based on the fact that J = 0 when the vacuum is considered, so
that we are left with only the BRST exact term in (49). More formally, the effective action

Γ(σ) ≡ Γ
(

σ
g

)
is related to W(J) through a Legendre transformation

Γ

(
σ

g

)
= −W(J) −

∫
d4yJ(y)

σ(y)

g
. (53)

The effective potential V (σ) is then defined as

− V (σ)

∫
d4x = Γ

(
σ

g

)
. (54)

Let σmin be the solution of
dV (σ)

dσ
= 0 . (55)

Since
δ

δ
(

σ
g

)Γ = −J , (56)

one finds
σ = σmin ⇒ J = 0 , (57)

and invoking (57), from (53) and (54) we derive

d

dα
V (σ)

∣∣∣∣
σ=σmin

∫
d4x =

d

dα
W(J)

∣∣∣∣
J=0

. (58)

Finally, combining (49) and (58)

d

dα
V (σ)

∣∣∣∣
σ=σmin

= 0 . (59)

From this, we conclude that the vacuum energy Evac should be independent of the gauge pa-
rameter α.

Apparently, our explicit result (42) for Evac is not in agreement with the above proof that Evac

is the same for each α. If we examine the proof in more detail we notice that a key argument is
that J becomes zero at the end of the calculation. In practice, this is achieved by solving the
gap equation. Now, in a power series expansion in the coupling constant, the derivative of the
effective potential with respect to σ is something of the form

(
v0 + v1g

2 + 0(g4)
)

σ , (60)

where we assume that we work up to order g2 and that we have chosen µ so that the logarithms
vanish. Then, the gap equation corresponding to (60) reads

v0 + v1g
2 + O(g4) = 0 . (61)
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Due to (54) and (56), one also has

J = g
(
v0 + v1g

2 + O(g4)
)

σ . (62)

This means that, if we solve the gap equation (61) up to certain order, we have

J = g
(
0 + O(g4)

)
σ . (63)

We also have

∂ζ

∂α
=

∂ζ0

∂α

1

g2
+

∂ζ1

∂α
+ O(g4) . (64)

So, working to the order we are considering

∂ζ

∂α
J2 =

(
∂ζ0

∂α
v2
0 +

(
∂ζ0

∂α
2v0v1 +

∂ζ1

∂α
v2
0

)
g2 + O(g4)

)
σ2 . (65)

From the square of the gap equation (61),

v2
0 + 2v1v0g

2 + O(g4) = 0 , (66)

it follows that
∂ζ

∂α
J2 =

(
∂ζ1

∂α
v2
0g

2 + O(g4)

)
σ2 . (67)

We see that, if one consistently works to the order we are considering, terms such as ∂ζ
∂αJ2 do

not equal zero although J = 0 to that order. Terms like those on the right hand side of (67) are
cancelled by terms which are formally of higher order. This has its consequences for the terms
proportional to J in (49). If one were able to work to infinite order, the problem would not
arise. However, we do not have this ability, and we are faced with a gauge parameter dependence
slipping into Evac.

3.2 Circumventing the gauge parameter dependence.

We could resolve this issue by saying that the gauge parameter dependence of the vacuum energy
should become less and less severe as we go to higher orders, and that eventually it will drop out
if we go to infinite order. However, this is not very satisfactory, especially since we can surely
never calculate the potential up to infinite order. Also as is clear from the quite complicated
expression for ζ1(α), which will enter the differential equation for ζ2(α), a 2-loop evaluation of
the effective potential is already out of the question.

Therefore, we could try to modify the LCO formalism in order to circumvent the gauge parameter
dependence of Evac. Therefore, we consider the following action

S̃(J̃) = SY M + SGF+FP +

∫
d4x

[
J̃F(α)

A2
µ

2
+

ζ

2
F2(α)J̃2

]
, (68)

instead of (8) where, for the moment, F(α) is an arbitrary function of α of the form

F(α) = 1 + f0(α)g2 + f1(α)g4 + O(g6) , (69)

and J̃ is now the source. The generating functional becomes

exp−iW̃(J̃) =

∫
[Dφ] exp iS̃(J̃) . (70)
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Taking the functional derivative of W̃(J̃) with respect to J̃ , we obtain

δW̃(J̃)

δJ̃

∣∣∣∣∣
J̃=0

= −F(α)

〈
A2

µ

2

〉
. (71)

Again, we insert unity via

1 =
1

N

∫
[Dσ̃] exp


i

∫
d4x


− 1

2ζ

(
σ̃

gF(α)
−

A2
µ

2
− ζJ̃F(α)

)2



 , (72)

to arrive at the following renormalized Lagrangian

L̃(Aµ, σ̃) = −
1

4
F 2

µν + LGF+FP −
σ̃2

2g2F2(α)Zζζ
+

1

2

Z2

g2F(α)Zζζ
gσ̃A2

µ −
1

8

Z2
2

Zζζ

(
A2

µ

)2

+ J̃
σ̃

g
.(73)

From the generating functional

exp−iW̃(J̃) =

∫
[Dφ] exp i

∫
d4xL̃(Aµ, σ̃) , (74)

it follows that
δW̃(J̃)

δJ̃

∣∣∣∣∣
J̃=0

= −

〈
σ̃

g

〉
⇒ 〈σ̃〉 = gF(α)

〈
A2

µ

2

〉
, (75)

where the anomalous dimension of σ̃ equals

γσ̃(g2) =
µ

σ̃

∂σ̃

∂µ
=

β(g2)

2g2
+ γA2(g2) + µ

∂ lnF(α)

∂µ
. (76)

The lowest order gluon mass is now provided by

m2 =
gσ̃

ζ0

, (77)

and the vacuum configurations are now determined by solving

dṼ (σ̃)

dσ̃
= 0 . (78)

with Ṽ (σ̃) the effective potential. In the MS scheme, the 1-loop effective potential reads

Ṽ1(σ̃) =
σ̃2

2ζ0

(
1 −

(
2f0 +

ζ1

ζ0

)
g2 +

2

ε

NA

16π2

g2

ζ0

(
3

2
+

α2

2

))

+
3 (NA)

64π2

g2σ̃2

ζ2
0

(
−

2

ε
−

5

6
+ ln

gσ̃

ζ0µ
2

)
+

NA

64π2

α2g2σ̃2

ζ2
0

(
−

2

ε
−

3

2
+ ln

αgσ̃

ζ0µ
2

)

=
σ̃2

2ζ0

(
1 −

(
2f0 +

ζ1

ζ0

)
g2

)
+

3NA

64π2

g2σ̃2

ζ2
0

(
−

5

6
+ ln

gσ̃

ζ0µ
2

)

+
NA

64π2

α2g2σ̃2

ζ2
0

(
−

3

2
+ ln

αgσ̃

ζ0µ
2

)
. (79)

We included the counterterm contribution here to illustrate explicitly that Ṽ1(σ̃) is finite. With
(76), it can also be checked that

µ
d

dµ
Ṽ1(σ̃) = 0 + O(g4) . (80)
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Now, we can continue with the determination of the 1-loop vacuum energy, which will not only
depend on α, C0 and C1, but also on f0(α). We will determine an expression for f0(α) so
that Evac(α,C0, C1, f0(α)) does not depend on α. In the meantime, we could also absorb the
constants of integration C0 and C1 in f0(α) so that Evac does not depend on them either. Based

on this, we will immediately set C0 = C1 = 0. As usual, we put µ2 = gσ̃
ζ0

in the gap equation,
which now reads

dṼ

dσ̃

∣∣∣∣∣
µ2=

gσ̃
ζ0

=
σ̃

ζ0

(
1 −

(
2f0 +

ζ1

ζ0

)
g2

)
+

3NA

32π2

g2σ̃

ζ2
0

(
−

5

6

)
+

3NA

64π2

g2σ̃

ζ2
0

+
NA

32π2

α2g2σ̃

ζ2
0

(
−

3

2
+ ln α

)
+

NA

64π2

α2g2σ̃

ζ2
0

= 0, (81)

and use the RGE to sum the leading logarithms. One finds, in addition to the trivial solution
σ̃ = 0,

y =
CAζ0

16π2 (2f0ζ0 + ζ1) + NA

2
(1 + α2 − α2 ln |α|)

, (82)

m = ΛMSe
3

22y , (83)

Evac = −
1

2

NA

64π2

(
3 + α2

)
m4 . (84)

In principle, the analytic solution for f0(α) can be obtained by solving the following differential
equation

dEvac

dα
= 0 ⇔ 2αm4 + 4(α2 + 3)m3 dm

dα
= 0

⇔ α −
3

11y2
(3 + α2)

(
∂y

∂α
+

∂y

∂ζ0

∂ζ0

∂α
+

∂y

∂ζ1

∂ζ1

∂α
+

∂y

∂f0

∂f0

∂α

)
= 0 . (85)

The quantity f0(α) constructed in this fashion will ensure Evac(α) is independent of the gauge
parameter α. However, we still have the freedom of choosing an initial condition. We will
determine f0(α) so that Evac(α) = Evac(0) ≡ ELandau

vac
. This amounts to choosing f0(α = 0) = 0.

We can justify this choice based on our remark in the introduction, which is that A2
µ coincides

with the gauge invariant quantity A2
min in the Landau gauge in the FMR. Since our calculation

is based on a perturbative expansion around Aa
µ = 0, which lies within the FMR, we stay within

the FMR [29, 30, 31].

Unfortunately, the differential equation (85) is very hard to solve analytically. We could solve
(85) and consequently y, m and Evac numerically. However, there is a more elegant way to
obtain the analytical solution for f0(α). Considering the colour group SU(3) for simplicity, then
since we know that by construction that Evac = ELandau

vac , we are able to write down the analytical
solution for m as

m =

(
3e17/6

3 + α2

)1/4

ΛMS , (86)

where use was made of (45) and (84). Putting (86) in (83), we deduce that

y =
36

66 ln 3

3+α2 + 187
. (87)

Combining (82) and (87) finally gives the analytic expression for f0(α)

f0(α) =

ζ0
12

(
66 ln 3

3+α2 + 187
)
− 4

(
1 + α2 − α2 ln |α|

)
− 16π2ζ1

32π2ζ0

. (88)
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We have displayed f0(α), y(α) and m(α) for the range of values −13

3
< α < 13

3
in Figures

4-6. As a check, we have also plotted, in Figure 7, Evac(α, f0(α)) as given in (84) to verify
that Evac(α, f0(α)) = ELandau

vac
. We observe several features. Firstly, although f0(α) has some

singularities in
]
−13

3
, 13

3

[
, the quantities y, m and Evac are completely regular functions of

α. Secondly, the expansion parameter y remains relatively small, which makes our numerical
predictions at least qualitatively trustworthy. Thirdly, we also see that the value for the tree
level mass does not change spectacularly in the considered region. In the Feynman gauge α = 1,
we have mFeynman = 1.89ΛMS.
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-75

-50

-25
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25
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f
0

Figure 4: f0 as a function of α with −13
3

< α < 13
3

.

-4 -2 0 2 4
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0.4

0.5

0.6

y

Figure 5: y as a function of α with −13
3

< α < 13
3

.

Before ending this section, there are several other points. We have determined F(α) with the
renormalization scale µ chosen in such a way that the logarithms vanish. Other choices of µ are
of course also valid. We did not explicitly write this µ dependence of F(α) in (69).

Also, the procedure we have described here applies of course at higher order. For example, at
2-loops, f1(α) will be required to remove the α dependence. If we were to work to infinite order
in g2, we could transform the action S̃(J̃) (68) exactly into the action S(J) (8) by means of the
transformation

J̃ =
J

F(α)
. (89)

The corresponding transformation for the σ and σ̃ fields reads

σ̃ = F(α)σ , (90)
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Figure 7: Evac as a function of α with −13
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.

which will transform the effective potential Ṽ∞(σ̃) exactly into V∞(σ). As such, the constructed
vacuum energy will be the same in both cases and independent of the choice of α.

4 Gluon propagator in linear covariant gauges.

In [14], the gluon propagator in the Landau was investigated, and a fit of the lattice results
gave evidence for a gluon mass. In the Landau gauge, the lattice also gives evidence for the

existence of a non-zero
〈
A2

µ

〉
condensate, based on the discrepancy in the 10 GeV region, between

the behaviour of the observed lattice gluon propagator and strong coupling constant and the
expected perturbative behaviour. The results could be matched together using an operator

product expansion analysis with a non-zero
〈
A2

µ

〉
condensate [6, 7, 8]. A combined lattice fit

resulted in
〈
A2

µ

〉
OPE

≈ (1.64GeV)2. This quantity was obtained at a scale of 10 GeV in the

MOM renormalization scheme. Later, it was argued that this
〈
A2

µ

〉
OPE

condensate could be

explained with instantons [8].

One will notice that we did not give the estimate for
〈
A2
〉

itself. From the identification (22)
and using the relation (35) and the explicit result (44), one finds

〈
A2

µ

〉
= −

187

52π2
e

17
12 Λ2

MS
≈ − (0.29GeV)2 (91)
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The extra minus sign arises because we have rotated from Minkowskian to Euclidean space time
to make possible a comparison with the lattice. We used ΛMS = 0.233GeV, which was the value
obtained in [7]. We should be careful not to misinterpret the relatively big difference between〈
A2

µ

〉
OPE

and (91). Although our result is non-perturbative in nature, it is still obtained in

perturbation theory and as such it only gives information from the high energy region (or short
range), while the OPE approach of Boucaud et al can only describe the low energy (or long

range) content of
〈
A2

µ

〉
. It was already argued in [5] that

〈
A2

µ

〉
can receive long and short

range contributions. The minus sign in front of our result has to do with the regularization and

renormalization of the quantity
〈
A2

µ

〉
. We refer to [9] for more details.

To our knowledge, there has been little attention on the lattice to the gluon propagator in a
general linear covariant gauge. Giusti et al managed to put the linear covariant gauge on the
lattice [50, 51, 52, 53]. The tree level gluon propagator of Euclidean Yang-Mills theory with a
linear covariant gauge fixing is given by

Dµν(q) =
1

q2

(
δµν − (1 − α)

qµqν

q2

)
. (92)

This can be decomposed into the transverse and longitudinal parts as

Dµν(q) =
1

q2

(
δµν −

qµqν

q2

)
DT (q) +

qµqν

q2

DL(q)

q2
, (93)

where DT (q2) is q2 times the one used in [50, 51, 52, 53]. In general, one determines DL(q) via
the projector

PL
µν(q) = qµqν . (94)

If there is a tree level gluon mass m present, as in (73), the Euclidean gluon propagator in linear
covariant gauges reads

Dµν(q) =
1

q2 + m2

(
δµν − (1 − α)

qµqν

q2 + αm2

)
, (95)

with the value of m given in (86). The longitudinal part of this propagator is

DL(q) = PL
µν(q)Dµν(q) =

1

q2 + m2

(
q2 − (1 − α)

q4

q2 + αm2

)
. (96)

DL(q) is plotted in Figure 8, again using ΛMS = 0.233GeV. Of course, we should not attach
any firm meaning to this plot, since we are only considering the tree level propagator and do
not include any renormalization effects. If we could calculate the form factors, we would also
inevitably encounter the problem of a diverging perturbation theory in the infrared region. We
cannot make any conclusion about the behaviour of the propagator in the IR from the above.
Many other (non-perturbative) effects can influence the propagators form in the IR. Nevertheless,
it might be worth noticing that the longitudinal part DL(q) is not proportional to the gauge
parameter. A similar behaviour was found by Giusti et al, see e.g. Figure 4 of [52]. This is
already different from the perturbative prediction of massless Yang-Mills theory with a linear
covariant gauge fixing [28].

5 Conclusion.

We have considered Yang-Mills theories in linear covariant gauges and constructed a renor-
malizable effective potential by means of the local composite operator formalism for A2

µ. The
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Figure 8: DL(q) as a function of q with 0 < q < 3.5GeV for α = 0 (fat), α = 1 (dashed) and
α = 4 (wide dashed).

formation of the gluon condensate of mass dimension two is favoured since it lowers the vacuum
energy. As a result, the gluons acquire a dynamical mass m. We discussed the gauge parameter
dependence of the resultant vacuum energy and observed that this is due to the fact that we
do not work up to infinite order precision, but have to truncate the perturbative expansion
at a finite order. We explained how this gauge parameter dependence can be avoided by a
modification of our method.

Although there is limited lattice data available for the general linear covariant gauges compared
with the Landau gauge, it would be interesting to calculate the form factor of the longitudinal
and transverse part of the gluon propagator to make a more detailed comparison possible with
the lattice results of [50, 51, 52, 53]. It would also be useful to have direct evidence from the

lattice community that the
〈
A2

µ

〉
condensate exists and that the gluons become massive, in

analogy with the Landau gauge. A further point worth investigating is the possible existence
of ghost condensates in the linear covariant gauges, as is the case in the Landau gauge [54, 55].
These condensates can modify the gluon propagator further.
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