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Abstract 

 

The possible use of ultrasound measurements for monitoring setting and hardening of mortar 

containing different accelerating admixtures for shotcrete was investigated. The sensitivity to 

accelerator type (alkaline aluminate or alkali- free) and dosage, and accelerator-cement 

compatibility were evaluated. Furthermore, a new automatic onset picking algorithm for 

ultrasound signals was tested. A stepwise increase of the accelerator dosage resulted in 

increasing values for the ultrasound pulse velocity at early ages. In the accelerated mortar no 

dormant period could be noticed before the pulse velocity started to increase sharply, 

indicating a quick change in solid phase connectivity. The alkaline accelerator had a larger 

effect than the alkali- free accelerator, especially at ages below 90 minutes. The effect of the 

alkali- free accelerator was at very early age more pronounced on mortar containing CEM I in 

comparison with CEM II, while the alkaline accelerator had a larger influence on mortar 

containing CEM II. The increase of ultrasound energy could be related to the setting 

phenomenon and the maximum energy was reached when the end of workability was 

approached. Only the alkaline accelerator caused a significant reduction in compressive 

strength and this for all the dosages tested. 

 

1. Introduction 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55752311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Since its first use, the number of practical applications for shotcrete has continued increasing. 

Shotcrete is employed in particular for repair works, for immediate temporary support of 

tunnel walls following excavations in unstable ground, for stabilisation of bridges and for 

concreting in difficult locations, such as abutments, undersides of beams and interiors of 

chimneys [1,2]. It is also particularly useful for structures with a special architectural shape, 

such as arches and curved forms. Important basic requirements are adequate adhesion to the 

substrate, satisfactory shooting stiffness enabling build-up of thicker sections and preventing 

dangerous fallout of fresh material from walls and overheads, and high early strength. In this 

context, setting accelerators become especially important. Chemically, accelerating 

admixtures for concrete can be divided into four major groups [3]: alkaline silicates, alkaline 

earth metal carbonates/hydroxides, sodium and potassium aluminates, and alkali- free 

accelerators often based on aluminium sulphate or calcium sulfo-aluminate. A side effect of 

the traditional alkali- rich accelerators is a significant reduction of the ultimate strength 

(typical values for strength reduction at 28 days range between 20-50%) [3]. Important are 

also the health hazards associated with handling alkalis. A new generation of alkali- free 

accelerators was therefore introduced for the improvement of the mechanical parameters, 

working conditions, safety, lower environmental impact, and easier maintenance of existing 

tunnel facilities [4]. The effect of accelerators on the early strength depends basically on their 

chemical base, dosage and temperature. Since they act chemically, their performance is 

closely related to the cement employed, its chemical composition, fineness, and the presence 

of other possible shotcrete additives [5]. A change in any of these parameters may jeopardize 

this interaction; therefore it is necessary to determine in each case the compatibility between 

cement and accelerator. 

 

One of the main difficulties in the study of accelerators performance is to define a method to 

monitor the shotcrete initial stiffness and strength evolution. Until recently, laboratory tests on 

cement paste with Gillmore needles [6] or a Vicat needle were normally used to define 

standardized initial and final setting times [7]. However, these paste tests have been criticised 

for providing results distinct from those observed in the field [5,8]. Moreover, the selection of 

these two points in the continuous process of cement hydration is rather arbitrary. More 

recently, the constant depth penetrometer has been used to evaluate the compressive strength 

of cast- in-place concrete for strengths up to 1 MPa. The constant energy penetrometer enables 



assessment of compressive strengths up to 10 MPa [9]. During the last decade, other non-

destructive techniques have attracted attention for the characterisation of the behaviour of 

concrete at early age. Among these, ultrasonic pulse velocity measurements permit to 

continuously monitor microstructure development in concrete and mortar at early age [10-14]. 

The ultrasonic pulse velocity measurements are related to the development of the modulus of 

elasticity and the Poisson ratio [10]. [14] showed that the reflection of ultrasound wave energy 

was sensitive to the presence of admixtures. [15] stated that the ultrasonic pulse velocity 

measurements could be used to monitor the microstructure development during setting and 

hardening of mortar and concrete. A correlation with more traditional methods such as pin 

penetration or heat evolution has been established [16]. 

 

2. Aim of the research 

 

The aim of the current research was to investigate the possible use of ultrasound 

measurements for monitoring binding and hardening of shotcrete. The sensitivity to changes 

in accelerator type and dosage, and the effect of accelerators in combination with different 

cement types was evaluated. 

 

3. Materials and methods 

 

3.1. Wave transmission measuring device 

 

The ultrasound device used for the current investigations was the FreshCon developed at the 

University of Stuttgart and described in more detail in earlier publications (among others  [17, 

11-13]). Separate devices are available for concrete and mortar, and the latter was used here. 

The container consists of two polymethacrylate (PMMA) walls which are tied together with 

four screws with spacers (Fig. 1). The mould is a U-shaped rubber foam element with high 

damping properties, suppressing waves from travelling through the mould and thus around the 

mortar. The volume of the mould is approximately 45 cm³. At one side of the mould a pulse is 

generated using a broadband frequency generator (Hameg), an amplifier (Develogic) and an 

ultrasound transmitter (Vallen VS 30). After travelling through the mortar sample in the 

mould, the signal is recorded at the other side by an ultrasound receiver (Vallen VS 30), with 



a sampling rate of 20 MHz. Preliminary tests showed that the change in ultrasound velocity 

and energy could be adequately monitored using a recording interval of 0.5 min during the 

first half hour and a recording interval of 2 to 5 minutes later on. Before the experiment, the 

FreshCon device was calibrated both with an empty container and the two PMMA plates 

coupled, and with a reference sample with known travel time of the p-wave in between. The 

calibration parameters obtained were a time delay of 3.18 µs and a reference energy of 968.21 

x 10-6. The time delay is the time the ultrasound wave needs to travel through the sensors and 

the container walls. It has to be subtracted from the measured time to calculate the ultrasound 

velocity in the mortar sample. Furthermore, the ultrasound energy, determined by numerical 

integration of the squared amplitude values following the trigger time (which correlates to the 

onset), is divided by the reference energy and presented as a dimensionless value. The 

FreshCon software shows the received ultrasound signals and their frequency spectrum (using 

an FFT-algorithm) online during the experiment. Also the change in ultrasound velocity and 

energy and the frequency content versus concrete age are represented. An offline version of 

the software allows re-evaluating the data after the test, using different algorithms for picking 

the onset times of the signals. [11] determined that, between repetitions, measured velocities 

vary only approximately 1%.  

Furthermore, a new automatic onset picking algorithm was tested offline. The onset detection 

by hand is a very time consuming procedure, however it is also important for calculating 

correct velocities. Manual onset detection is performed by inspecting the transmitted time 

signal on the computer screen and selecting the first measurement point deviating from the 

noise. A reliable auto-picker should determine values close to the ones gained by hand picks 

and the shape of e.g. the velocity vs. concrete age curves should be maintained. A detailed 

description of the used auto-picker can be found in [18]. Here, only a short description of the 

principle of the auto-picker will be given. 

The onset time is determined iteratively by two steps. In the first step a certain part of the 

signal containing its onset is prearranged. Therefore, the normed envelope of the signal is 

used. The exact onset time is determined using the Akaike Information Criterion (AIC) after 

[19] within the prearranged window. The AIC means that a signal can be divided into locally 

stationary segments each modelled as an autoregressive process. I.e. the intervals before and 

after the onset time are assumed to be two different stationary time series. The global 

minimum of the AIC function defines the onset point of the signal.  



 

3.2. Preparation of mortar specimens 

 

To allow accurate measurements, starting rapidly after the mix preparation, the experiments 

were performed on mortar. Also the more traditional methods for monitoring concrete setting 

are mainly performed on cement paste or mortar. Due to practical limitations, the mortar 

cannot be pneumatically applied in the FreshCon container and a traditional compaction 

procedure was used instead. 

The reference mortar consisted of 1350 g standard sand according to EN 196-1 [20], 450 g 

cement, and 225 g water and was prepared according to EN 480-1 [21]. The cement types 

tested were a Portland cement CEM I 42.5 R and a Portland- limestone cement CEM II/A-LL 

42.5 R including 6-20 % limestone according to EN 197-1 [22]. The Portland-limestone 

cement is sometimes suggested as an alternative to Portland cement for shotcrete applications 

in Germany. The tested accelerators included an alkaline aluminate based solution (AlA) and 

an alkali- free solution based on aluminium sulphate (AlS). The accelerator dosage amounted 

to 0.5, 0.75 or 1 time the maximum allowable dosage of 50 ml accelerator per kg cement.  

Cement and water were mixed for 30 seconds at low speed in a mixer in accordance with EN 

196-1 [20]. Over the next 30 seconds at low speed, the dry sand was added, followed by 30 

seconds mixing at high speed. After a rest period of 90 seconds, mixing was continued for a 

further 60 seconds at high speed. Then the accelerator was added and the mix procedure was 

concluded with about 5 seconds mixing at low speed and 5 seconds at high speed. The 

FreshCon container and three moulds for mortar prisms with dimensions 40 x 40 x 160 mm 

were filled and compacted for about 15 to 60 s on a vibrating table. The vibration time was 

limited in order not to hamper the binding process. The FreshCon container was sealed with 

plastic tape to allow cement hydration to proceed normally, and to avoid shrinkage of the 

mortar resulting in decoupling of mortar and container walls. The ultrasound measurements 

were started within 2 minutes after addition of the accelerator to the mix. The experiment was 

conducted at a room temperature of 20°C. The mortar prisms were stored in the sealed moulds 

at 20°C and demoulded after 24 h. Afterwards they were stored under water at 20°C until they 

were tested in bending and compression at an age of 28 days. 

 

4. Results 



 

The results for ultrasound velocity and energy are shown in Figs. 2 and 3 respectively. For 

clarity separate graphs are shown for the two accelerator types. The different mortar mixes are 

coded as follows: 

- I (CEM I 42.5 R) or II (CEM II/A-LL 42.5 R) 

- AlA (alkaline aluminate based solution) or AlS (alkali- free solution based on 

aluminium sulphate) 

- number representing the accelerator dosage relative to the maximum allowable dosage 

of 50 ml accelerator per kg cement (0, 0.5, 0.75 or 1) 

In all tested mixes the ultrasound velocity evolves from 100 to 700 m/s at a mortar age of 6 

min (this is 6 minutes after adding the water to the mix, thus 2 minutes after accelerator 

addition) to about 4000 m/s at later ages. It is clear that the ultrasound measurements are 

sensitive to the effect of cement type, accelerator type and dosage on the binding and 

hardening behaviour of the mortar. A stepwise increase of the accelerator dosage resulted in 

increasing values for the pulse velocity at early ages. While non-accelerated mortar showed a 

dormant period of about 30 min before the pulse velocity started to increase sharply, no such 

threshold could be noticed in the accelerated mortar. 

The velocity vs. concrete age curves determined by the autopicker based on the AIC criterion 

process were situated close to the hand picked curves (Fig.4). I.e. the deviation of the auto-

picker from the manual picks is small (table 1) and the shape of each hand picked curve is 

similar to the auto-picker curves (Fig. 4). Considering that hand picks also contain a certain 

error due to mispicks, the mean deviation of the auto picker of max. 4% from hand picks can 

be treated as low. However, due to the low signal to noise ratio of the first 10 to 15 

measurements, the auto-picker makes a few false picks for these signals (see sample II-0 and 

II-AlS-0.5). These events have not been taken into consideration for the statistics of  table 1. 

Filter algorithms could help to avoid such false picks, however they have not been tested yet.  

The auto-picker has shown its reliable applicability to ultrasound signals for the monitoring of 

binding and hardening of concrete, here shotcrete. The results of the used auto-picker show 

that the time consuming hand picks can be set aside. The few mispicks within the first 10 to 

15 signals are very striking, so that even a correction of these values by hand is possible. 

However, correct picks of all signals due to upstream filter algorithms are highly preferable. 

Different approaches are therefore under construction. 



The alkaline accelerator AlA had an even more pronounced influence on the microstructure 

development than the alkali- free accelerator AlS, especially at ages below 90 min. Mortar 

accelerated with AlA  was characterised by a very steep increase in pulse velocity during the 

first 15-30 min after which the velocity curve levelled off. For mortar with alkali- free 

accelerator AlS the velocity curve evolved more smoothly.  

The effect of the alkali- free accelerator is at very early age more pronounced on mortar 

containing CEM I in comparison with CEM II. However, at an age between 150 and 400 min, 

the curves for CEM I and CEM II mortars have an intersection. This indicates that from this 

point onwards the mortar with CEM II is in a further stage of microstructure development. 

The alkaline accelerator seems to have a larger influence on mortar containing CEM II, 

compared to mortar with CEM I (when the same accelerator dosage is used). 

The energy curves all showed the same pattern: an increase from 10-6-10-7 to 10-2-10-1 after 

which 3 local maxima could be noticed. These local maxima are probably caused by the 

characteristics of the sensors used, and do not really contain relevant information. The rate of 

energy increase depended on the accelerator type and dosage, and based on the energy curves 

more or less the same classification of mixes could be made as based on the velocity. 

Some examples of the change in frequency content of the transmitted ultrasound signal with 

age are shown in Fig. 5. Other mortar samples show a similar picture with peak frequencies at 

early age around 20 kHz, changing to peak frequencies of 50 kHz later on. The frequency 

contents of subsequent transmitted ultrasound signals are represented through colour codes on 

vertical lines in the graphs. Fig. 5 therefore visualises which frequencies are transmitted best 

at a certain time in the setting and hardening process. The age at which this shift in frequency 

content occurs depends again on the variables tested (accelerator type and dosage, and cement 

type). The use of the alkali aluminate based accelerator causes the frequency shift to happen 

at very early age (7 to 12 min). While for the alkali- free accelerator this shift occurs between 

8 and 110 min depending mainly on the accelerator content. The non-accelerated mortars 

show a frequency shift at the age of around 200 min (Fig. 5.). 

Fig. 6 shows the effect of accelerator type and dosage on the compressive strength, tensile 

strength in bending and density of the mortar prisms at 28 days of age. Only the alkaline 

accelerator AlA caused a significant reduction in the compressive strength in comparison with 

the reference without accelerator, and this for all the dosages tested (t-test with level of 

significance p = 0.01). The strength reduction was as high as 38% in combination with CEM I 



and 55% in combination with CEM II, when the maximum amount of accelerator was 

applied. This could be partly explained by an increase in the void volume, since the mortar 

density decreased significantly for these mixes e.g. with about 3% for the II-AlA-1 mix. For 

the tensile strength in bending there was a significant reduction with the addition of both 

accelerator types in dosages of 75% and 100% of the maximum amount. However, the 

reduction was much more drastic for the alkaline accelerator (about 30% with a 75% dosage 

and 35% with the 100% dosage) than for the alkali- free accelerator (about 6% with a 75% 

dosage and 18% with the 100% dosage). 

 

5. Discussion 

 

In unaccelerated samples with ordinary Portland cement, setting is normally completed within 

6 to 7 hours. Accelerators can shorten the setting time either by affecting the C3A-hydration 

or by influencing the rate of C3S-hydration. Initial CSH crystallization and the formation of 

CH (2-3 µm) generally contribute to the setting [1,4,23]. Also those ettringite crystals which 

are arranged radially on the clinker surfaces partially contribute in linking them and to a small 

extent to the setting of the sample. Paglia et al. [4] (2001) found that alkali- free accelerating 

admixtures (based on Al2(SO4)3.14H2O with or without alkali- free calcium sulfoaluminate) 

promote the crystallization of ettringite prisms on the clinker surfaces at very early stage. The 

formation of ettringite prisms within the first 30 min is sufficient to set the samples and within 

4 h of hydration, these crystals grow and almost fill the capillary pores between the clinker 

grains. In their research the use of an alkaline accelerator (KAl(OH)4 aqueous solution) 

resulted in shorter setting times compared to the alkali- free accelerated samples. This is 

mainly due to precipitation of CH plates and amorphous KCAS S H hydrates, rather than the 

formation of ettringite rods.  

In our study the alkaline accelerator AlA resulted also in a faster velocity increase, and 

therefore a faster microstructure development than the alkali- free accelerator AlS, especially 

at very early ages (< 90 min). [4] mention that the slightly longer setting times of the alkali-

free admixture, compared to the alkali- rich admixture, appear to be favourable for the 

shotcreting efficiency. Due to the higher plasticity of the cementitious mass a better adhesion 

onto the tunnel wall is achieved, whereas the very fast setting attained by the alkali- rich 



admixture promotes a fast hardening of the cementitious mass, which in contact with the 

tunnel wall is easily rebounded. 

According to prEN 934-5 [24] a requirement for sprayed concrete set accelerating admixtures 

is that the final setting time determined on reference mortar should be less than or equal to 60 

min. Practical experience showed that the final setting time could be defined by an ultrasound 

velocity of 1500 m/s [11]. Our data confirm this statement, since for the reference mix with 

ordinary Portland cement (I-0) an ultrasound velocity of 1500 m/s was reached after 355 min 

which corresponds well with the setting period of 6 to 7 hours, mentioned by  [1]. [10] used a 

number of practical criteria to determine the limits of workability and found that the end of 

the workability was defined by the area where the ultrasound propagation speed increased 

from 1000 to 1500 m/s. The ultrasound velocity at 60 min is for the different experimental 

mixes presented in Fig 7. If a velocity of 1500 m/s is taken to indicate the final setting time, 

the maximum dosage of alkali- free accelerator in combination with CEM II would just fulfil 

the requirements, while lower dosages would not be sufficient. In combination with CEM I, 

the dosage of alkali- free accelerator could be somewhat below the maximum dosage. For the 

alkaline accelerator even a dosage of half the maximum amount would suffice. 

[15] found that the point where the pulse velocity started to increase sharply, could be 

indicated as a threshold of solid percolation. The cement hydrates then form a complete path 

of connected particles for the ultrasonic pulse wave. We found this dormant period to be 

around 30 min long in non-accelerated mortar, and non-existing (or shorter than the 2 min 

interval between accelerator addition and start of measurements) in accelerated mortar. The 

following quick increase of pulse velocity is caused by the quick change in connectivity of the 

solid phase. When all particles are connected, the slow increase in pulse velocity follows the 

evolution of the total solid fraction of the paste. 

The energy change of the transmitted ultrasound wave is a parameter that has been less 

discussed in literature, mostly because it was difficult before to reproduce the energy of the 

ultrasound emittor. Close examination of the velocity and energy curves will learn that the 

first local maximum in the energy curve corresponds reasonably well to the age at which a 

velocity of 1500 mm/s is reached. To be more exact, the first energy maximum is reached on 

average 20 min after the moment when the velocity equals 1500 m/s (Fig. 8). Therefore we 

could hypothesise that the energy is related to the setting phenomenon and that the maximum 

is reached when the end of workability is approached. 



Also the age at which the frequency shifts from about 20 to 50 kHz should have a physical 

meaning related to the setting phenomenon and pointing at a sudden increase in material 

stiffness. This point of frequency shift corresponded more or less to the moment when the rate 

of velocity increase was reduced. Comparing with the work of [15] this could correspond to 

the point where the cement hydrates form a fully connected solid frame. From this point 

onwards the “deceleration phase” starts and any further evolution of pulse velocity follows the 

evolution of the total solid volume fraction. 

The results confirm that the strength decrease at later age is less severe for the alkali- free than 

for the alkaline accelerator. The decrease in compressive strength of the mix with the alkali-

free accelerator was even not statistically significant when compared with a non-accelerated 

reference mortar. This was also found by [25] and [3]. [2,3,5] mention a decrease in 28 day 

compressive strength of 20-25% when an alkali aluminate based accelerating admixture is 

applied. In our study the strength reduction was even larger and amounted to 38% for mortar 

with CEM I. This could be due to an increase in void volume in our specimens, which was not 

experienced by [3]. A decrease in density of shotcrete with aluminate based admixtures was 

also described by [26], who suggested that the flash-setting of shotcrete indicated a certain 

loss in self-compaction ability. We experienced indeed for some of the mixes with high 

accelerator dosage, that by the time that the moulds of the mortar prisms were filled, further 

compaction became very difficult, since the setting process had already started. However, this 

does not necessarily imply that the same density decrease will occur in the field, since in 

practical applications the shotcrete is applied very fast on the substrate. 

 

6. Conclusion 

 

The ultrasound measurements were clearly sensitive to the effect of cement type, accelerator 

type and dosage on the setting behaviour of mortar. A stepwise increase of the accelerator 

dosage resulted in increasing values for the pulse velocity at early ages. While non-

accelerated mortar showed a dormant period of about 30 minutes before the pulse velocity 

started to increase sharply (related to the quick change in connectivity of the solid phase), no 

such threshold could be noticed in the accelerated mortar. The alkaline accelerator had a 

larger accelerating effect on the microstructure development than the alkali- free accelerator, 

especially at ages below 90 minutes. The effect of the alkali- free accelerator was at very early 



age more pronounced on mortar containing CEM I in comparison with CEM II, while the 

alkaline accelerator had a larger influence on mortar containing CEM II. The mean deviation 

of maximum 4% between velocities calculated us ing the auto picker and those based on 

manual onset time detection could be treated as low. The increase of ultrasound energy could 

also be related to the setting phenomenon and the maximum energy was reached when the end 

of workability was approached. Only the alkaline accelerator caused a significant reduction in 

compressive strength in comparison with the reference without accelerator, and this for all the 

dosages tested.  
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Tables 
 
Table 1: Mean deviation and maximum deviation of the auto-picker from hand picked 
velocity values investigated for four samples of the shotcrete II-AlS series.  
 

Sample II-0 II-AlS-0.5 II-AlS-0.75 II-AlS-1.0 
mean deviation 3% 4% 2% 4% 
max. deviation 166 m/s 140 m/s 243 m/s 237 m/s 

 
 



 

 
Fig. 1. View of the FreshCon mortar container 
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Fig. 2. Ultrasound velocity (hand picked onset time) vs. age for mortars containing the alkali-
free accelerator AlS (top) or the alkali aluminate based accelerator AlA (bottom). Mortars 
were prepared us ing the cement types I 42.5 R (I) or CEM II/A-LL 42.5 R (II) and an 
accelerator dosage of 0, 0.5, 0.75 or 1 time the maximum allowable dosage of 50 ml per kg 
cement. 
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Fig. 3. Ultrasound energy vs. age for mortars containing the alkali- free accelerator AlS (top) 
or the alkali aluminate based accelerator AlA (bottom). Mortars were prepared using the 
cement types I 42.5 R (I) or CEM II/A-LL 42.5 R (II) and an accelerator dosage of 0, 0.5, 
0.75 or 1 time the maximum allowable dosage of 50 ml per kg cement. 



 
 

 
 
Fig. 5. Frequency content vs. age of the transmitted ultrasound signal for mortars I-0 (top) and 
I-AlS-0.5 (bottom) 
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Fig. 6. Effect of accelerator type and dosage on the compressive strength, tensile strength in 
bending and density of the mortar prisms at 28 days (average standard deviation = 2.0 N/mm² 
for compressive strength, 0.18 N/mm² for tensile strength and 4.8 kg/m³ for density) 



 
Fig. 7. Ultrasound velocity at 60 min for the different experimental mixes 
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Fig. 8. Mortar age at which the ultrasound velocity of 1500 m/s is reached vs. age at first 
energy maximum. Straight lines represent y=x and y=x-20 (min) 
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