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An Electromagnetic Crystal Green Function Multiple
Scattering Technique for Arbitrary Polarizations,

Lattices, and Defects
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Abstract—A generalized electromagnetic crystal (EC) Green
function (GF) multiple scattering technique (MST) that permits
the simulation of transverse electric and magnetic waves in 2-D
EC devices created by replacing crystal cylinders by noncon-
forming ones is presented. The EC may be defined on a square
or triangular lattice. Both EC and nonconforming cylinders can
be of arbitrary shape and composition. Integral equations in
terms of equivalent currents residing on circular surfaces cen-
tered about the nonconforming cylinders are constructed using
GFs innate to the background EC. Contrary to the (conven-
tional) free-space GF MST, the proposed generalized EC GF MST
yields sparse systems of equations that can be solved efficiently
by multifrontal methods. A combination of the generalized EC
GF MST with a volume integral-equation- and/or finite-element-
based scheme to calculate scattering matrices of noncircular/
inhomogeneous/plasmonic cylinders yields a very powerful tool
that permits simulating wave propagation in a very broad class of
EC devices. The generalized EC GF MST is applied to the analysis
of a wide variety of practical EC devices, including a third-order
Chebyshev bandpass filter, a pair of power dividers, two channel
drop filters, a large multiplexer–demultiplexer, a set of bended
waveguides, and waveguide filters comprising noncircular or plas-
monic cylinders.

Index Terms—Numerical analysis, periodic structures, photonic
band gap waveguides, photonic crystals.

I. INTRODUCTION

IN RECENT years, many computational schemes for sim-
ulating wave propagation in complex 2-D electromagnetic

crystal (EC) devices have been proposed (see [1] and ref-
erences therein). The EC Green function multiple scattering
technique (EC GF MST), which is a new integral-equation-
based technique presented in [2], distinguishes itself from
its predecessors in terms of its computational efficiency and
accuracy. The EC GF MST permits the fast analysis of 2-D
EC devices that are obtained by “removing” circular crystal
elements from doubly periodic, defectless, and infinite ECs
comprising identical homogeneous dielectric/magnetic circu-
lar cylinders. Just like the conventional free-space GF MST
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[3], the EC GF MST solves integral equations in terms of
equivalent currents that reside on circular cylindrical surfaces.
However, contrary to the conventional free-space GF MST,
which associates unknowns with the surfaces of all physical
cylindrical elements that define the EC device and then subse-
quently describes their interactions using a free-space GF, the
EC GF MST considers equivalent currents that reside on the
cylindrical surfaces of the voids left by removed cylinders and
then models their interaction via a GF innate to the surrounding
infinite EC. For frequencies in the EC band gap, this EC GF
can be precomputed easily using the free-space GF MST by
considering a centrally excited, finite, and small EC.

When compared to conventional free-space MSTs for ana-
lyzing EC devices, the EC GF MST has four advantages of note.
All four relate to the nature of the linear system of equations
that results upon discretizing the integral equations considered.
First, for the vast majority of EC devices, the number of
voids/removed cylinders is much smaller than the number of
physical cylinders, which translates to smaller linear systems.
Second, the EC GF MST’s system of equations is essentially
sparse, whereas that produced by the free-space GF MST is
dense; indeed, for frequencies in the EC band gap, the EC
GF decays exponentially with distance, and each and every
removed cylinder only interacts with its near neighbors. Third,
the EC GF MST’s sparse systems of equations can be solved
rapidly by multifrontal methods [4], thereby avoiding the exces-
sive iteration counts associated with the iterative solution of the
free-space GF MST’s dense systems of equations [5]. Fourth,
the EC GF MST is ideally suited to extract an EC device’s
S parameters as it enables the implementation of exact modal
excitations and absorbing boundary conditions.

Unfortunately, the formulation of the EC GF MST in [2] was
quite narrow, thereby unnecessarily limiting its applicability to
EC devices that exactly fit the preceding mold. In reality, many
EC devices comprise cylindrical elements that are noncircular,
inhomogeneous, plasmonic, etc. In addition, many EC devices
cannot be constructed by simply removing cylindrical elements
from an otherwise defectless and infinite EC as they contain
other types of defects, i.e., elements that do not conform to
those of the EC background. In [2], the EC GF MST was
applied successfully to EC devices comprising a “small” num-
ber of irregular circular defects, e.g., circular cylinders with
center positions, radii, and/or material parameters that do not
conform to those of the EC background. The EC GFs that
reflect the presence of the irregular defects were obtained as
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Fig. 1. Field-equivalence theorem applied to the simulation of an EC device using the EC GF MST. (a) Original configuration. (b) Exterior problem.
(c) Interior problem.

low-rank perturbations of the regular EC GF for a removed
cylinder. However, for EC devices comprising many irregular
defects, the computational complexity of the scheme of [2] is
too high. Moreover, the EC GF MST presented in [2] does not
apply to EC devices that only comprise irregular defects, e.g.,
waveguides that are formed by reducing/enlarging the diameter
of a row of cylinders [6].

This paper describes a “generalized” EC GF MST that broad-
ens the scheme’s applicability to virtually arbitrary EC config-
urations and excitations while retaining the original scheme’s
benefits. Specifically, the proposed scheme efficiently handles
EC devices that are defined on square or triangular lattices sup-
porting both transverse magnetic and electric polarized fields
and that are obtained by “replacing” cylindrical elements from a
defectless EC with cylindrical elements that “do not conform to
those of the EC background.” These cylindrical elements can be
of arbitrary shape and composition. Contrary to the scheme of
[2], which considers only equivalent currents on circular cylin-
drical surfaces centered about “removed cylindrical elements,”
the generalized scheme considers equivalent currents on circu-
lar cylindrical surfaces centered around “all defects.” Although
for every type of defect, another type of EC GF is required,
the precomputation of all these GFs can be achieved rapidly
once a few template EC GFs are known. If combined with
volume integral-equation- and/or finite-element-based schemes
(e.g., the unimoment method [7], [8]) to calculate the scattering
matrix of arbitrarily shaped and/or composed cylindrical ele-
ments, the proposed generalized scheme yields a very powerful
tool that permits the fast simulation of wave propagation in a
very broad class of 2-D EC devices.

This paper is organized as follows: Section II describes
a generalized free-space GF MST for characterizing EC de-
vices comprising arbitrarily positioned and arbitrarily shaped
dielectric/magnetic cylinders. Section III describes the gener-
alized EC GF MST for characterizing EC devices obtained by
replacing an arbitrary number of cylindrical elements from a de-
fectless EC by nonconforming ones. Section IV shows how all
required GFs easily can be obtained without resorting to solving
a new linear system of equations for each and every defect
considered. Section V elucidates the versatility of the proposed
scheme via its application to a third-order Chebyshev bandpass
filter, a pair of power dividers, two channel drop filters, a
large multiplexer–demultiplexer, a set of bended waveguides,
and three EC waveguide filters comprising noncircular or
plasmonic cylinders. Finally, Section VI summarizes the pro-

posed scheme’s principal features and proffers suggestions for
future research.

II. ANALYSIS OF EC DEVICES USING A GENERALIZED

FREE-SPACE GF MST

This section details a generalized free-space GF MST [2],
[3] for characterizing finite EC devices that comprise arbitrarily
positioned and arbitrarily shaped dielectric/magnetic cylindri-
cal elements. First, it is shown that by casting Maxwell’s equa-
tions in terms of generalized fields, currents, and constitutive
parameters, the proposed algorithm applies to both transverse
magnetic and electric to z (TMz and TEz) fields. Starting
from the field-equivalence principle [9], two sets of integral
equations in terms of equivalent electric and magnetic currents
residing on circular cylindrical surfaces centered about all
physical cylindrical elements are derived. The second (interior)
set of integral equations permits the elimination of one type
of current. For circular and homogeneous cylindrical elements,
this relationship can be found in closed form. For arbitrarily
shaped and/or composed elements, this relationship has to be
established via a volume integral-equation- or finite-element-
based method. Upon substituting this relationship in the first
(exterior) set of integral equations, the free-space GF is defined,
and a dense linear system of equations is obtained.

Consider a finite 2-D EC device comprising Nc infinite
z-invariant dielectric/magnetic cylindrical elements residing
in a homogeneous background medium with constitutive pa-
rameters (εb, µb) (permittivity, permeability) [Fig. 1(a)]. The
cylindrical elements can be of arbitrary shape and material
composition. The following nomenclature and terminology
are used.

• All sources and fields are assumed to be time har-
monic with angular frequency ω; temporal dependencies
eωt ( =

√−1) are suppressed.
• ρ, (ρ, φ), and (ρ̂, φ̂) denote the global position vec-

tors, cylindrical coordinates, and cylindrical unit vectors,
respectively.

• ρc
j and (ρc

j , φ
c
j) denote the position vector and cylindrical

coordinates of the center of cylindrical element j, j =
1, . . . , Nc, respectively.

• ρj , (ρj , φj), and (ρ̂j , φ̂j) denote the position vector,
cylindrical coordinates, and cylindrical unit vectors in the
coordinate system centered about ρc

j , respectively.
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• (ε(ρ) and µ(ρ)) denote the permittivity and permeability
at ρ, respectively.

• kb = ω
√
εbµb represents the wavenumber in the homoge-

neous background medium.
• rj , j = 1, . . . , Nc is the radius of the smallest circle cen-

tered about ρc
j circumscribing circular element j.

Let Einc(ρ) and H inc(ρ) denote the incident electric and
magnetic fields radiated by impressed sources (assumed to
reside outside all cylindrical elements) in the absence of any
cylindrical elements, respectively. In the presence of the cylin-
drical elements, the total fields Etot(ρ) and Htot(ρ) are
observed. The difference between the total and incident fields
defines the scattered fields Esca(ρ) and Hsca(ρ). To describe
the total and scattered fields, two sets (α = 1, 2) of equiva-
lent electric and magnetic currents (J j

α(ρ),Kj
α(ρ)) residing

on the circular surface Sj with radius rj centered about ρc
j ,

j = 1, . . . , Nc are introduced [Fig. 1(b) and (c)]. These currents
relate to the total fields on Sj as

J j
α(ρ) = sαρ̂j × Htot(ρ)|ρ∈Sj

δ(ρj − rj) (1)

Kj
α(ρ) = −sαρ̂j × Etot(ρ)|ρ∈Sj

δ(ρj − rj) (2)

with s1 = 1 and s2 = −1. To analyze wave propagation in
2-D EC devices, it suffices to consider the two noninteracting
TMz and TEz polarizations. Because of duality, the same for-
mulation applies to both polarizations if Maxwell’s equations
are cast in terms of generalized fields (F τ (ρ),Gτ (ρ)) (τ =
inc, tot, sca), currents (Pj

α(ρ),Qj
α(ρ)), and constitutive para-

meters (κ(ρ), θ(ρ)). For the TMz polarization, these general-
ized fields, currents, and constitutive parameters are

F τ (ρ) =F τ (ρ)ẑ = Eτ (ρ)ẑ (3)

Gτ (ρ) =Gτ
ρj

(ρ)ρ̂j + Gτ
φj

(ρ)φ̂j

=Hτ
ρj

(ρ)ρ̂j + Hτ
φj

(ρ)φ̂j (4)

Pj
α(ρ) =Pj

α(ρ)ẑ = J j
α(ρ)ẑ (5)

Qj
α(ρ) =Qj

α(ρ)φ̂j = Kj
α(ρ)φ̂j (6)

κ(ρ) = ε(ρ) (7)

θ(ρ) =µ(ρ) (8)

while for the TEz polarization, they are

F τ (ρ) =F τ (ρ)ẑ = −Hτ (ρ)ẑ (9)

Gτ (ρ) =Gτ
ρj

(ρ)ρ̂j + Gτ
φj

(ρ)φ̂j

=Eτ
ρj

(ρ)ρ̂j + Eτ
φj

(ρ)φ̂j (10)

Pj
α(ρ) =Pj

α(ρ)ẑ = −Kj
α(ρ)ẑ (11)

Qj
α(ρ) =Qj

α(ρ)φ̂j = J j
α(ρ)φ̂j (12)

κ(ρ) =µ(ρ) (13)

θ(ρ) = ε(ρ). (14)

All other field components vanish. From here on forward, the
generalized free-space and EC GF MST will be described in
terms of these generalized fields, currents, and constitutive

parameters, thereby simultaneously covering both the TMz and
TEz-polarizations.

The following two facts are derived from the field-
equivalence theorem (Fig. 1):

1) The currents
∑Nc

j=1 Pj
1(ρ)ẑ and

∑Nc

j=1 Qj
1(ρ)φ̂j , when

radiating alongside the impressed sources in an un-
bounded medium with constitutive parameters (κb, θb),
generate zero fields inside each surface Sj centered
about ρc

j and the total fields F tot(ρ)ẑ and Gtot
ρj

(ρ)ρ̂j +
G̃tot

φj
(ρ)φ̂j outside all Sj .

2) The currents Pj
2(ρ)ẑ and Qj

2(ρ)φ̂j , when radiating
around cylindrical element j placed in an unbounded
medium with constitutive parameters (κb, θb), generate
zero fields outside Sj and F tot(ρ)ẑ and Gtot

ρj
(ρ)ρ̂j +

G̃tot
φj

(ρ)φ̂j inside Sj .

If F sca,j
α (ρ)ẑ denotes the z-directed field radiated jointly by

Pj
α(ρ)ẑ and Qj

α(ρ)φ̂j in the homogeneous medium with
constitutive parameters (κb, θb) when α = 1, or radiated by
Pj

αẑ and Qj
αφ̂j around the irregular cylinder j placed in the

unbounded medium with constitutive parameters (κb, θb) when
α = 2, then the preceding statements can be cast as

F inc(ρ)+
Nc∑
j=1

F sca,j
1 (ρ)=0 if ρ∈S−

i , i=1, . . . , Nc (15)

F sca,j
2 (ρ)=0 if ρ∈S+

j , j=1, . . . , Nc. (16)

Here, S−
j and S+

j denote surfaces residing just inside and
outside surface Sj , respectively. To solve (15) and (16), Pj

α(ρ)
and Qj

α(ρ) are expanded as

Pj
α(ρ) = sα

K∑
n=−K

P j
n

2πrj
enφjδ(ρj − rj) (17)

Qj
α(ρ) = sα

K∑
n=−K

Qj
n

2πrj
enφjδ(ρj − rj). (18)

Because rj is small compared with the wavelength and because
the cylindrical elements are assumed sufficiently separated
from one another as well as from the impressed sources, the
range of the modal index can always be restricted to n =
−K, . . . ,K, with K being a small positive integer. As detailed
in the Appendix, solving (interior problem) (16) yields

Qj
m =

K∑
n=−K

Yj
mnP

j
n or Qj = YjP j . (19)

This relationship permits F sca,j
1 (ρ)ẑ, which is the z-directed

field radiated jointly by Pj
1(ρ)ẑ and Qj

1(ρ)φ̂j in the homo-
geneous medium with constitutive parameters (κb, θb), to be
expressed as

F sca,j
1 (ρ) =

K∑
n=−K

Gj
n(ρj)P

j
n. (20)

Quantity Gj
n(ρj) is the (generalized) free-space GF

for a Huygens source with distributed components
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Fig. 2. Field-equivalence theorem applied to the simulation of an EC device using the EC GF MST. (a) Original configuration. (b) Exterior problem.
(c) Interior problem.

Pj
1(ρ) = (1/2πrj) × enφjδ(ρj − rj)ẑ and Qj

1(ρ) =∑K
m=−K(Yj

mn/2πrj) × emφjδ(ρj − rj)φ̂j , radiating jointly
in the homogeneous medium with constitutive parameters
(κb, θb). It is readily verified that Gj

n(ρj) can be expressed as
in (21), shown at the bottom of the page, where Jn(·) is the
nth-order Bessel function of the first kind, and H

(2)
n (·) is the

nth-order Hankel function of the second kind.
To solve for the unknown P j

n, expansion (20) is inserted into
(15), and the resulting equation is tested by

T i
m(ρ) =

1
2πriJm(kbri)

e−mφiδ(ρi − ri) (22)

for i = 1, . . . , Nc and n = −K, . . . ,K, resulting in the matrix
equation

ZP = F (23)

where Zij
mn = 〈T i

m(ρ),Gj
n(ρj)〉 and F i

m = 〈T i
m(ρ),−F inc(ρ)〉.

III. ANALYSIS OF EC DEVICES USING THE

GENERALIZED EC GF MST

This section details the proposed generalized EC GF MST
for the characterization of semi-infinite EC devices that are
obtained by “replacing” cylindrical elements from an otherwise
infinitely periodic and defectless EC by nonconforming ones.
Starting from the field-equivalence principle, two sets of in-
tegral equations in terms of equivalent electric and magnetic
currents residing on circular cylindrical surfaces centered about
only the defects are derived. The second (interior) set of integral
equations permits the elimination of one type of current. Upon
substituting this relationship in the first (exterior) set of integral
equations, the EC GF is defined, and a sparse linear system of
equations is obtained.

Fig. 3. Definition of the lattice vectors. (a) Square lattice. (b) Triangular
lattice.

Consider a 2-D EC device obtained by replacing Nr cylindri-
cal elements from an infinite and defectless EC by cylindrical
elements that do not conform to those of the EC background
[Fig. 2(a)]. These elements henceforth will be termed “irreg-
ular.” Two types of irregular elements are defined: “Type-I”
irregular elements comprise only removed elements, and
“Type-II” irregular elements comprise all other types of de-
fects. The background EC comprises identical, infinite, and
z-invariant dielectric/magnetic cylindrical elements that snap to
a regular square or triangular lattice (with lattice constant a)
and that reside in a homogeneous background medium with
constitutive parameters (εb, µb). The nomenclature in this sec-
tion adheres to that of Section II, with the exception that tildes
appear on symbols referring to fields, currents, and surfaces
centered about irregular cylindrical elements.

Furthermore, the following additional assumptions are made,
and the following nomenclature/terminology is used.

• The angular frequency ω is assumed to lie within the EC
band gap.

• (v̂1, v̂2) denotes lattice vectors (Fig. 3) that relate to the
Cartesian unit vectors (x̂, ŷ) as

v̂1 = ax̂ (24)

v̂2 = aŷ (25)

Gj
n(ρj) = −




[
ωθb

4 Jn(kbrj) + kb

4

K∑
p=−K

YpnJ
′
p(kbrj)

]
H

(2)
n (kbρj)ejnφj , if ρj > r[

ωθb

4 H
(2)
n (kbrj) + kb

4

K∑
p=−K

YpnH
(2)′
p (kbrj)

]
Jn(kbρj)ejnφj , if ρj < r

(21)
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for a square lattice and as

v̂1 = ax̂ (26)

v̂2 =
a

2
x̂ +

√
3a
2

ŷ (27)

for a triangular lattice.
• ρc

l1l2
and (ρc

l1l2
, φc

l1l2
) denote the position vectors and

cylindrical coordinates of the lattice sites, viz. ρc
l1l2

=
l1v1 + l2v2, l1, l2 = . . . ,−1, 0, 1, . . .

• r is the radius of the smallest circle centered about a
lattice site and circumscribing the corresponding regular
cylindrical element.

• r̃j , j = 1, . . . , Nr is the maximum of r and the radius
of the smallest circle centered about a lattice site and
circumscribing the irregular cylindrical element j.

Let F̃
inc

(ρ) and G̃
inc

(ρ) denote (generalized) incident fields
generated by impressed sources (assumed to reside outside all
cylindrical elements) that radiate “in the presence of the defect-
less EC,” viz. the infinite EC “without any irregular cylindrical
elements.” Upon replacing the cylindrical elements, total fields

F̃
tot

(ρ) and G̃
tot

(ρ) are observed. The difference between the
total and incident fields defines the scattered fields F̃

sca
(ρ)

and G̃
sca

(ρ). To describe the total and scattered fields, two

sets (α = 1, 2) of equivalent (generalized) currents (P̃j

α(ρ),
Q̃j

α(ρ)) residing on the circular surface S̃j with radius r̃j

centered about ρc
lj1lj2

, j = 1, . . . , Nr are introduced [Fig. 2(b)

and (c)]. These currents relate to the total fields on S̃j as

P̃j

α(ρ) = sαρ̂lj1lj2
× G̃

tot
(ρ)|ρ∈S̃j

δ
(
ρlj1lj2

− r̃j

)
(28)

Q̃j

α(ρ) = − sαρ̂lj1lj2
× F̃ tot(ρ)|ρ∈S̃j

δ
(
ρlj1lj2

− r̃j

)
(29)

with s1 = 1 and s2 = −1.
The following two facts are derived from the field-

equivalence theorem (Fig. 2):

1) The currents
∑Nr

j=1 P̃j
1(ρ)ẑ and

∑Nr

j=1 Q̃j
1(ρ)φ̂lj1lj2

, when
radiating alongside the impressed sources “in the un-
bounded” and “defectless EC,” generate zero fields inside
the surface S̃j centered about ρc

lj1lj2
and the total fields

F̃ tot(ρ)ẑ and G̃tot
ρ

l
j
1

l
j
2

(ρ)ρ̂lj1lj2
+ G̃tot

φ
l
j
1

l
j
2

(ρ)φ̂lj1lj2
outside

all S̃j .
2) The currents P̃j

2(ρ)ẑ and Q̃j
2(ρ)φ̂lj1lj2

, when radiat-
ing around the irregular cylindrical element j placed
in an unbounded medium with constitutive parameters
(κb, θb), generate zero fields outside S̃j and F̃ tot(ρ)ẑ and
G̃tot

ρ
l
j
1

l
j
2

(ρ)ρ̂lj1lj2
+ G̃tot

φ
l
j
1

l
j
2

(ρ)φ̂lj1lj2
inside S̃j .

If F̃ sca,j
α (ρ)ẑ denotes the z-directed field radiated jointly by

P̃j
α(ρ)ẑ and Q̃j

α(ρ)φ̂lj1lj2
in the unbounded and defectless EC

when α = 1, or radiated by P̃j
αẑ and Q̃j

αφ̂lj1lj2
around the

irregular cylindrical element j placed in the unbounded medium

with constitutive parameters (κb, θb) when α = 2, then the
preceding statements can be cast as

F̃ inc(ρ) +
Nr∑
j=1

F̃ sca,j
1 (ρ) = 0 if ρ ∈ S̃−

i , i = 1, . . . , Nr

(30)

F̃ sca,j
2 (ρ) = 0 if ρ ∈ S̃+

j , j=1, . . . , Nr.

(31)

Here, S̃−
j and S̃+

j denote surfaces residing just inside and

outside surface S̃j , respectively. To solve (30) and (31), P̃j
α(ρ)

and Q̃j
α(ρ) are expanded as

P̃j
α(ρ) = sα

K∑
n=−K

P̃ j
n

2πr̃j
e
nφ

l
j
1

l
j
2 δ

(
ρlj1lj2

− r̃j

)
(32)

Q̃j
α(ρ) = sα

K∑
n=−K

Q̃j
n

2πr̃j
e
nφ

l
j
1

l
j
2 δ

(
ρlj1lj2

− r̃j

)
. (33)

Just like in the generalized free-space GF MST, solving
(interior problem) (31) yields

Q̃j
m =

K∑
n=−K

Yj
mnP̃

j
n or Q̃

j
= YjP̃

j
. (34)

This relationship permits F̃ sca,j
1 (ρ)ẑ, which is the z-directed

field radiated jointly by P̃j
1(ρ)ẑ and Q̃j

1(ρ)φ̂lj1lj2
“in the defect-

less” and “unbounded EC,” to be expressed as

F̃ sca,j
1 (ρ) =

K∑
n=−K

G̃j
n

(
ρlj1lj2

)
P̃ j

n. (35)

Quantity G̃j
n(ρlj1lj2

) is the (generalized) EC GF for a

Huygens source with distributed components P̃j
1(ρ) =

(1/2πr̃j)e
nφ

l
j
1

l
j
2 δ(ρlj1lj2

− r̃j)ẑ and Q̃j
1(ρ) =

∑K
m=−K(Yj

mn/

2πr̃j)e
mφ

l
j
1

l
j
2 δ(ρlj1lj2

− r̃j)φ̂lj1lj2
, radiating jointly in the

“defectless” and “unbounded EC.” Contrary to the free-space
GF, no closed-form expression for G̃j

n(ρlj1lj2
) exists.

To solve for the unknown P̃ j
n, expansion (35) is inserted into

(30), and the resulting equation is tested by

T̃ i
m(ρ) =

1
2πr̃iJm(kbr̃i)

e
−mφ

li
1

li
2 δ

(
ρli1li2

− r̃i

)
(36)

for i = 1, . . . , Nr and n = −K, . . . ,K, resulting in the matrix
equation

Z̃P̃ = F̃ (37)

where Z̃ij
mn = 〈T̃ i

m(ρ), G̃j
n(ρlj1lj2

)〉, and F̃ i
m = 〈T̃ i

m(ρ),

−F̃ inc(ρ)〉. The interaction matrix Z̃ is essentially sparse.
Because ω is assumed to lie within the EC band gap, G̃j

n(ρlj1lj2
)

decays exponentially with |ρlj1lj2
|. Therefore, each and every

replaced cylinder only interacts with its near neighbors,
thereby rendering vanishingly small all entries of Z̃ describing
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interactions between sufficiently separated replaced cylinders.
Moreover, as shown in [2], such sparse matrix equations can be
solved rapidly using multifrontal methods [4].

IV. FAST CALCULATION OF ALL EC GFS

No closed-form expressions exist for the EC GF G̃j
n(ρlj1lj2

).
Fortunately, its numerical calculation is aided by two facts.
First, because the EC is periodic, G̃j

n(ρlj1lj2
) does not de-

pend on the exact location of irregular cylindrical element
j. Second, G̃j

n(ρ) decays exponentially with distance. As
a consequence, G̃j

n(ρ) can be evaluated using the general-
ized free-space MST scheme by considering a sufficiently
large finite EC of Nc = (2Nb + 1)2 cylindrical elements,
which is assumed to be centered about the spatial origin
ρ = 0 and which is excited by a Huygens source with

components P̃j

1(ρ) = (1/2πr̃j)enφδ(ρ− r̃j)ẑ and Q̃j

1(ρ) =∑K
p=−K(Yj

pn/2πr̃j)epφδ(ρ− r̃j)φ̂. In [2], it was shown that
matrix (23) can be solved efficiently by using an iterative,
preconditioned, and fast Fourier transform-accelerated method.

At this point, it is important to note that it is not neces-
sary to solve a new dense linear system (23) for every EC
GF G̃j

n(ρ), j = 1, . . . , Nr. Define G̃P
n (ρ, r̃j) as the EC GF

for a Huygens source with distributed components Pj
1(ρ) =

(1/2πr̃j)enφδ(ρ− r̃j)ẑ and Qj
1(ρ) = 0φ̂ radiating in the de-

fectless EC. Likewise, define G̃Q
n (ρ, r̃j) as the EC GF for a

Huygens source with distributed components Pj
1(ρ) = 0ẑ and

Qj
1(ρ) = (1/2πr̃j)enφδ(ρ− r̃j)φ̂ radiating in the defectless

EC. Then, it follows that

G̃j
n(ρ) = G̃P

n (ρ, r̃j) +
K∑

p=−K

Yj
pnGQ

p (ρ, r̃j). (38)

According to (38), a dense linear system (23) of equations has
to be solved for every different radius r̃j . However, it will be
shown here that it is sufficient to calculate only G̃P

n (ρ, r) and
G̃Q

n (ρ, r).
Let F j

mn(l1, l2) denote the element of the excitation vector
F in (23) by using the mth harmonic testing function T i

m(ρ)
on the incident fields produced by the Huygens sources on the
cylindrical surface with radius r centered about ρc

l1l2
. For the

calculation of G̃P
n (ρ, r̃j), the excitation can be expressed as

in (39), shown at the bottom of the page. It is readily verified
that the same excitation vector is obtained for a Huygens source
with distributed components

Pj
1(ρ) = − kb

4

[
H(2)

n (kbr̃j)J ′
n(kbr) − Jn(kbr̃j)H(2)′

n (kbr)
]

× ejnφδ(ρ− r)ẑ

=
1

2πr
PP

n (r̃j)ejnφδ(ρ− r)ẑ (40)

Qj
1(ρ) =

ωθb

4

[
H(2)

n (kbr̃j)Jn(kbr) − Jn(kbr̃j)H(2)
n (kbr)

]
× ejnφδ(ρ− r)φ̂

=
1

2πr
QP

n (r̃j)ejnφδ(ρ− r)φ̂. (41)

From (40) and (41), it follows that

G̃P
n (ρ, r̃j) = PP

n (r̃j)G̃P
n (ρ, r) + QP

n (r̃j)G̃Q
n (ρ, r). (42)

For the calculation of G̃P
n (ρ, r̃j), the excitation can be ex-

pressed as in (43), shown at the bottom of the page. It is
readily verified that the same excitation vector is obtained for a
Huygens source with distributed components

Pj
1(ρ) =

ωκb

4

[
H(2)′

n (kbr̃j)J ′
n(kbr) − J ′

n(kbr̃j)H(2)′
n (kbr)

]
× ejnφδ(ρ− r)ẑ

=
1

2πr
PQ

n (r̃j)ejnφδ(ρ− r)ẑ (44)

Qj
1(ρ) = − kb

4

[
H(2)

n (kbr̃j)J ′
n(kbr) − Jn(kbr̃j)H(2)′

n (kbr)
]

× ejnφδ(ρ− r)φ̂

=
1

2πr
QQ

n (r̃j)ejnφδ(ρ− r)φ̂. (45)

From (44) and (45), it follows that

G̃Q
n (ρ, r̃j) = PQ

n (r̃j)G̃P
n (ρ, r) + QQ

n (r̃j)G̃Q
n (ρ, r). (46)

A combination of (38), (42), and (46) shows that all EC GFs are
known once GP

n (ρ, r) and G̃Q
n (ρ, r) are calculated.

F j
mn(l1, l2) =




ωθb

4 H
(2)
n (kbr̃j), if l1 = l2 = 0 and m = n

0, if l1 = l2 = 0 and m �= n
ωθb

4 Jn(kbr̃j)H
(2)
n−m

(
kbρ

c
l1l2

)
e
(n−m)φc

l1l2 , otherwise.
(39)

F j
mn(l1, l2) =




kb

4 H
(2)′
n (kbr̃j), if l1 = l2 = 0 and m = n

0, if l1 = l2 = 0 and m �= n
kb

4 J ′
n(kbr̃j)H

(2)
n−m

(
kbρ

c
l1l2

)
e
(n−m)φc

l1l2 , otherwise.
(43)
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Fig. 4. Structure of the third-order resonant EC filter. The radius of a regular
cylinder is r = 0.2a. The radii of the irregular cylinders are r1 = 0.08a, r2 =
0.15a, and r3 = 0.123a.

V. EXAMPLES

The examples presented here demonstrate the performance
and accuracy of the generalized EC GF MST when applied
to the analysis of a wide variety of EC devices including the
following:

• devices comprising circular elements with radii and/or
constitutive parameters different from those of the back-
ground EC (e.g., a third-order Chebyshev bandpass filter
or a channel drop filter);

• devices comprising elements that do not snap to the back-
ground EC’s lattice (e.g., a power divider);

• devices embedded in a triangular lattice EC that sup-
ports TEz fields (e.g., a channel drop filter or a bended
waveguide);

• devices that are electromagnetically large (e.g., a
multiplexer–demultiplexer);

• devices comprising noncircular elements (e.g., EC wave-
guide filters loaded with elliptical or starlike cylinders);

• devices comprising plasmonic cylinders (e.g., a plas-
monic/dielectric EC waveguide filter).

All calculations are carried out on a 2.4-GHz PC. The mul-
tifrontal package used to solve system (37) is UMFPACK
Version 4.3 [10].

A. EC-Based Third-Order Bandpass Filter

Consider the compact third-order resonant filter depicted in
Fig. 4 [11]. The filter is embedded in a square (Cartesian)
EC comprising homogeneous dielectric circular cylinders with
constitutive parameters (εc, µc) = (11.56ε0, µ0) and radius
r = 0.2a that reside in a free-space background, viz. (εb, µb) =
(ε0, µ0). The filter comprises three identical abutting resonators
in a waveguide created by removing one row of regular EC
cylinders, thereby introducing a row of type-I irregular cylin-
ders. Each resonator comprises a symmetric constellation of
nine type-II irregular cylinders that differ from those of the
background EC only in terms of their radii (Fig. 4). The filter’s
TMz transmission spectrum computed using the generalized
EC and free-space GF MST is shown in Fig. 5. When using the
generalized EC GF MST, the EC is assumed infinite, and exact
modal excitations and boundary conditions are imposed; their
construction is facilitated by the fact that the EC GF technique
permits a straightforward identification of the propagating EC
waveguide modes [2]. When using the free-space GF MST, the
waveguide is lined by seven rows of cylinders to avoid leak-
age and truncated by perfectly matched layer-based absorbing
boundary conditions to mimic semi-infinite waveguide loads
[12]. Divergence in their underlying assumptions notwithstand-

Fig. 5. Transmission spectrum of the third-order resonant EC filter.

Fig. 6. Structure and transmission spectrum of the EC power divider.

ing, both approaches yield nearly identical transmission spec-
tra. The difference between their CPU requirements, however,
is significant. Indeed, application of the generalized EC GF
MST with K = 1 and Nb = 20 requires only 317 unknowns to
describe equivalent currents on all irregular (type I + II) cylin-
ders, 5.4 s to construct EC GFs for type-I and type-II irregular
cylinders, 0.05 s to construct modal excitations and boundary
conditions, and 0.05 s to fill the sparse interaction matrix and
solve the resulting system of equations. Hence, the total time
to analyze the filter is only 5.5 s—these CPU times are, just
like all that follow, for one frequency. In contrast, application
of the free-space GF MST requires 3213 unknowns to describe
equivalent currents on all regular and type-II irregular cylinders
and 238 s to fill and solve the resulting system of equations,
the bulk of which is consumed by the matrix solution process.
Clearly, the generalized EC GF MST is far more efficient at
analyzing this structure than its classical counterpart.

B. EC-Based Power Divider

Next, consider the T-shaped EC power divider depicted in the
inset of Fig. 6 [13]. The divider is embedded in the background
EC described in Section V-A. The divider is constructed by
removing cylinders from the EC, i.e., all irregular cylinders
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Fig. 7. Structure and transmission spectrum of the adjusted EC power divider.

are of type-I. The divider’s TMz reflection and transmission
spectra computed using the generalized EC and free-space GF
MSTs are shown in Fig. 6; excellent agreement between both
data sets is observed. The divider’s properties are far from
desirable but can be improved, as was done in [13], by adjusting
the constitutive parameters, radii, and/or center positions of
the cylinders near the T-junction (type-II irregular cylinders).
One such adjusted design, which was obtained by moving the
cylinders in the marked square in Fig. 6 without changing
their constitutive parameters or radii, is detailed in the inset of
Fig. 7, which shows the transmission spectra of the adjusted
divider calculated with the generalized EC and free-space GF
MST. Again, excellent agreement between both data sets is
observed. Application of the generalized EC GF MST with
K = 2 and Nb = 23 requires only 523 unknowns to describe
equivalent currents on irregular (type I + II) cylinders, 30 s to
construct the type-I and type-II EC GFs, 0.14 s to construct
modal excitations and boundary conditions, and 0.5 s to fill
the sparse interaction matrix and solve the resulting system of
equations. The total CPU time is 30.64 s and is significantly
less than that required by the free-space GF MST, which is
134 s. The (deterministic/evolutionary) synthesis of EC devices
typically calls for the evaluation of hundreds if not thousands
of design candidates; the preceding example demonstrates the
potential usefulness of EC GF MST methods for this purpose.
Moreover, note that it is only necessary to calculate the EC GFs
G̃P (ρ, r) and G̃Q(ρ, r) at the first iteration step. Hence, from
the second iteration step on, the evaluation of a design candidate
would require less than 1 s!

C. Channel Drop Filters

Channel drop filters are key components of many
wavelength-division multiplexing communication systems
[14]–[18]. Not surprisingly, in recent years, a host of EC-based
channel drop filter designs has been proposed; two distinct
layouts are analyzed here.

The first filter is depicted in Fig. 8 [16]. This filter is embed-
ded in the EC described in Section V-A. All EC waveguides
are formed by removing rows of cylinders. The so-called
bus waveguide—through which the EC device is excited—is

Fig. 8. Structure of the five-channel drop filter. The radii of the irregular cylin-
ders are rA = 0.1a, rB = 0.08a, rC = 0.065a, rD = 0.05a, and rE = 0.

Fig. 9. Transmission spectrum of the five-channel drop filter.

connected to five output waveguides by distinct resonators.
Each resonator comprises five cylinders. The four outermost
cylinders in each resonator belong to the background EC; the
center cylinder in each resonator is irregular as it has a radius
that differs from those in the EC—specific radii are detailed in
Fig. 8. Fig. 9 shows the filter’s transmission spectrum calculated
via the generalized EC GF MST. This spectrum agrees well
with the finite-difference time-domain method result obtained
in [16]. With K = 1, this example calls for 408 equivalent
currents. The time to calculate the EC GF and to construct
the modal excitations/boundary conditions is the same as that
in Section V-A. Filling and solving the sparse linear system
of equations take 0.3 s. The total time to analyze the device
for one frequency therefore is only 5.75 s. Analysis of the EC
device via the free-space GF MST would require more than
9000 unknowns to describe equivalent currents. Needless to
say, the CPU time required to analyze the device via the free-
space GF MST would be several orders of magnitude larger
than that required by the EC GF MST.

The second filter considered is depicted in the inset of
Fig. 10 [15]. This filter is embedded in a triangular lattice EC
of air holes ((εc, µc) = (ε0, µ0)) of radius r = 0.29a residing
in a homogeneous background with constitutive parameters
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Fig. 10. Structure and transmission spectrum of the channel drop filter.

Fig. 11. Structure of the large multiplexer–demultiplexer. The radius of a
regular cylinder is r = 0.2a. The radii of the irregular cylinders are r1 =
0.16a, r2 = 0.18a, r3 = 0.22a, r4 = 0.17a, and r5 = 0.14a. The lengths
of the coupling regions are l1 = 82a, l2 = 44a, l3 = 48a, l4 = 70a, and
l5 = 30a.

(εb, µb) = (7.6176ε0, µ0). The filter comprises two identical
EC waveguides that couple through identical resonant cavities.
The waveguides and cavities are obtained by filling holes with
background material, i.e., the structure only contains type-I
irregularities. The cavities each span three hole locations and
are separated by two holes. Fig. 10 shows the transmission
spectrum calculated with the generalized EC GF MST. Excel-
lent agreement is observed with the spectrum calculated with
the finite-difference time-domain technique given in [15]. With
K = 2 and Nb = 20, the generalized EC GF MST requires
only 534 unknowns to model equivalent currents on the type-I
irregular cylinders, 36 s to calculate the EC GF, 0.13 s to con-
struct modal excitations and boundary conditions, and 0.65 s
to fill and solve the resulting system of equations. Hence, the
total time to analyze the device is only 30.78 s.

D. Multiplexer–Demultiplexer Based on EC
Waveguide Couplers

The ability of the generalized EC GF MST to efficiently
analyze large EC devices is demonstrated via its applica-
tion to the six-channel multiplexer–demultiplexer depicted in
Fig. 11. The multiplexer–demultiplexer is embedded in the
EC described in Section V-A. The device comprises several
EC waveguides that are formed by removing a row of type-I

Fig. 12. Transmission spectrum of the multiplexer–demultiplexer.

Fig. 13. Structure and transmission spectrum of the EC waveguide with two
nonoptimized 60◦ bends.

cylinders. In five coupling regions, these waveguides are sep-
arated only by one row of type-II cylinders. The waveguide
coupling lengths are l1 = 82a, l2 = 44a, l3 = 48a, l4 = 70a,
and l5 = 30a. The radii of the type-II cylinders that sepa-
rate the waveguides are r1 = 0.16a, r2 = 0.18a, r3 = 0.22a,
r4 = 0.17a, and r5 = 0.14a. Their permittivity equals that of
the EC background cylinders. Fig. 12 shows the transmission
spectrum for three of the six output ports. With K = 1, analysis
of this multiplexer–demultiplexer calls for 3349 equivalent
currents. The time to calculate the EC GF and to construct
the modal excitations/boundary conditions is the same as in
Section V-A. Filling and solving the sparse linear system
of equations take 3 s. Hence, the total time to analyze the
multiplexer–demultiplexer is only 8.4 s. For comparison, when
modeled with the conventional free-space GF MST, this large
multiplexer–demultiplexer would require more than 60 000
equivalent currents.

E. Waveguide Bends

The ability to efficiently guide light along bend waveguides
is critical to many photonics applications. In recent years,
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Fig. 14. Structure and transmission spectrum of the EC waveguide with two
optimized 60◦ bends following [19].

many different EC bend waveguide configurations have been
proposed; two specific configurations are analyzed here.

First, consider the crude bend waveguide depicted in the
inset of Fig. 13 [19]. The waveguide is embedded in the same
triangular lattice EC considered in the second example of
Section V-C. The bend waveguide is constructed exclusively
by filling EC voids; hence, it comprises only type-I irregulari-
ties. The waveguide’s TEz reflection and transmission spectra,
which were calculated with the generalized EC GF MST,
are shown in Fig. 13. Unfortunately, the power transmission
coefficient only exceeds 0.9 in frequencies ranging from f =
0.2716(c/a) to f = 0.275(c/a) and f = 0.2773(c/a) to f =
0.2783(c/a). This example required 302 unknowns to model
equivalent currents on type-I irregular cylinders, 36 s to cal-
culate the EC GF, 0.13 s to construct modal excitations and
boundary conditions, and 0.15 s to fill and solve the linear
system of equations.

Second, consider the optimized bend waveguide depicted
in the inset of Fig. 14 [19]. The waveguide portion of the
optimized structure is identical to that of the previously de-
scribed crude bend waveguide; the bend regions, however,
differ as type-II irregularities in the form of extra air holes
with a radius of 0.14a are added. The optimized waveguide’s
TEz reflection and transmission spectra computed using the
EC GF MST are shown in Fig. 14. The optimized waveguide
achieves continuous high transmission from f = 0.2714(c/a)
up to f = 0.2795(c/a). The (extra) computational cost as-
sociated with the analysis of this optimized design is very
low. Indeed, assuming that the EC GF G̃P (ρ, r) and G̃Q(ρ, r)
and the modal excitations/boundary conditions computed while
analyzing the nonoptimized structure remain available, analysis
of the optimized design requires only 0.2 s to fill and store the
sparse system of equations for the optimized design.

F. ECS Comprising Noncircular Cylindrical Elements

All previous examples concerned EC devices comprising
circular cylinders for which the matrices Yj in (19) and (34) are
known analytically. Many practical EC devices, however, com-

Fig. 15. EC filter with elliptical dielectric cylinders.

Fig. 16. EC filter with starlike dielectric cylinders.

prise noncircular elements; deviations from the circular shape
may be intended or due to manufacturing imperfections. The
ability of the generalized EC GF MST to efficiently simulate
such EC devices is demonstrated via its application to the EC
waveguide filters depicted in Figs. 15 and 16. Both filters are
embedded in a square (Cartesian) EC comprising homogeneous
noncircular dielectric cylindrical elements with constitutive
parameters (εc, µc) = (11.56ε0, µ0) and comprise a waveguide
loaded with three cylindrical elements. The two outermost are
identical to those of the EC background. The center element has
the same shape but is smaller. The elements in the filter shown
in Fig. 15 are ellipses [20]. The major axes of the elliptical
cylinders are aligned with the waveguide channel. The large
(small) ellipse’s major and minor axes measure 0.4a(0.24a)
and 0.28a(0.16a), respectively. The cylindrical elements in the
filter shown in Fig. 15 are starlike with angle-dependent radius
given by

r(θ) = r1 + r2 cos(mθ), θ = 0, . . . , 2π. (47)

For the large (small) cylindrical elements, r1 = 0.16(r1 =
0.08), r2 = 0.04(r2 = 0.02), and m = 10(m = 10). Fig. 17
shows the transmission spectrum of both EC filters calculated
with the generalized EC GF MST. For both examples, the
matrices Yj were calculated numerically with a simple volume
integral-equation-based scheme [21]. Application of the gener-
alized EC GF MST with K = 2 and Nb = 20 requires only 192
unknowns to describe the fields in the channel and uses 9.34 s
to construct the type-I and type-II EC GFs, 0.14 s to construct
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Fig. 17. Transmission spectrum of the EC filters with elliptical and starlike
dielectric cylinders.

Fig. 18. Structure of the plasmonic/dielectric EC filter. The radius of all
cylinders is r = 0.2a. The permittivity of the plasmonic cylinders is ε1 =
ε0[1 − (fp/f)2], with fp = 0.662(c/a). The permittivity of the irregular
dielectric cylinders is ε2 = 4.9ε0.

modal excitations and boundary conditions, and 0.03 s to fill
and solve the sparse system of equations.

G. ECS Comprising Plasmonic Elements

In recent years, the development of optical devices that in-
corporate plasmonic materials has attracted significant attention
[22]. In this section, it will be shown that a bandpass filter
can be designed by loading an EC waveguide with plasmonic
and dielectric cylinders. Consider the plasmonic/dielectric EC
device depicted in Fig. 18. The device is embedded within the
EC described in Section V-A. The EC waveguide is loaded with
four plasmonic cylinders followed by six dielectric cylinders.
The radius and permittivity of the plasmonic cylinders are r1 =
0.2a and ε1 = ε0[1 − (fp/f)2], where the plasmonic frequency
fp = 0.662(c/a). The radius and permittivity of the irregular
dielectric cylinders are r2 = 0.2a and ε2 = 4.9ε0, respectively.
Fig. 19 shows the transmission spectrum calculated with the
generalized EC GF MST. Within the frequency range shown,
the four plasmonic cylinders act as a high-pass filter, while
the six irregular dielectric cylinders behave as a low-pass filter.
Consequently, the combined structure behaves as a bandpass
filter. With K = 1 and Nb = 20, this device calls for 152 equiv-
alent currents. The time to calculate the EC GF and to construct

Fig. 19. Transmission spectrum of the plasmonic/dielectric EC filter.

Fig. 20. Relation between Yj and Sj .

the modal excitations/boundary conditions is the same as that
in Section V-A. Filling and solving the sparse linear system of
equations take only 0.03 s.

VI. CONCLUSION

A generalized EC GF MST enabling the characterization of
EC devices obtained by replacing cylindrical elements from an
infinite doubly periodic and defectless EC by nonconforming
ones was presented. Both EC background and nonconforming
cylinders can be of arbitrary shape and composition. When
combined with a volume integral-equation (or finite-elements)-
based scheme to construct scattering matrices of nonconform-
ing cylindrical elements, the generalized EC GF MST can
handle a much larger class of EC devices than the original EC
GF MST presented in [2]. The versatility of the generalized
scheme was demonstrated via its application to several practical
examples. An extension of the generalized EC GF MST to the
characterization of 3-D EC slab devices, i.e., slab waveguides
strategically loaded with 2-D ECs, is under study. Very recently,
a 3-D version of the free-space GF MST was published [23]. It
is anticipated that a combination of the latter scheme with fast
matrix–vector multiplication algorithms will permit the com-
putationally efficient calculation of 3-D EC GFs. This, in turn,
will permit the extension of the generalized EC GF MST to
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F inc(ρ) =




−ωθb

4

K∑
n=−K

[
H

(2)
n (kbrj)P j

n + 
√

κb

θb
H

(2)′
n (kbrj)Qj

n

]
Jn(kbρj)ejnφj , if ρj < rj

−ωθb

4

K∑
n=−K

[
Jn(kbrj)P j

n + 
√

κb

θb
J ′

n(kbrj)Qj
n

]
H

(2)
n (kbρj)ejnφj , if ρj > rj

(A.4)

3-D and the subsequent computationally efficient characteriza-
tion of 3-D EC slab devices.

APPENDIX

This Appendix details the relationship between the scattering
matrix Sj and the matrix Yj , as used in (19) and (34), of
a cylindrical element embedded in a homogeneous medium
with constitutive parameters (εb, µb). Consider the cylindrical
element depicted in Fig. 20. The scattering matrix Sj relates
scattered fields to incident fields cast in terms of Bessel/Hankel
functions, i.e., if the incident and scattered fields on Sj are
expressed as

F inc(ρ)|ρ∈Sj
= −ωθb

4

K∑
m=−K

Aj
nJn(kbrj)ejnφj (A.1)

F sca,j(ρ)|ρ∈Sj
= −ωθb

4

K∑
m=−K

Bj
nH

(2)
n (kbrj)ejnφj (A.2)

then

Bj
n =

K∑
p=−K

Sj
npA

j
p or Bj = SjAj . (A.3)

The scattering matrix can be found with several numeri-
cal schemes, such as, e.g., a volume integral-equation-based
scheme or a finite-element-based scheme. For circular ele-
ments, the scattering matrix is known analytically.

According to (16) and (31), the unknown currents P j
n and

Qj
n should relate in such a way that when radiating around

cylindrical element j, they generate zero fields outside the sur-
face Sj . This relationship can be found easily via the scattering
matrix of the cylindrical element. First, calculate the field that
is radiated by arbitrary P j

n and Qj
n in the homogeneous medium

with constitutive parameters (εb, µb). By definition, the field
incident on the cylindrical element is as in (A.4), shown at the
top of the page. Second, define the diagonal matrices D1, D2,
D3, and D4 with entries

[D1]nn =H(2)
n (kbrj) (A.5)

[D2]nn = 

√
κb

θb
H(2)′

n (kbrj) (A.6)

[D3]nn =Jn(kbrj) (A.7)

[D4]nn = 

√
κb

θb
J ′

n(kbrj). (A.8)

Third, combine (16), (31), and (A.1) –(A.4) to find the relation-
ship between the unknown P j

n and Qj
n

Q = −[SjD2 + D4]−1[SjD1 + D3]P (A.9)

or

Yj = −[SjD2 + D4]−1[SjD1 + D3]. (A.10)
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