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Abstract. Macroscopic P (V) diagrams are consistent with microscopic U(r) diagrams, with U an (internal) 
energy of type 1/r, where r is a particle separation. If a universal equation of state (UEOS) for atoms 
exists, P (V) or U(r) diagrams can be used with the Vanderwaals-Maxwell binodal and spinodal. This 
reveals the energy dependence of an atom upon size variations and the corresponding intra-atomic phase-
transition. We show that the H Lyman ns-series indeed provides evidence for an intra-atomic phase-transition. 
We promote Bohr 1/n2 theory to an ideal atom theory, with atomic size varying as r=n2r0, wherein only the 
Bohr radius r0 = ħ2/µe2 and n, the principal quantum number, are needed. We detect a critical point for a 
phase-transition in H for n between 5 and 6, if the Bohr Rydberg 109678.7737 cm-1, the H ground state 
energy, is used as the asymptote. Unlike bound state QED, we associate this phase-transition with a shift 
from an atom (hydrogen)- to an antiatom (antihydrogen)-state. This symmetry breaking effect leads to chiral 
behavior, in line with our previous results from atomic line and molecular band spectra. A natural internal 
H↔H phase-transition, if real, must weigh heavily on ongoing CERN-AD artificial anti-hydrogen 
experiments. This result may well be the missing link to understand the macro- and microscopic behavior 
of neutral matter and justifies the further search for a UEOS. 
 
Keywords: universal equation of state (UEOS), Vanderwaals, Maxwell, binodal, spinodal, Bohr theory, 
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Introduction 
 

A recent study [1] of analyticity properties of the spinodal and the problems connected 
with the existence of a UEOS (Universal Equation of State) prompted us to review some earlier 
conclusions on the matter [2]. Unifying macroscopic behavior of many interacting particle systems 
with microscopic behavior of a single particle or unit system of natural observable systems is an 
important and challenging task in science at large (physics, chemistry, biology…). The standard 
classical, logical and self-explanatory viewpoint is that the most important difference between 
macro- and microscopic worlds stems from inter-particle interactions and from statistical effects 
(partition functions, distribution laws) both believed to have vanished in the simplest system imaginable, the 
single unit particle. For decades, this hypothesis has played a major role in the development of 
theories for a variety of disciplines (mean-field theory) but its absolute validity remains to be proved, 
which means that it must be formulated analytically using first principles only.  Classical macroscopic kinetic 
gas theory uses molecules as units and focuses on their individual properties (mass m and velocity 
v, measurable by means of by macroscopic observables pressure p and density d, since 
v=(3p/d)½). The history of physics and chemistry is full of attempts to solve the intriguing 
analytical relation between the macroscopic and microscopic world, whereby the universal function 
(UEOS, universal equation of state) remains to be found. With the ideal gas law and its extensions due to 
Vanderwaals, one tries to intrude into the characteristics of the unit particle on the basis of macroscopic 
evidence.  Diatomic molecules XY consist of two (different) atoms X and Y, a binary mixture with 
fixed composition, X2 is a cluster of 2 atoms X. The macroscopic aggregate of 1 mole of 
molecules is a cluster of N molecules X2 or 2N atoms X, where N is Avogadro’s number. The 
ultimate, critical and still missing link, however, is the P, V diagram for the microscopic world, i.e. for the single 
atom instead of the single molecule and the detection as well as the analytical description of any intra-atomic phase 
transition, if it would exist. We try to identify such an intra-atomic phase-transition by making 
advantage of the fact that a macroscopic P, V diagram has the potential of being also, at least 
theoretically, the equivalent of a microscopic U, r diagram, whereby U is some energy of type 1/r, with 
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r a measure for a size of some system or some distance between 2 particles. Trying to define the 
nature of the microscopic energy U, r is not straightforward. 

 
Phenomenology of the continuous transition between micro- and macro-world 

 
Knowledge about intermediate cases between macro- and micro-world is of interest and 

it is important to bridge this macro-micro-gap in a continuous way. Let us define the absolute stable 
unit as X, the atom, and the degree of clustering by suffix n. The starting point, the absolute micro-
world, is then described by unit X1. If it is impossible to study the single atom, we study a larger 
number N of atoms X1, say NX1. The next level, in terms of atoms in the unit, is the diatomic 
homonuclear molecule X2, which played an important role in kinetic gas theory for NX2 systems (see 
Introduction) but also in quantum theory (Planck-Einstein theory of specific heat) for micro-
system X2. Work on more complex clusters X3 indicates that double well or Mexican hat type 
potentials are also required to understand this clustering process [3]. This same type of potential 
is correlated at large with (chiral) symmetry breaking in elementary particle and atomic physics 
(single particle level X1) and to the behavior of chiral molecules (two or more particle level X2 and X4, 
whereby the X4 case relates to polyvalent atoms and non-homogeneous mixtures of atoms). At the 
homogeneous many-molecule level NX2, essentially the same but slightly distorted Mexican hat 
potentials appear but have, since the 19th century, been called binodals (see further below). This 
terminology stems from Vanderwaals-Maxwell theory, needed to explain macroscopic phase-
transitions (such as liquid-gas). Hence, phase-transitions within and between particles seem to be very 
similar, which justifies the search for a UEOS.  
 Theoretically, the most interesting case is when inter-particle forces are determined by intra-
particle force(s), responsible for the stability within a single unit. Then, the above hypothesis can be 
quantified in a consistent and satisfactory way. Finding an analytical universal function, applicable 
to and obeyed by both macro- and microscopic world, is an ever-continuing goal for scientists in 
many disciplines. The inverse argument is that homogeneous aggregates of particles show particle-
specific transitions between aggregation states (solid-liquid, liquid-gas, solid-gas…), the characteristics 
of which must be hidden already in the properties of the single neutral unit particle1. Despite many difficulties 
[1,2,4], it is plausible to assume that a UEOS indeed exists on the basis of two straightforward 
arguments.  
 
(a) Ionic aggregates (AB)n 
 First, there is the apparent similarity between the EOS (equation of state) for ionic solids 
(AB)n of Madelung-Coulomb type and the PEC (potential energy curve) for the unit, the ionic 
bond AB, which is of Born-Coulomb type [2,4]. The minimum in the EOS for solids (AB)n can be 
assessed from compressibility measurements, whereas the minimum in the PEC for the ionic bond AB 
can be extracted from its spectrum. In essence, this similarity between the two functions for the 
macroscopic and microscopic worlds is at the basis of trying to unify analytically equations of state 
(EOSs), valid for many particle systems, with universal potential functions (UPF), valid for a single 
particle. It is very clear that in this case the Coulomb force between particles (charge conjugated ions) within the 
unit is the unifying element for the EOS of the aggregate (crystal). This is in line with recent conclusions 
about the role of the Coulomb potential in chemical bonding [4]. 
 Many more complex potentials are available [1,2,4,5] but not all are performing equally 
well [1,5], pending their analytical form. Various potentials were proposed with the intimate 
prospect of being valid for the macroscopic world as well (see reviews [1,2,4]). It is believed, 
however, that the Coulomb potential is too simple a function to accommodate for the 
phenomena observed in both the micro- and macroscopic world for all types of bonds but this 
need not to be true [4]. So, the search for better functions, and their analytic behavior at critical 
points, is still going strong. According Brosh, Makov and Shneck [1], a good analytical UEOS is 
                                                 
1 This would be an illustration of ab uno disce omnes (Vergil, The Aeneid, II 65) 
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that of Vinet et al. [6], resulting from an earlier universal function suggested by Rose et al. [7]. 
Universal functions as those in [6-7] are supposed to apply to a variety of domains but must also 
meet the stringent condition to be applicable in both macro- and microscopic domains. UPFs 
must be useful for complex particle systems and single particles, ranging from elementary particle 
to nuclear and molecular physics (chemistry) to applied physics and chemistry as well and, 
therefore, from the macro- to the microscopic world. This means that the condition for universality must 
be understood and fulfilled from first principles. However, we must realize thereby that, to make observations, we 
are doomed to work continuously and exclusively in a macroscopic world2. 
 A drawback of Vinet-Rose-type functions [6-7], essentially covalent functions, is that an extra 
ionic term is needed, as remarked in [1], to be applicable also for the generic and simpler case of 
ionic bonds (ionic aggregates) of type (AB)n. In [1], it was argued that this correction term does 
not play an important role with respect to universality, which we feel this may be a wrong argument. For 
instance, looking at the straightforward universality in the ionic case, the need for an extra ionic 
correction term in an already ionic universal function seems strange. In fact, we showed that the choice of 
the binding energy for the unit system is critical to unify the spectral behavior of various types of 
bonds, e.g. covalent and ionic, in order to remove the so-called spectroscopic gap between the two 
[8]. This artificial gap is the direct result of a wrong asymptote choice. This is a serious problem for 
retracing universal behavior, since one cannot intermix, rather arbitrarily, totally different 
asymptotes (like covalent and ionic [8]). One must adhere to a single unique and well-defined 
asymptote in order to be able to speak of universal behavior, as I pointed out a long time ago [8]. 
This conclusion was apparently overlooked by Vinet et al. [6] as well as by Rose et al. [7] but 
seems to be confirmed by Brosh, Makov and Shneck [1]. Shifting rather arbitrarily from the 
covalent to ionic asymptote means that an ionic-covalent phase-transition is introduced 
artificially, if not arbitrarily or intuitively. This phase-transition between an atomic and an ionic 
system is not continuous in terms of asymptotes as it involves a charge-transfer of type X+Y ↔ X+ 
+ Y-, which affects the mode of the interaction, i.e. from ionic to non-ionic (atomic). This can be 
accompanied by large asymptote shifts, pending the difference between X and Y [8].  
 This important problem of choosing the best bond energy to arrive at universality [2,8] was at 
least recognized in [1] for the more specific context of testing the analyticity requirement for the 
spinodal, describing that part of the locus in the P, V diagram where the originally homogeneous 
phase becomes very sensitive to small fluctuations. The universal function is largely determined 
by its asymptote. If the function is really universal, scaling each function with this asymptote 
must invariantly reproduce the same universal numerical function [4] much like Vanderwaals reduced 
equation of state (see below). Similarly, the spectroscopic constants can be unified [8] just by 
redefining the Sutherland parameter, first introduced by Varhsni [5]. This important parameter 
for molecular spectroscopy and its underlying universal function is, in turn, a simple scalable 
function of that asymptote [1,2,4,5,8]. In terms of Helmholtz free energies F, the asymptote 
problem can be stated generally as [1] 
 F(P,V0) – F(P,V∞) = F0     (1) 
whereby F0 is the asymptote (the reference free energy) needed to describe the system and to check, 
eventually, for the occurrence of phase-transitions in the system. Free energy F0 has only to do 
with the smooth or continuous expansion (contraction) process from V0 to V∞, or, eventually in the 
micro-world, from r0 to r∞. This means in particular that phase transitions, having nothing to do with 
this continuous expansion or contraction process (such like a discrete redistribution of charges by charge 
transfers) cannot be allowed if they occur in the region between r0 and r∞. In concreto, the ideal 
ionic Coulomb potential –e2/r would not tolerate different kinds of phase-transitions somewhere 
between r0 and r∞. In search for universal behavior of Coulomb type, an atomic asymptote with 
energy -UXX cannot be used for an ionic interaction [2,4,8]. Only an ionic Coulomb asymptote 
with energy of type  -UX+Y- is to be recommended in a process like (1) if an ionic model holds for 
                                                 
2 Today, single particle measurements are only possible for ions (not neutral particles) but the set-up is extremely 
complex. The apparatus is so sensitive that it is almost impossible to avoid environmental noise.  
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the size variations covered by (1). As a matter of fact, ionic asymptotes are much more suited to rationalize 
the universal behavior of individual bonds, described by their molecular spectroscopic constants [2,4,8]. For F0, 
producing a constraint for UEOS by means of (1), a similar conclusion was reached in [1] but on 
different grounds. 
  
(b) Dimensional analysis 
 The macroscopic energy PV in kinetic gas theory (from which the ideal gas law derives) 
shows that the force exerted by the particles on the wall of the pressure chamber derives from 
their mass, their average (microscopic) velocity as well as from the number of colliding particles 
in a unit time. A change in T gives a shift in the hyperbolic P, V diagrams, all reflecting the behavior of 
an ideal gas without an internal phase-transition.  
 Classical macroscopic energy PV is a force divided by a unit surface (length2) and multiplied 
by a volume (length3). For any inverse power force 1/r2 (length-2), the result for product PV is 
always an energy U of type 1/r (if r is commensurate with the characteristic length for the system). 
For unit system species H (the prototype for atoms), the classical kinetic energy U of type 
½mHv2

H, commensurate with a thermal energy kTH, leads invariantly to a U(r) diagram of 
hyperbolic type also. If true, this ascertains that the first candidate for a universal function of the 
ideal kind (like the ideal gas law) can be a simple 1/r interaction law as Coulomb’s, exactly as we 
suggested recently [4]. The Coulomb law itself is also the starting point of the Bohr model for 
atom H. Then, if the deviations from the ideal gas law PV=RT (wherein the observed 
macroscopic phase-transitions are missing) can be understood with adaptations of Vanderwaals-
Maxwell type, it can be anticipated that similar corrections must be introduced for understanding 
phase-transitions in the micro-world or within atoms, i.e. deviations from the inverse power law 
like Coulomb’s, which then serves as an ideal law of interaction.  
 
Can there be a phase-transition within a unit system like H? 
 
 The generic obstacle in the transition form a macro- to a micro-system is the concept of states of 
aggregation. A single unit of matter, when isolated, can never show the properties of changes in the state of 
aggregation, so clearly visible when a macro-system is studied. The single unit can only be subject to changes in 
external conditions (temperature, pressure…) which forces one to look for phase-transitions, if any, within the unit 
system itself. Then this internal phase transition, if detectable, can be at the root of observed changes (in the state of 
aggregation) in the corresponding macro-system.  
 However, since neutral species H can be looked upon as a stable Coulomb system, e.g. 
the electron-proton bond, with a static Coulomb energy varying as –e2/r, it is obvious that, if an 
internal phase-transition is possible in unit H, this species shall have to looked upon as a binary 
mixture of two different phases, say Hα and Hβ. Partition functions are available from the molar 
composition of this binary mixture, say x for phase Hα and (1-x) for phase Hβ, obeying 1 = x + 1-
x. Then, a non-ideal behavior of neutral species H, with internal composition 
 H = xHα + (1-x)Hβ      (2)  
subject to size variations can only show, in the Vanderwaals-Maxwell view, when some physical or 
internal physical properties of Hα are different from those of Hβ. The experimental detection of a phase-transition 
connected with (2) is then crucial [9]. Then, in the classical macroscopic view, phase Hα would be 
linked with the liquid state, whereas Hβ would refer to the gaseous state, in coexistence with the 
liquid (or vice versa). This working hypothesis suffices to make the further analysis consistent. 
 Based upon additional arguments along lines (a) and (b) above, we recently even gave 
evidence for considering the simple Coulomb potential itself as a serious candidate for being a 
truly universal function for all types of molecules, including covalent molecule H2 [4]. But, if the 
inter-atomic Coulomb function were really universal, this unconventional but nevertheless 
appealing solution has a price: we should concede that a natural atom could somehow transform naturally into 
a charge-inverted anti-atom [4]. This is the only way to smuggle in pseudo-ionic Coulomb attraction 
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into covalent bonds like H2 [4]. One can argue whether or not this is too high a price. But, to be 
consistent and to make sense [10], this rather unconventional view directly implies that the 
available atomic H line spectrum should provide evidence for a phase-transition between a 
hydrogen- and an antihydrogen-state, to be interpreted with deviations from a pure Coulomb law 
(a field effect), as suggested in (2). To the best of my knowledge, this has never been reported in 
the post-Bohr era, not even in the context of highly accurate bound state QED where most 
corrections are of non-classical type. Surprisingly, spectral evidence for mirror symmetry within the 
hydrogen species exists [10]. This brings us to the problem of phase-transitions in general and in 
hydrogen in particular as sketched in (2) using the prescription of this physical process provided 
by the classical 19th century the Vanderwaals-equation. We just have to find a way to realize this. 
 We could promote Bohr 1/n2 theory to an ideal atom law (the ideal rotator), to remain in 
line with the terminology of classical thermodynamics and the kinetics based macroscopic ideal 
gas law. The justification is that original microscopic Bohr 1/n2 theory for H gives errors of 10-7 to 
10-8 for terms, an accuracy much better than that of most macroscopic measurements. We must 
then find quantitative evidence for critical points (critical n-values) in the internal energy, when the 
size of H is altered. If an atomic UEOS-thesis is valid, the observed U(r) diagram for H must be 
similar to the classical P (V) diagram for the macroscopic phase-transition of the homogenous 
hydrogen gas when compressed to transform in the homogeneous liquid. By extension and by using 
experimental data on the compression of single species H, we find that there is indeed a phase-transition within H 
during such a compression. This phase-transition can, be it not exclusively, be understood with a 
reversible hydrogen-antihydrogen (H↔H) transition like in (2), for which we already presented 
evidence elsewhere [10]. We can now explicitly illustrate this remarkable natural phase-transition 
with its binodal for the simple electron-proton bond. This result is in line with the classical Vanderwaals-
Maxwell interpretation of macroscopic phase-transitions in homogeneous and in binary systems. 
Its possible impact on the ongoing CERN-AD experiments on artificially produced antihydrogen 
[11-13] is discussed. 
 
Theory: from a macro- to a micro system of neutral particles (units of matter) 
 
Classical transition from macro- to micro-systems using Avogadro’s number as a scale factor. Consequences of 
particle models. 
 Having collected sufficient arguments to unify our view about the micro-system, the 
neutral matter unit and the macro-system, consisting of aggregates of these matter units, we must 
look for analogies in their analytical treatment in order to arrive at a UEOS. 
 We skip the details of the full thermodynamic treatment, including the partition functions 
and distribution laws and including the unit based analytical treatment using mass, pressure and 
velocity. We start with the ideal gas law and the Vanderwaals equation, as the two are related to 
the virial (and its coefficients). The classical ideal gas law is the standard equation of state (EOS) 
 PV=RT=NkT       (3)  
where k is the Boltzmann constant, and it is valid, in this form, for one mole of or for N neutral 
non-interacting molecules or atoms. The law led to Avogadro’s number and Kelvin’s absolute 
temperature, using a classical kinetic model, based upon a material point description for (non-
interacting) particles. 
 To understand deviations from (3), the material point-description had to be abandoned, since 
it does not take into account the dimensions of a neutral unit (molecule, atom). Using a sphere-
like model instead, elementary corrections to the ideal gas law or EOS (1) are easily found (we 
leave out important more recent solutions like Flory and mean-field theory…). 
 Vanderwaals’ 1873 seminal refinement of (3) led to a more general form  

(P+a/V2) (V-b) = RT=NkT      (4)  
which is one of the major achievements of classical physics [14]. The ideal gas law, EOS (3), 
states that for a given temperature T, P varies inversely with V: a higher external pressure P leads to 
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a smaller volume V for a mole of units of a homogeneous ideal gas and vice versa. In reality, 
gases, when being compressed, show an easily observable phase-transition, which sets in at the 
condensation point, after which the gas gradually goes over in a liquid, without changing the nature or 
the identity of the neutral units (atoms, molecules) of the originally homogeneous gas. Macroscopic evidence led 
Vanderwaals to (4) to cope with observed liquid-gas phase-transitions. EOS (4) is obeyed well by 
experiment, although refinements are still needed, such as Van Laar’s formula for volume b (4). 
Transitions between different states of aggregation can conveniently be called order-disorder 
transitionS and, as such, are of fundamental importance in a number of applied sciences. 
 As early realized by Maxwell, the impact of (4) was dramatic, especially when it appeared 
that Vanderwaals constant a is also related to the dielectric constant. The search for a UEOS for an 
aggregate of neutral units (atoms, molecules) goes on for decades [2,4] for a variety of reasons. 
For instance, EOS (4) leads to a numerical reduced Vanderwaals equation, referring in a universal way 
to critical points in any macro-system and to the law of corresponding states. It also led Maxwell to an 
underlying function of state, determining qualitatively the internal mechanics of phase-transitions 
not only in homogeneous aggregates but also in non-homogeneous binary mixtures, all relying on 
(4). Binodals and spinodals appear, which are fundamental to understand analytically a variety of 
observed critical phenomena, especially phase-transitions in particle aggregates of various types 
(solid, liquid, gas states, non-homogeneous) [1]. Given the fact that the Helmholtz free energy 
should be analytic at the spinodal, an UEOS like Vinet’s [6] or a pseudospinodal EOS like 
Boanza’s [15] can be tested for analyticity at this locus in the P, V diagram [1]. We remind that the 
binodal is the classical macroscopic equivalent of the modern double well or Mexican hat-type potential energy 
curves for the micro-world, derived by Hund [16] to explain 19th century macroscopically observed 
chiral behavior (see also below).  
 The homogeneous less ordered gas while condensing and the homogeneous more ordered 
liquid while boiling form a binary mixture, with a continuously varying molar constitution, since the 
gas has different physical properties than the liquid. So, Maxwell’s analysis also applies to 
homogeneous species and its simplest phase-transitions: changes in the state of aggregation. 
 It can therefore be expected that, in nature, any possible phase-transition in a single unit of a non-
composite species, by definition homogeneous, can be characterized by means of the appearance of a binodal, the 
shape of which is easily derived from the general shape of the Vanderwaals-Maxwell P, V diagram resulting from 
(4). This is the ultimate justification for the search for a universal function or UEOS. A basic difficulty is the 
assessment of that part of binodal and spinodal, which cannot be determined experimentally [1]. Classically, this 
corresponds with the existence and occurrence of negative pressures during a classical liquid-gas phase-transition, 
which seems like a mathematical artifact, even in the Maxwell approximation.   
 The ever-continuing impact of (4), many years after its introduction and in an era full of 
powerful quantum and field theories, is not surprising since there is not yet a useful alternative. In 
addition, it is amazing that the two correction terms in (4) with a and b, are extremely simple to 
understand classically. They are directly and simply linked to the change of model for the unit structure, say 
from point to sphere. The term +a/V2 is a correction for an interaction between unit systems (neutral 
spheres, not points), which leads to a higher (extra internal) pressure than that applied externally 
(the so-called Vanderwaals forces). The second term –b, a volume, diminishes the volume V available 
for the system (say the vessel or the container) since the sphere-like unit structures themselves 
also occupy a certain volume (a self-volume). For instance, the self-volume of ideal material 
points, underlying the ideal gas law is zero or negligible. Its effect is that the pressure applied 
externally seems larger than it is, whereas the term in a makes it seem smaller than it is in reality. 
 The net effect of these two corrections shows most clearly in the corresponding P, V-
diagram. Rewriting (2), we get the two opposite effects on P, since 
 P = RT/(V-b) – a/V2      (5a) 
 P/RT = 1/(V-b) – (a/RT)/V2     (5b) 
 Whereas the ideal gas law leads to a simple inverse power law or hyperbolic behavior of P 
in function of V since P =RT/V, the Vanderwaals modifications give rise to departures from this 
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behavior using the simple classical arguments cited above. The critical points, at which the inverse P, V 
power law is no longer obeyed, correspond with the observed phase-transitions (say liquid-gas). 
The shape of this observed P, V-diagram is given in Fig. 1a but it is available in any textbook on 
physical chemistry or thermodynamics [17]. The maximum in the P, V diagram in Fig. 1a 
indicated with a blackened square on the curve, arrived at when compressing the gas, plays a 
crucial role in the Vanderwaals-Maxwell theory (see further below). Reversing the argument for (3) 
leads to the conclusion that the P, 1/V-diagram for the ideal gas must consist of (parallel) straight lines, as shown 
in Fig. 1b. 
 
INSERT Fig. 1a and 1b around here 
 
 Quantitatively, small correction terms in a and b can only have a small effect upon 
deviations from the ideal gas law. Only in these cases, (5a) can be expanded to give 

P = (RT/V)(1 + b/V) – a/V2     (6)   
Apart from one leading linear term in 1/V, two algebraically competitive quadratic terms in ±1/V2 
are generated for the deviations from the ideal gas law. These are two opposed parabolas in 1/V2, 
superimposed upon or instead of a straight line in 1/V for the ideal gas. In size effects of the sphere-
like particle with radius r, this corresponds with variations in 1/r6. Extracting the deviations from the ideal 
gas law gives 

PV/RT = 1 + b/V – (a/RT)/V    (7a) 
PV/RT - 1 = b/V – (a/RT)/V    (7b) 

or two algebraically competitive linear terms in ±1/V for any given temperature T. This corresponds 
with opposing size effects of order 1/r3. For a and b both small, the limiting value for (7a) is 1, the ideal 
gas case, whereas for (7b) it is zero. The size of the vessel, determining V, must be commensurate 
with the physical properties of the substance –including the number of particles in the vessel- 
before any of the critical algebraic effects in (6) and (7), i.e. the phase transitions, can show.  
 Alternatively, we can compress a single particle contained in a compressor, whereby 
critical phenomena can only occur when the distance between piston and bottom of the pressure 
chamber become commensurate with the dimensions (say the diameter) of the neutral unit. 
 The numerical analytical difference between (6) and (7) of restrictive validity (expansion 
for small b) and the original versions (4) and (5) is extremely important for fitting data, as for 
instance done for the pseudospinodal of Boanza-type [15], as remarked in [1]. This is indicated in 
Fig. 1a for contribution 1/(V-b) where the power fit is clearly in error with respect to the smooth line joining 
the data points. The error increases with decreasing V. A similar remark applies to contribution –
a/V2, a perfect parabola in the 1/V representation, which can never be fitted with a power law in 
V due to its negative sign (this is why in Fig. 1a the term +a/V2 is shown). 

To illustrate some of these difficulties, we also give Fig. 1b, which is the corresponding P, 
1/V diagram, with essentially the same meaning as Fig. 1a. Only variable V has been inverted to 
1/V. In this form the function can be fitted accurately, which is not so for the curve(s) in Fig. 1a. 
The ideal gas law term is now a straight line indeed, as remarked above, whereas the two 
Vanderwaals correction terms in (4) when added, give rise to a binodal or a Mexican hat type curve. 
Obviously, the function must vanish at 1/V=0, since this corresponds with the absence of a 
particle3 (zero pressure, infinite volume) in the P, V diagram. But due to its very manageable 
analytical behavior, we can nevertheless extrapolate the curve towards negative 1/V, as illustrated 
in Fig. 1b. A slightly distorted binodal or a Mexican hat type curve emerges, which confirms our 
above interpretation of 19th century classical binodals. Understanding this in terms of physics may 
not seem straightforward but it is. When interpreted with a density, a negative volume stands for a 
negative mass particle. Hence, the 19th century Vanderwaals-Maxwell analysis allows us to 
extrapolate the observed behavior of neutral positive mass particles towards the hypothetical 
negative mass world. We immediately verify de visu that that algebraic symmetry is broken. In addition, we 
                                                 
3 This corresponds with the famous sentence in Corneille’s El Cid: Et le combat cessa faute de combattants. 
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observe that the well in the positive mass world originates from a negative pressure, one of the 
most difficult problems in connection with Vanderwaals-Maxwell theory and of phase-transitions 
in general (see the problems with pseudo-spinodals mentioned in [1]). Only to arrive at similar 
tangents in both worlds, we must shift the negative pressure line as shown in Fig. 1b (broken 
straight line). Although this may clarify some of the analyticity problems associated with binodals 
and spinodals for macro-systems [1], the ultimate problem is to associate all of these complicating 
aspects towards the unit particle, a single neutral positive mass particle like H.   
 The next question is therefore what happens if we go over to a micro-system, consisting of only one neutral 
unit (atom) contained in a non-interacting vessel commensurate with its size. Although for ionic crystals the 
situation is quite clear and relatively simple as remarked above in (a), the problem is more difficult for other (non-
ionic) systems like the hydrogen gas or the hydrogen atom, the system we will study below.  
 As stated in the Introduction, even at the low particle level (Xn, n=3,4,5, say Na3) it is 
necessary, to understand their internal mechanics, to invoke Mexican hat-type potentials 
(binodals) [3]. In small systems, similar internal phase-transitions must occur as those observed in 
the macroscopic world (Maxwell’s binodal) and we could expect that for X1, X2…Xn a similar 
situation holds, which, finally must lead to a useful analytical UEOS. 
 Nevertheless, in terms of scaling (scale reduction), the transition from macro- to micro-
system in the case of an ideal gas goes only and simply with the dimensionless Avogadro number 
N (scaling by a number), without affecting any internal physics as in a Vanderwaals equation. We get 
 P(V/N) = kT       (8) 
and can now define the critical commensurate volume V as N times the volume v of a single 
neutral particle (atom, molecule), giving V=Nv. With Boltzman’s constant k=R/N, (8) becomes 
  Pv/kT = 1       (9) 
which should be as valid for an ideal neutral unit as (1) or (5) is valid for a mole or N units, forming the ideal 
homogeneous gas.  Pure scaling with Avogadro’s number suggests that the ideal internal energy U of 1/r-type is 
equally applicable to the micro-world. 
 The next problem is then to verify experimentally how the single unit (the neutral atom) 
itself behaves under size variations, like expansions or compressions. If these variations obey (9), 
the behavior of this unit structure, the atom, can be called ideal. If it does not, for instance if it 
would obey a Vanderwaals-type equation (4)-(7), the unit does not show ideal (say point-like) 
behavior. Then, to be consistent, we must identify the phase-transition(s) for (2), eventually 
hidden within this unit sphere-like structure to explain the deviations from ideal (Coulomb-type) 
behavior, not incorporated in (9).  
 
Expansion and compression of atom H, viewed from its line spectrum. A critical n at n=π? 
 To describe the spectral behavior of species H, a number of equivalent expressions for 
the internal energy of this species must be compared, using appropriate conversion factors to 
arrive at the best possible experimental disclosure of the internal mechanics of the species. In the 
case of unit H, we are led to compare equivalent energy expressions like 

PvH= ½mHv2
H =amHc2 =ae2/rH = UH     (10a) 

either with microscopic thermodynamic critical values for 
kT or kTH       (10b) 

as derived from (7a). If we want to use spectral data with electromagnetic fields, we can use similar 
H-specific expressions like  

hνH =hc/λH= (2πe2/α)/λH     (10c) 
where we made use of Sommerfeld’s fine structure constant α (a field scale factor) 
 α= e2/ħc= 2πe2/hc      (10d) 
. The appearance of the ratio of concurrent energy expressions hνH/kTH, e.g. the ratio (10c) 
and (10b), for the microscopic world must not come as a surprise since it is also at the roots of 
the Planck-Einstein equation for the specific heat of neutral particles (diatomic molecules) from 
which quantum theory and wave mechanics were finally derived. 
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 If we want to be complete, we could even include gravitational effects like 
 mHghH        (10e) 
as attempted already elsewhere [18]. These are the most likely unit energy expressions to be 
connected directly with mass unit H, since practically all of them, whether or not in combination, 
are needed to describe species H in full, both in the micro- and in the macro-world.  
 There are, of course, great expectations about the congruency, if not identity, between 
UEOS of classical Vanderwaals-type, bound to macroscopic behavior, and universal potential 
functions UPFs, corresponding with the description of the internal mechanics (and possible 
phase-transitions) within the unit structure itself (atom, molecule). For UPFs, wave (or quantum) 
mechanics is needed to describe its internal structure effects. However, irrespective of any theoretical 
framework, accurate information on its internal mechanics is experimentally assessable with line spectra for atoms 
or with band spectra for molecules, due to concurrent energies of type (10). All these contributions and efforts 
illustrate the importance of the transition between macroscopic and microscopic behavior in 
nature, as remarked in the Introduction. 
 To make the present discussion more transparent, we skip the effect of equating (10a) 
and (10c) directly, which is a problem in its own right and which is discussed in full elsewhere 
[19]. As shown there, equating the two leads, from first principle’s only, quantitatively and very simply 
to a critical value for Bohr’s principal quantum number n, equal to irrational π or 

n = π        (10f) 
completely invisible in bound state QED (see review [20]) as well as in original Bohr theory, for reasons 
explained in [19]. This identity (10f) will be referred to below in connection with the observed 
binodal for single neutral species H. 
 
Atom as a micro system. Ideal atom law. Quantitative criteria. 
 To make the cases comparable, we must find an equivalent of the ideal gas law (without 
phase-transitions) in the macroscopic world with some law, describing the behavior of a single 
ideal atom (or molecule), without a phase-transition. 
 Let us therefore return to the apparent correlation between the EOS of an ionic crystal 
and the UPF for the single ionic bond. For ionic crystals, the Madelung form factor, as well as 
compressibility data suffice to arrive at a turning point in the EOS using the ionic Coulomb law. 
Repulsive forces of type +1/Rn (n>>1) in the single ionic bond AB have a similar effect on the 
same Coulomb law –1/R around the equilibrium distance. According to [1], the problems to 
assess the analytical form of UEOS and/or UPFs are almost identical: finding the real asymptote 
(the best bond energy), which defines the final shape of the PEC or EOS (eventually containing a 
binodal and spinodal if there were a phase transition of any kind). If, as we proposed recently [4], 
the most likely UPF for molecule XY with bond length rXY were an ionic Coulomb law, we get 

UXY = -ce2/rXY       (11) 
 The correlation with macroscopic EOS (1) is that the internal energy (pressure) within a 
single molecule increases (absolutely) with decreasing separation between its bonding partners, 
pending the value of c or that U varies inversely with r. In other terms, the U, 1/r diagram for the 
single bond XY should be a straight line, just like we found [4]. This behavior resembles the P, 
1/V-diagram for aggregates of molecules XY (see above, paragraph (b) and Fig. 1b) since a 
pressure is dimensionally equivalent to an energy divided by a volume.  
 If there is really a correlation between (3) and (11), this can only be valid when (3) is 
scaled by N as in (9), which means that the aggregate of N atoms or molecules is reduced to a 
single atom or a single molecule. Then the central issue is to find out what exactly are the remains of the non-
covalent Vanderwaals-type forces underlying (4) within a given single structure (atom, molecule), if any. 
The molecular PECS and the possible UPF were discussed in [2,4]. As stated in the Introduction, 
we must now stress the similarity between the deviations from classical EOS (3) as conceived by 
Vanderwaals in his famous equation (4) for the ideal hydrogen gas and those observed for equally 
classical scaled EOS (9), which means a UPF for the single atom H, as indicated in (2).  
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 Although the discussion seems to become of academic interest only, also the problem of 
the influence of pressure upon the internal structure of (single) atoms is of longstanding interest 
[21] as it could provide with a direct quantitative link between EOS (3) and UPF (5), eventually 
leading to a UEOS.  
 We can, however, still proceed analytically to solve this intriguing matter. Coulomb’s law can only be 
considered as the universal law for ideal ionic molecules [4] if and only if the ionic instead of the 
non-ionic or covalent bond energy (asymptote) is used for scaling [2,4,8]. Then, size variations 
for any Coulomb system are generically fixed with  

r=nr0        (12a)  
Subsequently, we obtain formally for (1) 
 -[U(r=1.r0) – U(r=∞.r0)] = -U(r0) = e2/r0   (12b) 
Only by defining U0 as –e2/r0, we can consistently go over to a pure number theory since 
 U(r)/U(r0)= r0/r = 1/n     (12c)  
whereby the nature of the interaction, determined by e2, does not even interfere. The full 
analytical treatment for this case, even covalent molecule H2, is given in [4]. 

In line with (12), it is simple to move to single atom like H, using Bohr theory for the 
ideal (circular) orbit model for any rotator subject to a central Coulomb force. We get 

r = n2r0        (13a) 
instead of linear n-dependence (12a) for the static ionic bond or for any Coulomb system. 

With standard Bohr theory for the ideal rotator, we obtain energies 
 UH = EnH = -RH/n2 = -(½e2/rH)/n2    (13b) 
where EnH is the energy of level n, RH is the Bohr Rydberg, rH is the H-radius and n is the 
principal quantum number. 
 In terms of the formulation with free energies as in (1), we arrive at the Rydberg, since 
 -[UH(n=1) – UH(n=∞)] = ½e2/rH = ½mHv2

H = RH     (13c) 
This is rather accurately known experimentally (109678.7737 cm-1, an accuracy of 3 MHz) [22]. 
Similarly, we can move to a pure number notation as in (12c) realizing however that we now 
obtain a quadratic dependence, since 
  UH(r)/UH(r0) = r0/r = 1/n2     (13d) 
Nevertheless, spectral lines, positive term-values TnH, are arrived at with a difference not with a ratio. 
In fact, observed TnH provide EnH in Bohr theory by means of 
 TnH = RH(1-1/n2) = RH +EnH     (14a) 
leading to T1H=0 for n=1 and to T∞H = RH for n=∞, the standard reference binding energy or 
asymptote we wish to have available in the first place, according to (1). 

As a first consequence when looking at (13b), phase-transitions within H are not allowed or are not 
covered by Bohr atom theory, just like the ideal gas law (point-model) as it stands cannot cope analytically with 
phase-transitions either. Also, a dilemma or dual interpretation emerges: if H were just a Coulomb system, its size 
variations r/r0 are linear in number n, see (12a) and (12c), but if it were just a true rotator like in Bohr theory, 
its size variations would have to go with quadratic n2 instead, see (13a) and (13d). 

 
Bohr theory as an ideal atom theory, without phase-transitions (the ideal gas law 
paradigm) 

 
Near ideal behavior. Errors of Bohr theory 

Inspection of (13a) and (13b) reveals that a species like H, when being expanded as 
described by (13a), its internal energy varies like prescribed by (13b). The errors of Bohr theory 
(13b) are small, since of order 10-7 to 10-8 for terms if the ground state energy (n=1) of the Bohr 
model is put equal to R1H = 109678.7737 cm-1, the series limit given by Kelly [22] for the 
observed Lyman ns-series. Kelly’s set contains the best set of observed data available for a near 
complete series of lines (Lyman ns½-series from n=1 to n=20) are rounded at 0.0001 cm-1 (or a 
systematic absolute error of 3 MHz). 

Please use CPS: physchem/0308006 in any reference to this article

This article is available from: http://preprint.chemweb.com/physchem/0308006    Uploaded 25 August 2003 at 10:42 GMT



G. Van Hooydonk Vanderwaals-Maxwell antihydrogen pag. 11 

Nevertheless, if, in reality, there were remnants of the static Coulomb-recipe, for which 
expansions should follow a linear n-dependence like in (12a), deviations must show when looking 
at the spectral data.  

 
INSERT Fig. 2 around here 
 

 Fig. 2 illustrates the behavior of Bohr theory (14) in comparison with experimental data 
for TnH, taken from Kelly [22] (see Table 1). Both sets of data are plotted versus 1/n. For (14) to 
be valid, the fit should be perfectly quadratic for 1/n, without a linear term in 1/n, as suggested by 
(12a). The fit4 for TnH shown in Fig. 2 is slightly different than predicted by Bohr’s 1/n2 theory 
 TnH = 109678,8041 –0.2939/n -109678,5216/n2 cm-1  (15a)  
This result clearly indicates that the influence of (12a), pure Coulomb scaling of type 1/n, is not completely 
negligible and that Bohr scaling (13a) of type 1/n2 is not exactly true. Nevertheless, it seems relatively safe 
to conclude from fit (15a) also that the Bohr model is sufficiently accurate to serve as an ideal atom 
theory, to be understood in terms of circular orbits for the electron in the Lyman ns-series. In fact, 
it is not yet clear at this stage if the errors produced are of pure statistical rather than 
systematic/fundamental nature. To verify this, a more detailed test of Bohr theory must be 
provided to find out if Bohr 1/n2 theory is really the measure (the ideal atom law). A simple way to 
find out if neutral species H obeys this circular model would be to compare the observed result 
TnH (or –EnH) directly with the Bohr prediction RH/n2 (which we will do in the Results section). 
 A remarkable consequence of the fact that both (12a) and (13a) may be valuable solutions 
for unit system H, when looking at fitted result (15a), is that their arithmetic mean  
 r/r0 = ½n(n+1)      (15b) 
for r/r0 =1 returns the quadratic relation 
 ½n2+½n – 1 =0      (15c) 
with solutions n=-2 and n=1. Other consequences of this strange relation are given in [19] and in 
the references therein. 
 
Existence of an harmonic Rydberg for species H  

Alternatively, we may find out first if there are variations in the Rydberg if we use the 
integer n-values postulated by Bohr’s quantum hypothesis. This generates running Rydbergs [10] 
 RH(n) = -EnH.n2      (16) 
The validity of Bohr theory now depends on the question whether or not RH(n) is a constant, 
equal to 109678.7737 cm-1 in the whole range of the series from n=1 to n=20 available from 
Kelly [22]. If not, the possibility that –within the constraints of the Bohr model- a phase-transition in the 
H-species appears can theoretically not be ruled out, pending the shape of the corrected curve in 
function of n. This corresponds with the problem of deciding about the nature of the errors 
produced with Bohr theory, discussed in the foregoing paragraph. 
 An analysis based upon (16) reveals that RH(n) values follow a perfect quadratic variation 
in function of 1/n [10]. In fact, just like with (7), the ratio 
 (RH/n2)/(-EnH) ≈ 1      (17) 
should be close to the ideal value 1, predicted by Bohr theory. There is however only one Rydberg 
value, tangent to the complete series, which we called the harmonic Rydberg [10,19], with a value 
of 109679.3589 cm-1. 
 If we want to assess the energies associated with hidden phase-transitions in the H-
system, we must (a) choose a proper or the best running Rydberg RH (nx) at some particular nx-
value, (b) suppose this remains constant (as in Bohr theory) and (c) compute energy differences  
 ∆nH = |EnH| - RH(nx)/n2     (18) 

                                                 
4 Fits to order 1/n4 are of QED-type. These are discussed elsewhere [10,19]. 
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which is the procedure we will follow in this work. Then we have the choice between ∆, n- and 
∆, 1/n-diagrams. Since we found a new and harmonic Rydberg [10], choosing the best Rydberg 
RH(nx) to test Bohr theory, is not straightforward. 
 
Three Rydbergs (series limits) available to test Bohr theory for the occurrence of internal phase transitions in H 
 (i) nx=1. The original series limit, introduced by Bohr, applies to the ground state (n=1) 
and can therefore be designated as RH(nx) = RH(1) and has the value 109678.7737 cm-1. 
 (ii) nx=∞. Bound state QED [20] calculates energies starting from the other end of the 
series at n=∞. This Rydberg RH(∞) has the value 109677.5704 cm-1, using the Kelly-data, as 
derived in [19]. This Rydberg is related to absolute Rydberg for an infinitely heavy baryon R∞, 
divided by the classical recoil correction (1+me/Mp). 
 (iii) nx=½π [10]. The third Rydberg we can use is the harmonic Rydberg, tangent to the 
series of running Rydbergs (11), as we showed recently [10,19]. Analytically, this would be the 
best Rydberg available in the context of Bohr theory (which requires a constant Rydberg for the 
complete series). This harmonic Rydberg Rharm is found at a critical non-integer n=½π = 1.5727 
([19], see also [10]). Its value is RH(=½π) = 109679.3589 cm-1as shown in [19]. We remark that this 
last critical and harmonic Rydberg does not play any role in bound state QED –unless indirectly- and, as such, is 
not tabulated by NIST although it is probably the only internal anchor available to discuss the internal mechanics 
of the H-species. 
 For the sake of simplicity, we call the three Rydbergs respectively RBohr (n=1), RQED (n=∞) 
and Rharm(nx=½π). Using these in (13) gives three sets of energy differences ∆Bohr, ∆QED and ∆harm 
respectively. 
 
Results and Discussion 
 
 With Kelly data for the Lyman ns-series [22], the results of (13) for the three different 
Rydbergs are given in Table 1 (columns 4, 5 and 6). The n, 1/n and TnH-values are in columns 1, 
2 and 3. The resulting diagrams ∆, n are in Fig. 3a-c; diagrams ∆, 1/n are in Fig 4a-c. 
 
INSERT Fig. 3a,b,c around here 
  
∆, n diagrams for H (related to the P, V-diagram in Fig. 1a) 
 Reminding the classical Vanderwaals-Maxwell P, V-diagrams for macroscopic systems 
showing phase transitions as in Fig. 1a, it is remarkable that the shapes of the ∆, n diagrams for H 
in Fig. 3 are very similar. The most remarkable of the three is the curve in Fig. 3a for the Bohr set 
∆Bohr. As we remarked for Fig. 1a, there is a critical maximum in the compression in the P, V 
diagram for macroscopic systems, as indicated in diagram 3a. For single unit H, this maximum in Fig. 
3a appears at a critical n-value between 5 and 6. This is one of the most curious and particular results of the 
present investigation, which needs further and thorough analytical treatment, which we will present elsewhere [24]. 
It is obvious moreover that this critical n-value is intimately and exclusively connected with the 
Bohr asymptote RBohr, since the two other asymptotes do not lead to this information (see Fig. 3). 
 We cannot verify at this instance whether or not Maxwell’s rule, i.e. that the surfaces of 
the positive and negative deviations of the curve from a horizontal line in Fig. 3a, is obeyed for 
the isothermal expansion or compression of species H. Since this rule is so important for many 
other laws in thermodynamics, we must await results on the associated adiabatic process.  
 These 3 figures also illustrate how important it is to choose the correct asymptote to 
describe, eventually, in a consistent way phase-transitions [1] as we also remarked above. 
 Nevertheless, the inescapable conclusion from these ∆, n diagrams for H is that the 
neutral H species exhibits a phase-transition described with a curve (Fig. 3a), completely in line 
with the Vanderwaals-Maxwell description for macroscopic aggregates in Fig. 1a. The next 
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conclusion is then that species H is a binary mixture of two different states (2). How to interpret 
this or conversion process (2) in the microscopic world is a real challenge.  
 The first option possible is connected with the circular Bohr model, whereby total angular 
momentum (or any of its constituents), perpendicular to the plane of rotation, changes sign. This 
would lead to the classical distinction of two different spin-states for atom H: H(↑) and H(↓) or 
H(+½) and H(-½). 
 Obviously, the second option is that in which the H-species can be present in an atom state 
and in a charge-inverted antiatom-state, which is a distinction very similar with the spin-states, since 
we would get H(+1) and H(-1) or hydrogen H and antihydrogen H. Here the internal charge 
distribution changes from +1 (electron-proton) to –1 (positron-antiproton). 
 We remark that none of the three curves in Fig. 3 can be fitted with reasonable success 
(we tested to order n6). Similar fitting difficulties were already discussed when we presented Fig. 
1a and Fig. 1b above. At the end, these are important for the analyticity of binodal and spinodal, 
the main point raised in [1]. In that context, it remains important to assess as analytically and as 
quantitatively as possible that part of the P, V or P, 1/V diagram for unit H in the most difficult 
region of interest, where we are confronted with so-called negative pressures. Exactly in this 
region, pseudo-spinodals have been constructed [15], which, apparently, do not obey the 
analyticity characteristics of a UEOS we would expect [1]. 
 
∆, 1/n diagrams for H (related to the P, 1/V diagram in Fig. 1b). Binodal (Mexican hat curve) for species H. 
  
INSERT Fig. 4a,b,c around here 
 
 The most remarkable difference with the ∆, n diagrams above is that accurate fitting is 
possible in all three cases, which is an element in favor in the problem of analyticity of UEOSs 
[1]. The shift in the position in the extremes is due to the fact that the 3 Rydbergs are numerically 
different, which entrails varying contributions in the second order Bohr term in 1/n2. 
Analytically, the global curves in Fig. 4 are of simple QED-type [20], i.e. with a cut off at 1/n4 or 
 ∆x = ax/n2 +b/n3 +c/n4     (19) 
Different ax and constant b and c will cause the extremes of (19) to shift with a different Rydberg 
as easily verified when looking at the three curves in Fig.4a to 4c. For derivations of (19) we get 
 d∆x/dn = (d/dn)(ax/n2 +b/n3 +c/n4)   
which produces extremes, commensurate with the critical n-value between 5 and 6 as observed in 
Fig. 3a in the corresponding Bohr ∆, 1/n diagram. 
 In these diagrams, however, the harmonic Rydberg, overlooked in bound state QED, now 
shows its importance, as announced earlier [10]. Only the curve in Fig. 4c has a perfect Mexican 
hat shape, if it is extrapolated into the negative –1/V world, exactly as in Fig. 1b. This curve 4c is 
obviously the equivalent of the binodal in classical Vanderwaals-Maxwell theory in Fig. 1b. This 
confirms our conclusion above from the ∆, n diagrams in Fig 3 that two different phases (2) 
occur in natural species H, when its spectrum is being measured [19]. 
 In addition, the maximum in the ∆, 1/n diagram in Fig. 4c is quite exactly at n=π, in agreement with 
expectation (10f), derived using first principles only [19]. 
 Given the analytical form of this binodal for neutral species H and its situation on the 
reference frame, it is straightforward to extract the spinodal too, although additional problems are 
generated in trying to do so. These will be discussed and analyzed elsewhere, since to proceed 
along these lines, we must go over to numerical diagrams, just like in the reduced numerical 
Vanderwaals equation.  
 The first purpose of this work was to exhibit the beautiful harmony in the H-species, 
when the harmonic Rydberg is used to describe its internal mechanics. The importance of this 
harmonic Rydberg [10] was never acknowledged in bound state QED, nor by NIST, who even 
failed to tabulate its value [23].  

Please use CPS: physchem/0308006 in any reference to this article

This article is available from: http://preprint.chemweb.com/physchem/0308006    Uploaded 25 August 2003 at 10:42 GMT



G. Van Hooydonk Vanderwaals-Maxwell antihydrogen pag. 14 

 Finally, the reason why the curves in Fig. 3 can not be fitted exactly is obvious when 
looking at the underlying analytical form (7): two inverse power laws 1/V of opposite sign can 
never be fitted with linear V. This is an important aspect of the analyticity requirements for 
UEOS, as remarked in [1]. 
  
Conclusion 
  
 Analyticity requirements for functions claiming UEOS status are important [1]. But it is 
also apparent that, as soon as there is a connection between the macro- and microscopic 
behavior of neutral matter, suggesting the existence of a UEOS, we could have concluded already a 
long time ago, using the observed terms of the hydrogen line spectrum, that there must be an internal 
phase-transition even in the electron-proton bond. This transition shows clearly at a critical n-value 
between 5 and 6, not covered by Bohr theory and not even by bound state QED. Analyzing the 
H-spectrum in a classical pre-quantum Vanderwaals-Maxwell-way, we find novel information, 
not detectable by highly sophisticated bound state QED [20]. Both this critical n-value and the 
usefulness of the overlooked harmonic Rydberg expose the existence of two different phases 
possible for neutral H. This is why bound state QED cannot be validated as it stands [10], 
especially in view of our alternative explanation for standard Lamb-shifts [10]. A next challenge is 
to reconcile the critical n-value between 5 and 6 in the Bohr ∆, n diagram with the critical value 
n=π (10f), reproduced in the harmonic ∆, 1/n diagram. This will be presented elsewhere [24]. 
 With respect to the antihydrogen problem, we now confirm our earlier conclusion [10, 
19,25] that an antihydrogen-phase is present in nature. This view runs ahead of CERN-AD-based 
antihydrogen experiments. We suspect that the first conclusions of ATHENA- and ATRAP-
collaborations [11-13] may well be premature [19]. 
 The search for a universal equation, which may unify both EOSs and UPFs, must go on. 
If the present results are confirmed, it may well turn out that there is much more similarity than 
hitherto believed between the analytical procedures applied in microscopic (bound state) QED, 
using Bohr-Einstein-Sommerfeld-Dirac-theories, and those applied in macroscopic hyperclassical 
19th century Vanderwaals-Maxwell-theories. At least the detection of an internal phase-transition 
in natural species H as reported here, using experimental data available for many a decade, may lead to 
new insights in our understanding of the real harmony in neutral matter. A phase-transition in the 
Coulomb electron-proton bond must then be a very important example, if not the prototype. 
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Tabel 1. Quantum number n and 1/n, Kelly terms TnH for the H Lyman ns-series and derived 
 energy data (all energies in cm-1) 
 
 

n 1/n TnH (Kelly) ∆Bohr ∆QED ∆harm 
1 1,00000 0,0000 0,0000 0,0000 0,0000 
2 0,50000 82258,9559 -0,1244 0,7781 -0,5633 
3 0,33333 97492,2235 -0,0198 1,0498 -0,5400 
4 0,25000 102823,8549 0,0046 1,1327 -0,5441 
5 0,20000 105291,6329 0,0101 1,1653 -0,5516 
6 0,16667 106632,1518 0,0107 1,1806 -0,5582 
7 0,14286 107440,4413 0,0099 1,1887 -0,5633 
8 0,12500 107965,0517 0,0088 1,1933 -0,5672 
9 0,11111 108324,7225 0,0077 1,1962 -0,5702 
10 0,10000 108581,9928 0,0068 1,1981 -0,5725 
11 0,09091 108772,3435 0,0059 1,1993 -0,5744 
12 0,08333 108917,1208 0,0053 1,2002 -0,5759 
13 0,07692 109029,7916 0,0047 1,2009 -0,5770 
14 0,07143 109119,1923 0,0042 1,2013 -0,5780 
15 0,06667 109191,3163 0,0038 1,2018 -0,5788 
16 0,06250 109250,3444 0,0034 1,2020 -0,5795 
17 0,05882 109299,2655 0,0031 1,2023 -0,5800 
18 0,05556 109340,2618 0,0028 1,2024 -0,5806 
19 0,05263 109374,9569 0,0025 1,2025 -0,5811 
20 0,05000 109404,5791 0,0023 1,2026 -0,5814 
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Fig. 1a. Classical Vanderwaals P, V diagram from P/RT = 1/(v-b) - (a/RT)/v2 (5a)  
 with b=0,725  and a/RT=3,5.   

P/RT from (5b) ─□─, P/RT ideal gas law ─○─, +(a/RT)/v2 ─*─, 1/(v-b) - -∆- -, short dashes power fit 1/(v-b) 
 
Fig. 1b P, 1/V diagram: binodal (same data as in Fig. 1a) 

P/RT curve ─□─; full straight lines crossing at origin +1/V and –1/V; dashed straight line: shifted –1/V 
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Fig. 2 Kelly terms TnH for the H Lyman series versus 1/n 

 
 
Fig. 3 a,b,c. Observed ∆Bohr vs. n (a), ∆QED vs. n (b) and ∆harm vs. n (c) diagrams for H 
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Fig. 4 a,b,c. Observed ∆Bohr vs. 1/n (a), ∆QED vs. 1/n (b) and ∆harm vs. 1/n (c) diagrams for H 
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