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Abstract—This paper introduces a new embedded nonintrusive
fiber-monitoring technique for time-division-multiplexing optical
networks. It allows an optical transmitter to characterize the
fiber plant from reflections caused by data bursts transmitted
across the network instead of dedicated test signals. The probing
is performed with minimal burden on data traffic so that many
measurements can be averaged to improve accuracy. The method
is very suitable for embedded optical time-domain reflectometers
(OTDR), which reuse a network node’s optical data transmitter
for OTDR excitations and embed a reflectometer inside the fiber
endpoint. This paper models the OTDR with Laplace transforms,
an approach previously unpursued, after which it is explained how
reflections from multiple data bursts with arbitrary width can be
converted into one normalized format. This new class of OTDR
excites the fiber with a negative step of light instead of the conven-
tional short pulse. The signal-to-noise ratio (SNR) for backscatter
and Fresnel reflections caused by the negative step and pulse
are compared theoretically. It is shown that negative-step OTDR
breaks the tradeoff between excitation pulsewidth and distance
resolution, has a natural separation between fiber backscatter and
Fresnel reflectors, and improves the SNR of nonreflective events.

Index Terms—Fault detection, optical-fiber communication,
optical-performance monitoring, optical time-domain reflectom-
etry (OTDR), passive optical networks (PONs).

I. INTRODUCTION

O PTICAL network monitoring becomes critical to main-
tain tomorrow’s optical-fiber networks, which persist in

offering higher bandwidths and faster network services. Moni-
toring can pinpoint problems before they put a burden on net-
work traffic, so countermeasures like protection and restoration
can be taken preventatively, which decreases the operational
expenses significantly, and can certify quality of service agree-
ments. Several techniques are used to monitor the operational
performance of optical networks [1]. Current practice often
ends by verifying the correct transmission of data bits over
the optical-fiber plant with, e.g., cyclic-redundancy checks,
in agreement with [2]. Although several techniques allow to
examine the physical layer in more detail, these are not widely
deployed because of high implementation costs and negative
impact on network operation and availability. Nevertheless, a
fast preventive and continuous diagnosis of the integrity of
the fiber network and a quick diagnosis on deteriorating link
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performance are important assets in all kinds of performance-
critical optical-fiber links and networks [3].

Optical time-domain reflectometry (OTDR) [4] including
backscattering is a powerful method for defining the exact
location and cause of performance degradation in an optical-
fiber plant. OTDR can diagnose fiber breaks, splice losses,
reflections, and also increasing distributed losses due to fiber
aging, cable stress, or water penetration. Conventional OTDR
instruments excite the fiber with an optical pulse and character-
ize the bearer from returning optical reflections, but the tech-
nology is too expensive if used only for fiber-plant monitoring.
On the other hand, increasing deployment and complexity of
optical-fiber plants and their use for critical applications create
a need for inexpensive embedded OTDR units. When added to
every consisting optical network element, fiber networks could
be monitored with little impact on network operation.

Embedded OTDR measurements should not interfere with
data traffic being transmitted along the optical fiber. This
nonintrusive mode can be accomplished by using wavelength-
division-multiplexing (WDM) techniques, injecting pulsed
light of a different wavelength into the fiber [5]. But, WDM
OTDR requires a dedicated transmitter (TX) and receiver (RX)
at this second wavelength and an optical system separating
signals at the different wavelengths. Moreover, the cost of the
embedded OTDR unit must be low. A recent idea for passive
optical-access networks (PON) is the embedded OTDR unit
that reuses the laser driver and laser diode that are present
at the fiber endpoint for data transmission [6], [7]. This is a
good approach, as the measurement will show the attenuation in
function of distance at the correct wavelength. The OTDR curve
depends on the excitation wavelength and cannot be measured
accurately by using a separate wavelength for OTDR. This
system also reduces the cost to a certain extent, because no
dedicated OTDR laser and driver are needed, but an additional
coupler and photodetector are still required.

In time-domain-multiplexing (TDM) optical-networks time
slots are reserved for each TX, which sends data in bursts
instead of continuously. Similarly to OTDR pulses, data bursts
cause reflections from the fiber plant, which can be used to
derive the channel performance. This forms the basis for the
presented nonintrusive OTDR technique assembling a detailed
OTDR curve out of measurements on optical-echo signals
associated with the data bursts the system is transporting.
Every data burst transmitted can improve the knowledge of
the channel-link status when after transmission an empty time
slot is available for observing the optical echo. A practical
problem is that in such system the OTDR has no control over
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Fig. 1. Integration of OTDR functionality inside ONU. The shaded blocks
from the optics subsystem are only required in case the OTDR echoes are
sampled with an optic coupler. In case acquisition is done on the laser or
backfacet photodiode, the OTDR does not need the OTDR PIN and optic
coupler.

the length of the data burst. This paper explains how arbitrary
burst reflections can be processed into a common format, which
will be identified as the negative-step response. This novel way
of fiber excitation is compared to the traditional approaches,
and new modes of operation are identified.

The best contemporary example of optical TDM networks
is PON [8], [9]. For PONs, the link budget is tight because
the optical-network unit (ONU) is a very cost-critical element
residing at the customer premises. Fig. 1 illustrates OTDR
functionality integrated with the ONU at minimum cost. The
data TX is reused to create OTDR excitation pulses, with the
optical power that is compliant to the PON standard. In case
of Gigabit PON (GPON), e.g., the launched average upstream
power ranges between −2 and 3 dBm for the upstream data
[10]. As this excitation power is considerably lower than con-
ventional instruments, the OTDR dynamic range is reduced.

Fig. 1 also presents three nonconventional low-cost methods
to acquire optical echoes caused by the OTDR excitation. The
first approach uses a 10/90 optic coupler instead of a conven-
tional 50/50 splitter to separate reflections from transmitted
light [6], [7], but this approach requires additional dedicated
optics and reduces the link budget. In case the laser module
contains no isolator, the echo can also be detected by using
the laser diode as a photodetector [11], [12]. This approach is
very economical but requires fast switching of the laser diode
between the laser driver and the sensitive OTDR RX. A similar
switchover mechanism occurs when measuring echoes on the
backfacet photodiode connected to the laser [12]. All methods
have a similar aggregate responsivity, which is a fraction of the
responsivity of a PIN photodetector. The reported responsiv-
ity for a vertical-cavity surface-emitting laser (VCSEL) is of
0.2 A/W [11], although much below the quantum limit, is
even optimistic in many cases. Because this, again, reduces
the signal-to-noise ratio (SNR) of the detected reflections,

Fig. 2. Simplified model of generic OTDR systems.

other procedures are needed to improve OTDR measurement
accuracy, which are presented in this paper.

In Section II, a model of the OTDR system will be derived
using representations with Laplace transforms instead of the
traditional time-domain models. The mathematical model will
be used in Section III to explain the concept of nonintrusive
fiber monitoring, which uses the reflections of data burst to
characterize the fiber instead of exciting with dedicated OTDR
pulses, and the concept of negative-step excitation is intro-
duced. Subsequently, in Sections IV and V, an analysis is
made of the SNR for classic-pulse response and the negative-
step response, respectively, and both methods are compared.
In Section VI, the negative-step response is illustrated with
some simulations, showing the different nature of the occurring
reflective and nonreflective events, and the benefits for negative-
step OTDR are summarized in Section VII. Finally, a conclu-
sion is given in Section VIII.

II. MODEL OF OTDR SYSTEM

Independent of the OTDR implementation, the system al-
ways consists of the same building blocks as illustrated in
Fig. 2. The optical TX creates an optical excitation with Laplace
transform E(s) that is injected into the fiber system under test
which reflects E(s) due to imperfections with reflectivity F (s).
The reflected optical signal is acquired and conditioned by the
OTDR RX with an overall RX transfer function V (s). After
digitization, further postprocessing may be required, which is
presented with the function G(s), containing, for example,
further digital filtering. All blocks are assumed linear and time-
invariant.

This section models the complete OTDR. Conventional theo-
retical descriptions characterize the system in the time domain,
but in this paper, the one-sided Laplace transform is preferred
to derive the transients caused by causal injected pulses. The
Laplace transform of a signal is written with a capital letter
like Q(s) while the time-domain transient is written as q(t).
All OTDR signals are assumed to be causal, which is the case
if the excitation function is causal too. The Fourier transform
Q(f) is used rather than the Laplace transform Q(s) when the
influence of a linear-transfer function on noise is investigated.
For a signal with finite energy, such as pulse reflections, the
first can be derived from the latter by evaluating the Laplace
transform along the imaginary axis

Q(f) = Q(s)|s=j2πf . (1)
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As both Laplace transform and Fourier transform are denoted
with the same capital letter, distinction is made by their
dependence on the frequency f response on the Laplace pa-
rameter s. This formality will be kept throughout this paper.

A. Excitation Signal

The optical TX is typically a semiconductor laser diode [4],
[11], [13]. In PONs, most of the time, inexpensive isolator-
less Fabry–Pérot lasers are preferred, which is fit for echo
acquisition on the laser diode and backfacet photodiode. In
conventional OTDR instruments, the excitation signal e(t) is a
causal pulse with peak power P0 starting at t = 0 having finite
height P0 and width W

p(T1, T2) =
{

1, for T1 ≤ t ≤ T2

0, otherwise
(2)

e(t) =P0p(0,W ). (3)

The one-sided Laplace transform of the pulse e(t), with infinite
rise and fall times, equals

E(s) = P (s) = P0
(1 − e−sW )

s
. (4)

Evaluating the magnitude of P (s) along the imaginary axis
yields the familiar sinc response.

In real systems, rise and fall times of the launched pulse will
not be infinite but depend on the bandwidth of the optical TX.
Given an OTDR RX with a few megahertz bandwidth and the
electronics driving a laser diode at gigabit speed, this effect can
be ignored.

B. Fiber System

The fiber impulse response f(t) of the reflection channel
with Laplace transform F (s) consists of a few different con-
tributors.
1) Fiber Backscatter: When an optical pulse travels through

a fiber, diffuse light is reflected back toward the pulse source
[14]. There are different reflection mechanisms, depending on
the wavelength of the reflected light. At low excitation powers,
Rayleigh scattering is dominant and the reflected light has the
same wavelength as the incident light. The impulse response
due to backscattering by an infinite fiber equals [15]

fbs(t) = ηe−βνt (5)

where ν is the group velocity (in kilometers per second), β
the attenuation coefficient (in nepers per kilometer), and η the
backscatter parameter (in watts per joule). When the attenuation
coefficient β or the backscatter parameter η is not constant
along the fiber but depends on the distance from the optical
TX, the simplified model of (5) is no longer sufficient. An
increased attenuation constant could be caused by an over-bent
fiber, causing light to couple out of the fiber, and temperature
variations or acoustic vibrations may change the backscatter
parameter η along the fiber.

The impulse response of a first-order system is described by
(5); hence, the Laplace transform of the reflection system equals

Fbs(s) =
ητbs

1 + sτbs
, with τbs = 1/βν. (6)

Typical values for the backscatter time constant τbs are in the
order of a few tens of microseconds.

In case the fiber has a finite length L, the backscatter impulse
response is time-constrained and equals to zero after tst =
2L/ν

fbs(t) = p(0, tst)ηe−t/τbs (7)

with Laplace transform

Fbs(s) =
ητbs

1 + sτbs

(
1 − e−tst/τbse−stst

)
. (8)

An important factor for finite-fiber sections is the attenuation
constant fatt

fatt = e−tst/τbs = e−2βL. (9)

This factor contains information about the two-way loss and
can be used as a scaling factor for optical reflections that are
protruding from after the first fiber section.
2) Fresnel Reflections: Fresnel reflections are caused by

abrupt changes of the propagation medium. For example, when
two fibers are joined with connectors, a small air slit always
remains in between the fiber ends and causes a discrete local-
ized reflection at that point. If this point is located at distance
D from the optical TX, the reflection equals [15]

ffr(t) = Re−2βDδ(t− 2D/ν). (10)

This represents a delayed delta impulse that was attenuated
by the fiber section with length D. The unitless reflection
coefficient R defines the size of the reflection and depends
on physical properties like the fiber cross section, the excited
propagation modes, the geometry of the fiber ends and the gap,
and the refraction index of the fiber and the gap-filling material.

The Laplace transform of impulse response (10) equals

Ffr(s) = Re−2βDe−sτfr , with τfr = 2D/ν. (11)

The magnitude of this reflection is independent on frequency
and its phase is linear, which implies a fixed delay. This is
because dispersion can be neglected at megahertz bandwidths.
3) Total Fiber Reflection: Using superposition, the aggre-

gate reflection can be found by summing different contributors
described by (8) and (11), which possibly need to be scaled with
splice losses or the attenuation factor from (9) and delayed by
preceding fibers’ traveling time.

C. Analog Front End

A detector with responsivity Rp (in amperes per watt) con-
verts the optical reflection signal into a proportional photocur-
rent. The responsivity also involves the coupling factor from
the optical coupler. A transimpedance amplifier (TIA) or high-
impedance amplifier converts this photocurrent into an output
voltage, with frequency-dependent transimpedance Rt(s). Dur-
ing this process, it is assumed that a Gaussian noise current is
present at the input of the photodetector, but likely, the noise
spectrum is not constant with frequency. Using Rp, the current
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noise can be input referred as optical noise n0(t) with noise
spectrum Sn0(f).

The TIA, which is the dominant contributor to the output-
referred voltage noise, has a noise spectrum that rises propor-
tionally with frequency within the amplifier bandwidth [16] and
becomes constant afterward. Therefore, a lot of noise resides
above the TIA cutoff frequency and some reduction of noise
can be obtained by cascading the TIA with a low-pass filter
with transfer function H(s). The order and type of this filter are
a tradeoff between noise suppression and fast-transient settling.

Following amplifiers increase the signal level and map the
backscatter system dynamic range to the input of an analog
to digital (A/D) converter. In case that the amplifiers have
adequate bandwidth and inject no substantial noise into the
system, both signal and noise are multiplied by the gain G,
resulting in an output signal r(t) with noise n1(t). The analog
front end is a linear system V (s)

V (s) = RpRt(s)H(s)G. (12)

The output noise is defined as

Sn1(f) = Sn0(f) |V (f)|2 . (13)

The filter shapes the noise spectrum and, therefore, also the
total integrated noise, while keeping most of the useful signal
information

N1 =

+∞∫
−∞

|V (f)|2 Sn0(f)df. (14)

The SNR of the signal after filtering is defined by the responsiv-
ity, transimpedance, the filter, and of course, the input-referred
amplifier noise, so a careful design of the analog front end is
needed to obtain a large dynamic range.

D. System Identification

If it would be possible to excite the fiber linearly with an op-
tical delta impulse with an energy of 1 J, the excitation function
E(s) would be identically one, and the system response would
be equal to

R(s) = F (s)V (s) = F̂ (s). (15)

The measured response is the time-domain convolution of the
fiber response and the RX response introduced by [17] as the
smoothed fiber response.

In practice, launching a light impulse with zero length and
infinite power is impossible. For any coherent light source, both
peak power P0 and the minimal pulsewidth W are limited. The
energy a realistic pulse can contain is then much smaller than
1 J, resulting in weaker reflections and a decreased SNR. Con-
ventional OTDR instruments measure the following reflection:

R(s) = P0
(1 − e−sW )

s︸ ︷︷ ︸
P (s)

F̂ (s). (16)

In case W is small, the pulse spectrum can be approximated
as P0W within the RX bandwidth. This results in the fiber
being excited with an impulse with signal energy P0W . When
the peak source power P0 is limited, the pulse energy can
only be increased by applying a broader pulse. As the Fresnel
reflection also has pulsewidth W , this makes it harder to locate
the reflecting artifact. This tradeoff between pulsewidth and
spatial resolution is a major restriction of conventional pulse
OTDR [18].

Linear-circuit theory learns that there are other solutions for
characterizing a system than measuring the impulse or pulse
response, such as exciting the system with a unity step P0u(t)

u(t) =

{ 0, for t < 0
1, for t > 0
1/2, for t = 0.

(17)

The impulse response can be calculated by deriving the step
response with respect to t, and the step response can be found
by integrating the impulse response between limits zero and t.
The Laplace transform of the unity step is 1/s, so the reflection
signal becomes

R(s) =
P0

s
F̂ (s). (18)

Using the step response for system identification in OTDR
can be very cumbersome. The reason is the limited isolation
between OTDR TX and RX. This blinds the RX during trans-
mission and makes it impossible to measure small reflections
accurately. An alternative to the step excitation is the negative-
step excitation P0ũ(t), which consists of excitation with power
P0 for a very long time and shutting it down suddenly

ũ(t) =

{ 1, for t < 0
0, for t > 0
1/2, for t = 0.

(19)

This can be rewritten as

ũ(t) = 1 − u(t) (20)

which proves that the derivative with respect to t of the system
response to −ũ(t) once again is equal to the impulse re-
sponse of the system, which proves the validity of negative-step
excitation.

One important remark is that ũ(t) is not causal, so the one-
sided Laplace transform no longer can be used to define the
transient of r(t) after t = 0. From (20), however, it follows that
the response is equal to a dc response minus a step response.
The response for t > 0, thus, can be found by subtracting the
step response from a step function of the size of the dc response.
The Laplace transform of the reflection for t > 0 can, therefore,
be written as

R(s) = P0
F̂ (0) − F̂ (s)

s
. (21)

Exciting the system with a negative step is a novel approach
to OTDR that can be superior to the classic excitation with a
pulse. In the following paragraphs, the negative-step RX will be
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Fig. 3. Dissection of a data burst, which consists of a pulse p(t) and a data
signal d(t).

analyzed and its performance compared to conventional pulse
OTDR units.

III. NONINTRUSIVE FIBER MONITORING

In an operative TDM burst-mode network, any fiber endpoint
transfers data bursts from time to time along the fiber. Of course
these data burst also cause reflections along the communication
channel. If a system could measure these reflections and derive
channel characteristics from here, this would result in a true
nonintrusive OTDR system. The problem that arises is that
there is no control over the burst length W , while the excitation
pulse for an off-the-shelf OTDR instrument has a controlled but
fixed width.

A. Data Burst

Suppose the laser sends out a data burst b(t), with a length
W , but modulated at a high bit rate with useful data. The burst
can have a return to zero or nonreturn to zero format, so in
general, transmits the optical power P1 when transmitting a
“1,” and P2 when transmitting a “0,” where it is assumed that
P1 > P2. With

P0 =
P1 + P2

2
(22)

dP =
P1 − P2

2
. (23)

The data burst can be written as

b(t) = p(0,W )

P0 + dPx(t)︸ ︷︷ ︸
d(t)

 (24)

which is illustrated in Fig. 3.
The infinite-random data bit stream x(t) swings between

minus and plus one with data period Tb. The burst consists of
a pulse with height P0 and a zero-mean random-data stream
with magnitude dP . Random binary data is a sequence of bits
in which the probability that any given bit in the sequence
has a value of one or zero is independent of the value of
all other bits in the sequence. If the data is fully random,
there is no correlation between two consecutive data bits.

As the transmitted data is deterministic, this may not always be
accurate. The transmitted burst, however, is known, so if it, for
example, contains a lot of consecutive ones or zeros, the burst
reflection can be neglected to avoid deterministic measurement
errors.

The pulse response from the fiber was derived in the previous
section, the influence of the data modulation is not clarified yet.
The random-data model is used to define the frequency content
of the data burst

d(t) = dPp(0,W )x(t). (25)

The autocorrelation function of an infinite random bit stream
equals

Rxx(τ) = lim
T→∞

1
2T

+T∫
−T

x(t)x(t− τ)dt. (26)

It is important to notice that there is no correlation between
different bits, so the integration in (26) can be limited between
−Tb and Tb

Rxx(τ) =
1

2Tb

+Tb∫
−Tb

x(t)x(t− τ)dt. (27)

Under the condition that the data signal has infinite rise and
fall times, the autocorrelation is a triangle function that starts
at zero for τ = −Tb, rises linearly to one for τ = 0, and then,
drops linearly to zero at τ = +Tb.

The power spectrum can be obtained by taking the Fourier
transform of the autocorrelation, this results in

X(f) = Tb sinc2(Tbf). (28)

This can be considered as a noise spectrum. Because the signal
swings between +dP and −dP , this spectrum should be mul-
tiplied with dP 2, resulting in the modulation noise spectrum.
The RX transfer function V (s) will shape the modulation noise
spectrum. Because we assumed the data period Tb to be very
small within the RX bandwidth, the spectrum is approximately
constant with frequency and equal to

dP 2Tb. (29)

The total noise now can be written as

Nmod =

+∞∫
−∞

dP 2Tb |V (f)|2 df. (30)

This formula for the modulation noise is valid for the exci-
tation signal. In practical cases, the bandwidth will be limited
drastically. In case the reflection system is a Fresnel reflector
as described by (11), the overall bandwidth is defined by
the OTDR RX. Assuming V (f) to be first order with cutoff
frequency fc, the integrated optical noise becomes

Nmod =
dP 2Tbfc

2
|V (0)|2 . (31)
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Next to the modulation noise, the burst of (24) also consists of
a pulse with peak power P0. The instant power is equal to

S = P 2
0 |V (0)|2 . (32)

The SNR is calculated from (31) and (32) as

SNR ∼= P 2
0

dP 2

2
Tbfc

. (33)

In case P1 � P2, the first factor approaches unity. The SNR
is inversely proportional to fc. This can be understood when
considering the response from a Fresnel reflector to a data burst.
The smaller the bandwidth of the RX, the smaller the residual
ripple caused by the modulation will remain after detection of
the modulation noise. The SNR is also inversely proportional to
Tb. The lower Tb, the more modulation noise is pushed toward
higher frequencies and filtered out by the RX bandwidth. If the
RX bandwidth is 5 MHz and the data bit rate 1.25 Gb/s like
upstream GPON, this results in an optical SNR of 24.0 dB.
In conclusion, exciting the fiber system with a data modulated
pulse results in the sum of a pulse response and modulation
noise with power that is proportional to the signal. In fact, the
ratio between the bit rate 1/Tb and the RX bandwidth ratio
defines the SNR.

In case the fiber reflection is backscatter, this is the process
that imposes the dominant limit on the system bandwidth.
The modulation noise inside the reflection signal will then
be reduced even further. For example, in case the backscatter
time constant equals 60 µs, the received optical SNR due to
modulation noise improves to 40.7 dB. As in most cases, well-
installed fiber networks reflect backscatter predominantly; it
shows that good reflection measurements can still be made
despite the modulation noise.

B. Conversion to the Negative-Step Response

Suppose a burst is transmitted with length W and injected
into the fiber. We ignore the modulation noise. The RX response
to the optical echo equals

R(s) = P0
(1 − e−sW )

s
F̂ (s). (34)

The fiber reflection function F̂ (s) is what should be derived
from the pulse response. Rewriting (34) yields

F̂ (s)
P0

s
=

R(s)
1 − e−sW

. (35)

The left part of this equation can be interpreted as the smoothed
step response of the fiber system. The last factor can be rewrit-
ten as an infinite sum

F̂ (s)
P0

s
= R(s)

+∞∑
k=0

e−skW . (36)

Fig. 4. Illustration of the transformation of the pulse response into the step
response. The step response converges to a constant value C after tst in case
the fiber has finite length. Therefore, the infinite sum from (37) can be reduced
to a fixed number K.

In the time domain, this corresponds to

P0f̂(t) ∗ u(t) =
+∞∑
k=0

r(t− kW ). (37)

This equation is illustrated in Fig. 4. It shows that the step
response converges to a constant value C, which is independent
of W and equals

C = lim
t→+∞ f̂(t) ∗ u(t). (38)

Equation (37) proves that the smoothed step response can
be derived from any pulse response with arbitrary width W
by time shifting the measured pulse response and summing
them all. As impulse responses coming from an optical fiber
are always time-limited to tst, the sum is limited to the biggest
integer K below tst/W . If W is bigger than tst, no summing
is needed and we directly calculate the step response of the
system.

One important remark is that for realistic OTDR implemen-
tations it is impossible to make an accurate measurement when
the laser is transmitting, like during the duration of the pulse.
This means that the first part of the response from t = 0 until
t = W cannot be measured

r̂(t) =
{

0, for 0 ≤ t ≤ W
r(t), for t > W.

(39)

The function w(t) is defined as the periodically extended but
unknown first part of the r(t) between t = 0 and t = W

w(t) =
+∞∑
k=0

[r(t− kW ) − r̂(t− kW )] . (40)
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Equation (37) can now be rewritten as an infinite sum of time-
shifted versions of r̂(t), plus the periodically extended first part
of the r(t)

P0f̂(t) ∗ u(t) =
+∞∑
k=0

r̂(t− kW ) + w(t). (41)

Because the reconstructed step response converges toC for t →
+∞, this periodic function can be derived from the infinite sum
itself by time shifting the infinite sum of r̂(t) back in time. The
periodic residual w(t) can be written as

w(t) = u(t)

[
C −

+∞∑
k=−∞

r̂(t− kW )

]
. (42)

Substituting (42) in (41) yields

P0f̂(t) ∗ u(t) = u(t)

[
C −

−1∑
k=−∞

r̂(t− kW )

]
. (43)

The first term is the constant-limiting value the step response
converges to when t goes to infinity. Again if the impulse
response is time-limited, the infinite sum can be reduced from
−K − 1 to −1. The Laplace transform of the signal equals

F̂ (s)
P0

s
= F̂ (0)

P0

s
− R̂(s)

−1∑
k=−K−1

e−kWs. (44)

This can be rewritten as

R̂(s)
−1∑

k=−K−1

e−kWs = P0
F̂ (0) − F̂ (s)

s
. (45)

Comparison of the latter to (21) shows that the reconstructed
signal is nothing else than the smoothed negative-step response
of the fiber plant. This proves that one can derive the negative-
step response from any pulse response, on the correct preas-
sumption that one knows the pulsewidth W , even if the first part
of the transient is not available. The conversion is illustrated
in Fig. 5.

This possibility enables an OTDR unit to combine reflec-
tions from transmitted pulses with different widths, as opposed
to current state-of-the-art instruments that assume a constant
pulsewidth. This makes the system very suitable for nonintru-
sive monitoring of burst-mode fiber networks because any burst
that is transmitted by a fiber endpoint can be used to further
characterize the smoothed fiber step response. This method
is purely passive and data traffic is not congested at all. The
biggest drawback of this nonintrusive method is the additional
modulation noise that may lower the SNR considerably.

IV. PULSE OTDR

Conventionally, OTDR instruments excite the fiber under
test with a pulse, as modeled by (4). It is assumed that no

Fig. 5. Illustration of the transformation of the measured-pulse response into
the negative-step response. The negative-step response starts from the constant
limiting value of the step response at t = 0 and becomes zero after tst in case
the fiber has finite length.

postprocessing is performed, so the function G(s) from Fig. 2
is identically equal to one.

A distinction can be made between two operating modes. In
case the pulsewidth W is long enough, the RX with bandwidth
fc has adequate time to respond to the pulse. If not, the
RX reacts as if it was exited with an impulse with energy
proportional to W 2. Classic OTDR instruments normally only
operate in the first mode, because the fiber impulse response
is measured instead of the pulse response and the reflectivity
of certain discrete reflectors cannot be measured with good
accuracy.

A. Noise Analysis

The output noise spectrum So(f) of the RX is constant and
equal to Sn1(f). The integrated noise is not infinite because
of the limited bandwidth of the optical front end but a fixed
constant.

N = N1 =

+∞∫
−∞

Sn1(f)df. (46)

B. Fresnel Reflections

From (4) and (11), it follows that the expression for the
measured reflection signal caused by a Fresnel reflection signal
equals

R(f) = RfattV (f)P (f)e−j2πfτfr (47)

with

fatt = e−2βD with τfr =
2D
ν
. (48)
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To calculate the signal power of the reflection, the inverse
Fourier transform of the reflection signal to the power of two
is evaluated

|r(t)|2 =

∣∣∣∣∣∣
+∞∫

−∞
R(f)ej2πftdf

∣∣∣∣∣∣
2

. (49)

The reflection signal is a time delayed and scaled pulse; there-
fore, the maximum signal reflection occurs at t = τfr +W/2.
Because W � 1/fc, V (f) is approximated as V (0)

S ∼= [RfattP0V (0)]2

∣∣∣∣∣∣
+∞∫

−∞

1 − e−j2πfW

j2πf
ejπfW df

∣∣∣∣∣∣
2

= [RfattP0V (0)]2 . (50)

The signal power from Fresnel reflections is independent of
the pulsewidth W as similar to the noise. This proves that
exciting with a wider pulse does not improve the SNR of the
measured optical reflections. It is even detrimental as wider
reflection pulses overlap sooner, decreasing the OTDR distance
resolution.

C. Backscatter Reflections

The reflection signal caused to a pulse P0p(0,W ) with the
width W by backscatter from an infinite section of fiber can be
deduced from (4) and (6) as

R(f) = P (f)V (f)
ητbs

1 + j2πfτbs
. (51)

The maximum signal power occurs at t = W . Again V (f) is
approximated as V (0)

|r(t)|2 =

∣∣∣∣∣∣
+∞∫

−∞
P0

1 − e−j2πfW

j2πf
ητbsV (f)

1 + j2πfτbs
ej2πftdf

∣∣∣∣∣∣
2

(52)

S ∼= [P0ητbsV (0)]2

∣∣∣∣∣∣
+∞∫

−∞

sin(πfW )
πf

ejπfW

1 + j2πfτbs
df

∣∣∣∣∣∣
2

= [P0ητbsV (0)]2
∣∣∣1 − e

−W
τbs

∣∣∣2
∼= [P0ηWV (0)]2 . (53)

For the last approximation, it was assumed that the backscatter
time constant τbs is much larger than the excitation pulsewidth
W , which under normal operating conditions can be assumed to
be correct. It shows that the output SNR of backscatter signals,
measured with a bigger pulsewidth W , will improve propor-
tionally to W 2. Due to the low dynamic range of embedded
OTDRs, it is necessary to operate with large pulsewidths in
order to measure the backscatter, at the expense of decreased
OTDR measurement resolution.

V. NEGATIVE-STEP OTDR

In this section, the possibilities of using the negative-step
response itself to categorize the channel properties are inves-
tigated and compared to the traditional approach described
above.

A. Noise Analysis

If no postprocessing is needed, which once again results in
a postprocessing function G(s) identical to one, therefore, the
integrated noise is constant and given by (46).

B. Fresnel Reflections

In case of the Fresnel reflection described by (11), from (21),
it can be found that the reflection signal equals

R(s) =
P0

s

[
RfattV (0) −Rfatte

−sτfrV (s)
]
. (54)

Using the relationships

q(0) = lim
s→∞ sQ(s)

lim
t→+∞ q(t) = sQ(s)|s=0 (55)

it can be found that

r(0) =P0RfattV (0)

lim
t→+∞ r(t) = 0. (56)

Therefore, in contrast to the pulse excitation, the negative-step
excitation results in a down step in the reflection at the moment
of the reflector. The step size is

S = |r(0)|2 = [RfattP0V (0)]2 (57)

which is exactly the same number as in (50). Because the noise
is also identical, the resulting SNR is identical when compared
to pulse OTDR, the only difference is the type of event that
occurs. This will be discussed further.

C. Backscatter Reflections

In case of backscatter, using (6) yields the measured reflec-
tion signal

R(s) =
P0

s

[
ητbsV (0) − ητbs

1 + sτbs
V (s)

]
. (58)

Using the theorems of (55), in case the RX has a low-pass
transfer function, the starting value becomes

r(0) = P0ητbsV (0) (59)

which leads to a maximal signal energy at t = 0 that is equal to

S = |r(0)|2 = [P0ητbsV (0)]2 . (60)

Both excitations result in an exponentially decaying function
with the same time constant. Comparing (60) to (53) shows that
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the big difference is that both curves are scaled with a factor
τbs/W . The backscatter time constant depends on the fiber at-
tenuation, but for a typical ITU-T G.652 compliant single-mode
fiber, it ranges around 60 µs. Because the output noise floor for
both measurements is the same, the measurement accuracy for
backscatter is, therefore, significantly better. In fact, negative-
step OTDR increases the excitation pulsewidth to its maximum,
while still maintaining distance resolution required for close-by
Fresnel reflectors. In case the fiber section is finite, the SNR
improvement still applies but decays gradually when the end of
the fiber is approached. Only in the last section with duration
W of the reflection, the SNR becomes identical to the SNR of
the pulse response. Maximization of the reflection signal is also
positive, because it makes the measurement more prone against
interference.

VI. EVENT DETECTION

In case an embedded OTDR is monitoring a fiber plant,
measuring the optical reflections alone is not enough to ratify
the connected optical fiber. Postprocessing the acquired traces
is required to extract relevant events that may reveal certain
network discrepancies. There is a difference between reflective
and nonreflective events. The first is only caused by backscatter
reflections that no longer decay exponentially. The second also
involves Fresnel reflectances that have higher bandwidth than
the backscatter.

The bandwidth of the embedded OTDR RX is selected
according to the required spatial resolution. Given a 5-MHz RX
bandwidth, the reflection after a pulse response decays 5 dB at
7 m behind the pulse reflection [19]. This is adequate to test the
compliance of PONs and identify the exact location of certain
problems. The sensitivity of an embedded OTDR depends on
the responsivity of the reflection detection and the sensitivity
of the TIA. Given the 0.2-A/W responsivity from [11] and a
typical TIA input referred noise of 1.5-nA rms, the sensitivity
of the embedded OTDR equals −51.2 dBm, which can be
improved to −74.7 dBm after 50 000 averages. In the following,
a few simulations are shown, which illustrate and compare
reflective- and nonreflective-event detection with pulse and
negative-step OTDR. It is shown that the latter has significant
advantages over the first when applied to an embedded OTDR.
The average optical excitation power equals 3 dBm. This is
the maximum allowed by GPON, but given the length of the
fiber under test, this big power would certainly be arbitrated.
For pulse OTDR, the excitation pulsewidth is adjusted to the
RX bandwidth or vice-versa. Given the 5-MHz bandwidth, a
200-ns excitation pulse is chosen.

A. Reflective Events

In case the fiber under test contains a Fresnel reflector, the
optical reflection is identical to the excitation function. For
pulse OTDR, a pulse will be reflected containing a rising and
falling edge, yet, in case of negative-step OTDR, it results in a
single down step. With the same RX bandwidth for both meth-
ods, this can prove beneficial to the resulting spatial resolution.
In illustration, a network was simulated, which contains two

Fig. 6. Simulation of the optical reflection measured by an embedded OTDR
RX in case the fiber is excited (a) with a 200-ns pulse or (b) with a negative step.
The closeup reveals two discrete reflectors at distance 15 m with the second half
the size of the first. The artefacts caused by events 1 and 2 are indicated.

close-by Fresnel reflectors of size −50 and −53 dB at 10 km
and 15 m farther, respectively.

Fig. 6(a) shows a close-up of the reflection as measured
by pulse OTDR. It shows that both reflection pulses overlap
with each other, which results in a strange waveform with
several rising and falling edges. A human operator would
resort to a smaller excitation pulse to get rid of the overlap.
An embedded OTDR instrument has to monitor the events
automatically. Detecting and interpreting overlapped pulses is
hard and reducing the pulsewidth is even impossible due to the
fixed receiver bandwidth. Turning to the negative-step response
from Fig. 6(b), it shows that both Fresnel reflectances are sep-
arated in time and can easily be distinguished from each other.
Because the pulses do not overlap, the two different reflectors at
15-m distance can be distinguished and measured with better
SNR because a smaller excitation pulse would require a larger
receiver bandwidth and a higher noise floor.

B. Nonreflective Events

For nonreflective events like splice losses, more postprocess-
ing is required to extract the relevant parameters like the splice
loss. In the illustration, simulations were made on a cascade
of 10 and 8 km of ITU-T G.652 compliant sections of single-
mode fiber. The reflection system contains no discrete reflec-
tors, but there is a 0.3-dB splice loss between both sections
that should be identified. The simulated fiber for both sections
is Draka Comteq Bendbright single-mode fiber with a rela-
tively low backscatter constant at 1310 nm of −79.4 dB for
a 1-ns excitation pulse. A 200-ns excitation pulse, therefore,
leads to backscatter at the origin of 3 − 79.4 + 10 log(200) or
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Fig. 7. Simulation of the 200-ns pulse response measured by an embedded
OTDR RX with 50 000 averages. The small 0.3-dB splice loss can be noticed,
but it is hard to detect and measure the event with adequate accuracy.

−53.4 dBm, and after 10 km, the backscatter power has even
dropped by 6.8 dB to an ample −60.2 dBm, which is barely
larger than the noise floor even after averaging 50 000 times.
The resulting pulse response from Fig. 7 illustrates that the
nonreflective event at 10 km can perhaps be recognized, but
estimating the splice loss with good accuracy certainly is im-
possible. Therefore, using an embedded OTDR, normal-pulse
OTDR operation mode does not lead to accurate results when
detecting nonreflective events.

The bandwidth of the backscatter process is substantially
lower than the 5-MHz receiver bandwidth required for good
spatial resolution. Therefore, reducing the bandwidth of the
backscatter reflections can improve the SNR when nonreflective
events are estimated. During a period L that is substantially
lower than the backscatter time constant τbs from (6), the expo-
nentially decaying backscatter reflection can be approximated
by a linear function, using the linear-regression method de-
scribed in the Appendix. It is assumed that the reflection signal
is sampled with sample period Ts, in such a way that subsequent
noise samples are independent with standard deviation σ. This
means that the sampling rate is approximately twice the RX
bandwidth. In our case, the sampling rate was chosen 12 MSps
as the filter shape is not rectangular, so the sampling period Ts

is 83.3 ns. N samples are taken during the regression period
L, meaning that L > (N − 1)Ts. Given N , the correlation
function (77) estimates the average of the pulse response. Under
the condition that τbs � L, the average is a good estimate of the
backscatter and reduces the noise standard deviation according
to (75).

Deriving the negative-step response and multiplying it by
−1 results in the impulse response of the system. Therefore,
a similar linear-regression strategy can be applied to negative-
step OTDR to improve the measurement accuracy by estimating
the slope instead of the average and linear regressing with
sequence (78). Using this methodology, the variance on the
measurement is reduced according to (76). The scaled-impulse
response with a factor equal to the pulsewidth W is the same as
the linear-regressed pulse response when no Fresnel reflectors

Fig. 8. Explanatory figure about estimating the splice loss SL of the nonre-
flective event. Because the same fiber with the same η and τbs was used, the
backscatter degrades with the same slope and the splice estimation does not
involve the changing η. The figure also shows the influence of the regression
period L.

occur, which is the case for a nonreflective event. Both pulse
and negative-step reflections can be used to estimate the splice
loss after linear regression.

Because the signal powers are the same, the ratio of the SNR
of linear-regressed negative-step OTDR to the linear-regressed
pulse OTDR can be found by comparing the noise variances
after linear regression, taking the scaling factor W into account.
From (75) and (76), we find

W 2 12σ2

T 2
s N(N + 1)(N − 1)

N

σ2
=

12W 2

(N2 − 1)T 2
s

. (61)

In case N is big enough, the OTDR signal resulting from
negative-step OTDR has better SNR than in the case of the
pulse OTDR. The threshold value equals

Nth =

√
12
W 2

T 2
s

+ 1. (62)

In the presented setup, this results in 8.3 samples, leading to a
regression period L larger than 0.61 µs, which can be recalcu-
lated into a distance of 61 m. The burden on distance resolution
is not very high under these conditions, but it can increase the
measurement accuracy of nonreflective events a lot. It should be
noted that increasing sampling rate does not improve accuracy
a lot, because the preassumption that subsequent noise samples
are independent then no longer holds.
1) Splice-Loss Estimation: Still, further processing is re-

quired after linear regression to estimate the splice loss. In
Fig. 8, the measurement points (x1, y1) and (x2, y2) are placed
right before and after the nonreflective event. In here, the
ordinate x represents time rather than the distance and the mea-
surements are expressed in linear scale. It is clear that the
difference ∆x = x2 − x1 should be bigger than the regression
period L. Given η1 and η2, the backscatter constant of the
first and second section, and τbs1 and τbs2, their respective
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backscatter time constant, the estimation of the splice loss SL
equals

SL2 =
η1y1

η2y2
e−0.5∆x(1/τbs2+1/τbs1). (63)

It is assumed that all the backscatter parameters are known
or can be estimated from the rest of the measurement with
adequate accuracy. Inaccuracies on such estimations are out of
scope of this derivation.

After linear regression, both pulse and the scaled negative-
step OTDR result in the same signal power for nonreflective
events, yet, the noise powers differ. Because the linear-
regression processes (77) and (78) are linear, both the estima-
tion of the average and slope transform the optical front-end
noise Sn0(f) to colored noise, which has a normal distribution
if sampled. Therefore, it can be assumed for both methods that
the measurements y1 and y2 have a normal distribution with
variance as predicted by (75) and (76). If the SNR on y1 and y2

is high, the distribution of the ratio of two normally distributed
variables is approximately, also normally, distributed variable.
In case the SNR on the measurement points is higher, the
variance on the ratio will also be smaller. Therefore, a better
approximation on the splice loss can be made with negative-
step OTDR in case the regression period is chosen long enough.

VII. BENEFITS OF NEGATIVE-STEP OTDR

In Section III, a methodology was introduced that uses
reflections from data burst to characterize the fiber under test.
Any data burst is transmitted by the optical communications
node can improve knowledge of the connecting fiber. This non-
intrusive detection allows the gathering of many measurements
in the background of an operating optical network, which can
all be averaged to reduce the noise floor. Traditional techniques
require the data traffic to be halted in order to perform OTDR.

The tradeoff between spatial resolution and backscatter SNR
is a well-known for pulse OTDR. The backscatter reflections,
which decay exponentially, size with the width of the excitation
pulse. Therefore, a wider pulse is preferred when measuring
small backscatter, but this reduces the spatial resolution because
the dead zones also depend on the pulsewidthW , with the result
that close-by events no longer can be distinguished from each
other. The negative-step response solves this problem as the
Fresnel reflector now results in a single downward step instead
of a pulse that can be mangled with other reflected pulses while
maximizing the backscatter reflections. The dead zone only
depends on the rise or fall time of the step response, which is
caused by the RX bandwidth only and, therefore, considerably
lower.

The excitation power and sensitivity of an embedded OTDR
are low. Negative-step excitation does not change the exci-
tation power nor does it lower the RX noise, yet, it maxi-
mizes the backscatter-reflection signal power, which improves
its tolerance to interference. Because the RX bandwidth is
fixed by the required spatial resolution, pulse OTDR results
in noisy measurement traces. Negative-step OTDR results in
the same SNR for Fresnel reflectors but contains improvement
for nonreflective events. Because the bandwidth of backscatter

is appreciably lower, linear regression over a long time-span
is allowed which allows for substantial SNR improvement of
negative-step OTDR with respect to pulse OTDR. Moreover,
the fact that this linear regression is pure postprocessing makes
it a very powerful method. The regression period can be chosen
long or short, or a combination of both for different events
occurring in the same OTDR trace.

VIII. CONCLUSION

A novel method for performing OTDR measurements was
proposed, which can characterize the status of an optical com-
munication channel nonintrusively by measuring the optical
echoes caused by transmitted data bursts and processing them
into a standardized format. This negative-step OTDR was vali-
dated against the conventional pulsed OTDR. From theory and
simulations, the benefits of negative-step OTDR with respect to
pulse OTDR were demonstrated.

APPENDIX

LINEAR REGRESSION

The linear-regression method is a statistical procedure for
estimating the conditional expected value of a dependent vari-
able Y given the values of an independent variable X when
the relationship between the variables can be described with a
linear model. A linear-regression equation can be written as

Y = α0 + α1X + ε (64)

where α1 is the slope of the regression line and α0 is the
Y -intercept of the regression line. The term ε represents the
unpredicted or unexplained variation in the dependent variable;
it is called the error whether it is really a measurement error or
not. The error term is conventionally assumed to have expected
value equal to zero; otherwise, it can be absorbed into α0

E[Y |X] = α0 + α1X. (65)

We can estimate the unobservable values a0 and a1 of the
parameters α0 and α1 by the method of least squares, which
consists of finding the values of a0 and a1 that minimize the
sum of squares of the residuals

en = yn − (a0 + a1xn). (66)

As X is an independent variable, xn represents a set of N
known values ranging from x0 to xN−1, whereas yn corre-
sponds to the accordingly observed values. Using the method
of least squares, we can derive a0 and a1, the estimates of
α0 and α1

a0 =
∑

n yn

[∑
n x

2
n −N2x2

]
N

∑
n x

2
n −N2x2 (67)

a1 =
∑

n(xn − x)(yn − y)∑
n(xn − x)2

(68)
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where x and y are the mean of xn and yn, respectively. The
variance on a0 and a1 can be derived by considering them as a
linear combination of N mutual-uncorrelated samples yn, with
variance σ2

Var[a0] =
σ2

N

(
1 +

x2

s2x

)
(69)

Var[a1] =
σ2

Ns2x
(70)

with s2x, the sample standard deviation

s2x =
1
N

∑
n

(xn − x)2. (71)

This technique can be applied to data coming from a sam-
pling system that digitizes continuous signals y(t) to a batch
of samples y[n] = yn = y(nTs + p), with Ts as the sampling
period and p as a real-valued constant. From (69), it shows that
the variance on a0 depends on x and the smallest variance is
observed when this mean equals zero. Neglecting the effects
of clock jitter, we can choose xn as equidistant time stamps at
distance Ts for the N samples yn with parameter n delimited
by boundaries [0, N − 1]. Choosing

xn = Ts

(
n− N − 1

2

)
(72)

results in x equal to zero, and this makes the regression insen-
sitive to the absolute offset on x. We find

a0 =
∑

n y[n]
N

(73)

a1 =
∑

n xny[n]∑
n x

2
n

. (74)

The latter holds because
∑

n xny is equal to zero. The variance
on a0 and a1 are now

Var[a0] =
σ2

N
(75)

Var[a1] =
12σ2

T 2
s N(N + 1)(N − 1)

. (76)

It can be noticed that both (73) and (74) can be considered
as the correlation of the digitized samples y[n] with a fixed
sequence that can be calculated from the known values N and
Ts. To obtain a0, we correlate yn with a constant sequence of
value 1/N , for a1 with a linearly varying sequence

c0[n] = 1
/
N (77)

c1[n] =
12
Ts

n− 1/2(N − 1)
N(N + 1)(N − 1)

. (78)

We now can obtain the time-varying correlations a0[n] and
a1[n] as

a0[n] = c0[n] ⊗ y[n] (79)

a1[n] = c1[n] ⊗ y[n] (80)

where ⊗ is the correlation operator. In here, a0 is an estimation
of the average of the signal and a1 is an estimation of the signal
derivative for the investigated batch of samples.
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