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Abstract

The local composite operator A2

µ
is added to the Zwanziger action, which implements the

restriction to the Gribov region Ω in Euclidean Yang-Mills theories in the Landau gauge. We
prove that Zwanziger’s action with the inclusion of the operator A2

µ
is renormalizable to all

orders of perturbation theory, obeying the renormalization group equations. This allows to
study the dimension two gluon condensate

〈
A2

µ

〉
by the local composite operator formalism

when the restriction to the Gribov region Ω is taken into account. The resulting effective
action is evaluated at one-loop order in the MS scheme. We obtain explicit values for the
Gribov parameter and for the mass parameter due to

〈
A2

µ

〉
, but the expansion parameter

turns out to be rather large. Furthermore, an optimization of the perturbative expansion in
order to reduce the dependence on the renormalization scheme is performed. The properties
of the vacuum energy, with or without the inclusion of the condensate

〈
A2

µ

〉
, are investigated.

In particular, it is shown that in the original Gribov-Zwanziger formulation, i.e. without
the inclusion of the operator A2

µ
, the resulting vacuum energy is always positive at one-

loop order, independently from the choice of the renormalization scheme and scale. In the
presence of

〈
A2

µ

〉
, we are unable to come to a definite conclusion at the order considered. In

the MS scheme, we still find a positive vacuum energy, again with a relatively large expansion
parameter, but there are renormalization schemes in which the vacuum energy is negative,
albeit the dependence on the scheme itself appears to be strong. Concerning the behaviour of
the gluon and ghost propagators, we recover the well known consequences of the restriction to
the Gribov region, and this in the presence of

〈
A2

µ

〉
, i.e. an infrared suppression of the gluon

propagator and an enhancement of the ghost propagator. Such a behaviour is in qualitative
agreement with the results obtained from the studies of the Schwinger-Dyson equations and
from lattice simulations.
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§Work supported by FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, under the

program Cientista do Nosso Estado, E-26/151.947/2004.
¶david.dudal@ugent.be, henri.verschelde@ugent.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55751397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction.

The dimension two condensate
〈
A2

µ

〉
has received a great deal of attention in the last few years,

see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. This condensate was
already introduced in [18] in order to analyze the gluon propagator within the Operator Product
Expansion (OPE), while in [19] the condensate

〈
A2

i

〉
was considered in the Coulomb gauge. A

renormalizable effective potential for
〈
A2

µ

〉
has been constructed and evaluated in analytic form

up to two-loop order in the Landau gauge within the local composite operator (LCO) formalism
in [3, 12]. The output of these investigations is that a non-vanishing condensate is favoured as
it lowers the vacuum energy. The renormalizability of the local composite operator formalism,
see [20] for an introduction to the method, was proven to all orders of perturbation theory, in
the case of

〈
A2

µ

〉
, in [11] using the algebraic renormalization technique [21]. Besides the Lan-

dau gauge, the method was extended to other gauges as, for instance, the Curci-Ferrari gauge
[22, 23], the linear covariant gauges [24, 25] and, more recently, the maximal Abelian gauge [26].

As a consequence of the existence of a non-vanishing condensate
〈
A2

µ

〉
, a dynamical mass param-

eter for the gluons can be generated in the gauge fixed Lagrangian, see [3, 12, 25]. We mention
that a gluon mass has been proven to be rather useful in the phenomenological context, see e.g.
[27, 28, 29]. Moreover, mass parameters are commonly used in the fitting formulas for the data
obtained in lattice simulations, where the gluon propagator has been studied to a great extent
in the Landau gauge [30, 31, 32, 33, 34, 35, 36].

The lattice results so far obtained have provided firm evidence of the suppression of the gluon
propagator in the infrared region, in the Landau gauge. Next to the gluon propagator, also the
ghost propagator has been investigated numerically on the lattice [34, 35, 36, 37, 38], exhibiting
an infrared enhancement. It is worth remarking that, in agreement with lattice results, this
infrared behaviour of the gluon as well as of the ghost propagator has been obtained in the
analysis of the Schwinger-Dyson equations, see [39, 40, 41, 42, 43, 44, 45, 46], as well as in a
study making use of the exact renormalizaton group technique [47].

The aim of the present work is to investigate further the condensation of the operator A2
µ

in the Landau gauge using the local composite operator formalism. This will be done by taking
into account the nonperturbative effects related to the existence of the Gribov ambiguities [48],
which are known to affect the Landau gauge fixing condition, ∂µAa

µ = 0. As a consequence of the
existence of the Gribov copies, the domain of integration in the path integral has to be restricted
in a suitable way. Gribov’s orginal proposal was to restrict the domain of integration to the
region Ω whose boundary ∂Ω is the first Gribov horizon, where the first vanishing eigenvalue
of the Faddeev-Popov operator, −∂µ

(
∂µδab + gfacbAc

µ

)
, appears [48]. Within the region Ω the

Faddeev-Popov operator is positive definite, i.e. −∂µ

(
∂µδab + gfacbAc

µ

)
> 0. One of the main

results of Gribov’s work [48] was that the gluon, respectively ghost propagator, got suppressed,
respectively enhanced, in the infrared due to the restriction to the region Ω.

In two previous papers [49, 50], we have already worked out the consequences of the restric-
tion to the Gribov region Ω when the dynamical generation of a gluon mass parameter due to〈
A2

µ

〉
takes place, also finding an infrared suppression of the gluon and an enhancement of the

ghost propagator. In [49], we closely followed the setup of Gribov’s paper [48]. In this work,
we shall rely on the Zwanziger local formulation of the Gribov horizon. In a series of papers
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[51, 52], Zwanziger has been able to implement the restriction to the Gribov region Ω through
the introduction of a nonlocal horizon function appearing in the Boltzmann weight defining the
Euclidean Yang-Mills measure. More precisely, according to [51, 52], the starting Yang-Mills
measure in the Landau gauge is given by

dµγ = DAδ(∂µAa
µ) det(M)e−(SYM+γ4H) , (1.1)

where
Mab = −∂µ

(
∂µδab + gfacbAc

µ

)
, (1.2)

SYM =
1

4

∫
d4xF a

µνF a
µν , (1.3)

and

H =

∫
d4xh(x) = g2

∫
d4xfabcAb

µ

(
M−1

)ad
fdecAe

µ , (1.4)

is the so-called horizon function, which implements the restriction to the Gribov region. Notice
that H is nonlocal. The parameter γ, known as the Gribov parameter, has the dimension of a
mass and is not free, being determined by the horizon condition

〈h(x)〉 = 4
(
N2 − 1

)
, (1.5)

where the expectation value 〈h(x)〉 has to be evaluated with the measure dµγ . To the first order,
the horizon condition (1.5) reads, in d dimensions,

1 =
N (d − 1)

4
g2

∫
ddk

(2π)d

1

k4 + 2Ng2γ4
. (1.6)

This equation coincides with the original gap equation derived by Gribov for the parameter γ

[48].

Albeit nonlocal, the horizon function H can be localized through the introduction of a suit-
able set of additional fields. As shown in [51, 52, 53], the resulting local action turns out to
be renormalizable to all orders of perturbation theory. Remarkably, we shall be able to prove
that this feature is preserved when the local operator A2

µ is introduced in the Zwanziger action.
Moreover, the resulting theory turns out to obey a homogeneous renormalization group equation.
These important properties will allow us to study the condensation of the operator A2

µ within a
local renormalizable framework when the restriction to the Gribov region Ω is implemented.

It is worth remarking that the Gribov region is not free from gauge copies [54, 55, 56, 57],
i.e. Gribov copies still exist inside Ω. To avoid the presence of these additional copies, a further
restriction to a smaller region Λ, known as the fundamental modular region, should be imple-
mented. At present, a clear understanding of the role played by these additional copies appears
to be a very difficult task. Nevertheless, we should mention that, recently, it has been argued
in [58] that the additional copies existing inside Ω could have no influence on the expectation
values, so that averages calculated over Λ or Ω might give the same value.

The paper is organized as follows. In section 2, we give a short account of how the nonlo-
cal horizon functional H can be localized by means of the introduction of additional fields. In
section 3, we prove the renormalizability, to all orders of perturbation theory, of Zwanziger’s
action in the presence of the operator A2

µ, introduced through the local composite operator for-
malism. As the model has a rich symmetry structure, translated into several Ward identities,

3



it turns out that only three independent renormalization factors are necessary. The resulting
quantum effective action obeys a homogeneous renormalization group equation, as explicitly
verified at one-loop order. From this effective action, two coupled gap equations, associated to
the condensate

〈
A2

µ

〉
and to the Gribov parameter γ, are derived. Section 4 is devoted to the

study of these gap equations at one-loop order in the MS renormalization scheme. It is worth
mentioning that, under certain conditions, we find that it is possible that the condensate

〈
A2

µ

〉

is positive when the horizon condition is imposed. We prove that in the MS scheme, and at
one-loop order, the solution of the gap equations is necessarily one with

〈
A2

µ

〉
> 0. We recall

that without the restriction to the Gribov region Ω, the value found for
〈
A2

µ

〉
using the local

composite operator formalism is negative, see [3, 12, 25]. Let us also mention here that in
[6, 7, 8, 9], a positive estimate for

〈
A2

µ

〉
was obtained when using the OPE in combination with〈

A2
µ

〉
. These works were based on the observation of a certain discrepancy at relatively large

momentum between the expected perturbative behaviour and the obtained lattice behaviour of
e.g. the effective strong coupling constant and gluon propagator. This discrepancy could be
accounted for by power corrections in 1

q2 , due to a positive
〈
A2

µ

〉
OPE

gluon condensate. The

presence of such power corrections has also been discussed in [59]. We do not know if there
is a direct connection between the condensate

〈
A2

µ

〉
that we determine, and

〈
A2

µ

〉
OPE

, as the
latter is expected to contain only infrared contributions, according to an OPE treatment, while
the gap equations fixing the gluon condensate and the Gribov parameter are evaluated using
perturbation theory, implying that reliable results are only to be expected at a sufficiently large
scale.

Although the expansion parameter proves to be rather large, an attempt to obtain explicit
values for the Gribov and gluon mass parameter is still presented. Also, we shall prove that in
the original Gribov-Zwanziger model, the vacuum energy is always positive at one-loop order,
irrespective of the choice of renormalization scheme and scale. We outline the importance of the
sign of the vacuum energy, as it is related to the gauge invariant gluon condensate

〈
F 2

µν

〉
, via

the trace anomaly. From

θµµ =
β(g2)

2g2
F 2

µν , (1.7)

the vacuum energy can be traced back to the value of the gluon condensate
〈
F 2

µν

〉
. In particular,

for N = 3, from this anomaly one deduces

〈
g2

4π2
F 2

µν

〉
= −32

11
Evac , (1.8)

where the one-loop β-function has been used. Hence, a positive vacuum energy implies a negative

value for the condensate
〈

g2

4π2 F 2
µν

〉
. This is in contradiction with what is found. In QCD, with

quarks present, one can extract phenomenological values for
〈

g2

4π2 F 2
µν

〉
via the sum rules [60],

obtaining positive values for this condensate. It was discussed in [61] how to obtain an estimate
for it by means of lattice calculations. In the case of N = 3 Yang-Mills theory without quarks,
it was found that 〈

g2

4π2
F 2

µν

〉
= 0.14 ± 0.02GeV4 . (1.9)

Let us mention here that the Yang-Mills β-function is negative up to the (known) four-loop or-

der [62, 63, 64]. Hence, Evac and
〈

g2

4π2 F 2
µν

〉
will continue to have opposite sign at higher order.

From this viewpoint, it seems to us that it would be an asset that the vacuum energy obtained
from any kind of calculation is at least negative.
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In section 5 we present an optimized expansion in order to reduce the dependence on the choice
of renormalization scheme to a single parameter b0, related to the coupling constant renormal-
ization. This is achieved by exchanging the mass parameters by their renormalization scale and
scheme invariant counterparts and by re-expanding the series in the one-loop coupling constant.
For b0 = 0, which corresponds to the MS scheme, we find a positive

〈
A2

µ

〉
, positive Evac and

hence negative
〈
F 2

µν

〉
. However, we find that a region of b0 is existing in which the vacuum

energy is negative, but unfortunately the dependence on b0 in this region happens to be very
large. A higher order analysis seems to be required to reach more definite conclusions about the
sign of

〈
A2

µ

〉
, Evac or

〈
F 2

µν

〉
.

For the benefit of the reader, we provide in section 6 an overview of some important conse-
quences stemming from the presence of the Gribov and gluon mass parameters on the gluon and
ghost propagators. We point out a particular renormalization property of the Zwanziger action
in order to ensure the enhancement of the ghost propagator. Conclusions are written down in
section 7, while the technical details of our work have been collected in the Appendices A and
B.

2 Local action from the restriction to the Gribov region.

As explained in [51, 52], the nonlocal functional H can be localized by means of the introduction
of a suitable set of additional ghost fields. More precisely, for the localized version of the measure
dµγ we get,

dµγ = DADbDcDcDϕDϕDωDωe−S , (2.1)

where S is given by1

S = S0 − γ2g

∫
d4x

(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ

)
, (2.2)

while

S0 = SYM +

∫
d4x

(
ba∂µAa

µ + ca∂µ (Dµc)a)

+

∫
d4x

(
ϕac

µ ∂ν

(
∂νϕ

ac
µ + gfabmAb

νϕmc
µ

)
− ωac

µ ∂ν

(
∂νωac

µ + gfabmAb
νωmc

µ

)

−g
(
∂νω

ac
µ

)
fabm (Dνc)b ϕmc

µ

)
. (2.3)

The fields
(
ϕac

µ , ϕac
µ

)
are a pair of complex conjugate bosonic fields. Each field has 4

(
N2 − 1

)2
components. Similarly, the fields

(
ωac

µ , ωac
µ

)
are anticommuting. The local action (2.2) is

renormalizable by power counting. More precisely, it has been shown in [51, 52, 53] that the
Green functions obtained with the action S0 with the insertion of the local composite operators
fabcAa

µϕbc
µ and fabcAa

µϕbc
µ are renormalizable, the action S0 being indeed renormalizable by a

multiplicative renormalization of the coupling constant g and of the fields [51, 52, 53]. We re-
mark that the action S0 displays a global U(f) symmetry, f = 4

(
N2 − 1

)
, with respect to the

composite index i = (µ, c) = 1, ..., f , of the additional fields
(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
. Setting

(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
= (ϕa

i , ϕ
a
i , ω

a
i , ω

a
i ) , (2.4)

1Our conventions are different from those originally used by Zwanziger. These can be obtained from ours by
setting ϕ → −ϕ and ω → −ω.

5



we get

S0 = SYM +

∫
d4x

(
ba∂µAa

µ + ca∂µ (Dµc)a)

+

∫
d4x

(
ϕa

i ∂ν (Dνϕi)
a − ωa

i ∂ν (Dνωi)
a −g (∂νωa

i ) fabm (Dνc)
b ϕm

i

))
. (2.5)

For the U(f) invariance we have

UijS0 = 0 ,

Uij =

∫
d4x

(
ϕa

i

δ

δϕa
j

− ϕa
j

δ

δϕa
i

+ ωa
i

δ

δωa
j

− ωa
j

δ

δωa
i

)
. (2.6)

The presence of the global U(f) invariance means that one can make use of the composite index
i = (µ, c). By means of the diagonal operator Qf = Uii, the i-valued fields turn out to possess
an additional quantum number. As shown in [51, 52, 53], the action S0 is left invariant by the
following nilpotent BRST transformations,

sAa
µ = − (Dµc)a ,

sca =
1

2
gfabccbcc ,

sca = ba , sba = 0 ,

sϕa
i = ωa

i , sωa
i = 0 ,

sωa
i = ϕa

i , sϕa
i = 0 , (2.7)

with
sS0 = 0 . (2.8)

For further use, the quantum numbers of all fields entering the action S0 are displayed in Table
1. It is worth noticing that, when fabcAa

µϕbc
µ and fabcAa

µϕbc
µ are treated as composite operators,

they are introduced in the starting action S0 coupled to local external sources Mai
µ , V ai

µ , namely

−
∫

d4x
(
Mai

µ (Dµϕi)
a + V ai

µ (Dµϕi)
a) . (2.9)

The horizon condition (1.5) is thus obtained from the quantum action by requiring that, at the
end of the computation, the sources Mai

µ , V ai
µ attain the physical values, obtained by setting

Mab
µν = V ab

µν = γ2δabδµν . (2.10)

Indeed, expression (2.9) reduces precisely to that of eq.(2.2) when the sources Mai
µ , V ai

µ attain
their physical value.

Aa
µ ca ca ba ϕa

i ϕa
i ωa

i ωa
i

dimension 1 0 2 2 1 1 1 1

ghostnumber 0 1 −1 0 0 0 1 −1

Qf -charge 0 0 0 0 1 −1 1 −1

Table 1: Quantum numbers of the fields.
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Uai
µ Mai

µ Nai
µ V ai

µ η τ Ka
µ La

dimension 2 2 2 2 2 2 3 4

ghostnumber −1 0 1 0 −1 0 −1 −2

Qf -charge −1 −1 1 1 0 0 0 0

Table 2: Quantum numbers of the sources.

3 Renormalization of the Zwanziger action in the presence of

the composite operator A
a
µA

a
µ.

The purpose of this section is to show that the renormalizability of the local action S0 is preserved
when, besides the operators fabcAa

µϕbc
µ and fabcAa

µϕbc
µ , also the local composite operator Aa

µAa
µ

is introduced. This is a remarkable feature of the Zwanziger action, allowing us to discuss the
condensation of the operator Aa

µAa
µ when the restriction to the Gribov region Ω is implemented.

To discuss the renormalizability of the model in the presence of A2
µ, we start from the following

complete action
Σ = S0 + Ss + Sext , (3.1)

where Ss is the term containing all needed local composite operators with their respective local
sources, and is given by

Ss = s

∫
d4x

(
−Uai

µ (Dµϕi)
a − V ai

µ (Dµωi)
a − Uai

µ V ai
µ +

1

2
ηAa

µAa
µ − 1

2
ζτη

)
, (3.2)

where the BRST operator acts as

sUai
µ = Mai

µ , sMai
µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 , (3.3)

and
sη = τ , sτ = 0 . (3.4)

Therefore, for Ss one gets

Ss =

∫
d4x

(
−Mai

µ (Dµϕi)
a − gUai

µ fabc (Dµc)b ϕc
i + Uai

µ (Dµωi)
b

− Nai
µ (Dµωi)

a − V ai
µ (Dµϕi)

a + gV ai
µ fabc (Dµc)b ωc

i

− Mai
µ V ai

µ + Uai
µ Nai

µ +
1

2
τAa

µAa
µ + ηAa

µ∂µca − 1

2
ζτ2

)
. (3.5)

As already noticed, the sources Mai
µ , V ai

µ are needed to introduce the composite operators
(Dµϕi)

a and (Dµϕi)
a. The sources Uai

µ , Nai
µ define the BRST variations of these operators,

given by (Dµωi)
b and (Dµωi)

a. The physical value of these sources is given by

Mab
µν = V ab

µν = γ2δabδµν ,

Uab
µν = Nab

µν = 0 . (3.6)

The local composite operator Aa
µAa

µ and its BRST variation, Aa
µ∂µca, are then introduced by

means of the local sources τ , η. We also notice that the complete action Σ contains terms
quadratic in the external sources, namely

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
and ζτ2. These terms, allowed

by power counting, are in fact needed for the multiplicative renormalizability of the model. As

7



shown in [3], the dimensionless LCO parameter ζ of the quadratic term in the source τ is needed
to account for the divergences present in the correlation function

〈
A2

µ(x)A2
ν(y)

〉
for x → y. It

should be remarked that, unlike for the term quadratic in the external source τ , we have not
introduced a new free parameter for the quadratic term

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
in expression (3.5).

As we shall see, this term goes through the renormalization without the need of introducing a
new parameter for its renormalizability. This is a remarkable feature of the Zwanziger action
which plays an important role when the ghost propagator in the presence of the Gribov horizon
will be discussed, see section 6.

Finally, the term Sext is the source term needed to define the nonlinear BRST transformations
of the gauge and ghost fields, i.e.

Sext =

∫
d4x

(
−Ka

µ (Dµc)a +
1

2
gLafabccbcc

)
. (3.7)

The technical details concerning the algebraic renormalization procedure have been worked out
in Appendix A. In summary, the Zwanziger action in the presence of the local operator Aa

µAa
µ

is multiplicative renormalizable. In turn, this ensures that the quantum effective action obeys
the homogeneous renormalization group equations (RGE). This is an important feature of the
model, which will be useful when we shall try to obtain estimates for both the Gribov and mass
parameter.

The effective action is defined upon setting the sources Uab
µν , Nab

µν , Ka
µ, La and η equal to zero

and implementing the condition (2.10). Doing so, we get

S = S0 + Sγ +

∫
d4x

(
τ

2
Aa

µAa
µ − ζ

2
τ2

)
,

Sγ =

∫
d4x

[
−γ2gfabcAa

µϕbc
µ − γ2gfabcAa

µϕbc
µ − 4

(
N2 − 1

)
γ4
]

. (3.8)

The term −4
(
N2 − 1

)
γ4 originates from the quadratic term in the external sources, namely(

−Mai
µ V ai

µ + Uai
µ Nai

µ

)
, in expression (3.5), evaluated at the physical values given by eq.(2.10).

Following [3, 12, 20, 25], we introduce a Hubbard-Stratonovich field σ by means of the following
unity

1 =

∫
[dσ]e

− 1
2ζ

∫
d4x

[
σ
g
+ 1

2
Aa

µAa
µ−ζτ

]2
, (3.9)

to remove the term proportional to τ2. The source τ is henceforth linearly coupled to the field
σ, as can be directly seen from the action, which now reads

S = S0 + Sγ + Sσ +

∫
d4x

(
−τ

σ

g

)
,

Sσ =
σ2

2g2ζ
+

1

2

gσ

g2ζ
Aa

µAa
µ +

1

8ζ

(
Aa

µAa
µ

)2
. (3.10)

The following identification is easily derived [3, 12, 20, 25]

〈
Aa

µAa
µ

〉
= −1

g
〈σ〉 , (3.11)

from which it follows that a nonvanishing vacuum expectation value of the field σ will result in
a nonvanishing condensate

〈
Aa

µAa
µ

〉
.
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The quantum action Γ is obtained through the definition

e−Γ =

∫
[dΦ] e−S0−Sγ−Sσ , (3.12)

where Φ is a shorthanded notation for all the relevant fields.

The value for 〈σ〉 is found through the minimization condition

∂Γ

∂σ
= 0 . (3.13)

The horizon is implemented by the condition [51, 52].

∂Γ

∂γ2
= 0 . (3.14)

Let us show this here. The following equivalence is readily found

∂Γ

∂γ2
= 0 ⇔

〈
gfabcAa

µϕbc
µ

〉
+
〈
gfabcAa

µϕbc
µ

〉
= −8

(
N2 − 1

)
γ2 , (3.15)

¿From expressions (1.1) and (2.2), it follows that

−2γ2 〈h〉 =
〈
gfabcAa

µϕbc
µ

〉
+
〈
gfabcAa

µϕbc
µ

〉
. (3.16)

The combination of eq.(3.15) with eq.(3.16) gives rise to the horizon condition eq.(1.5). In order
to conclude this, it is tacitly assumed that γ 6= 0. We notice that the condition (3.14) does
possess the solution γ = 0. This is an artefact of the reformulation of the horizon condition in
terms of the equation (3.14), and must be excluded as it does not lead to the horizon condition
(1.5). We shall, however, continue to keep this solution of the gap equation (3.14), as γ ≡ 0
corresponds to the case where the restriction to the Gribov region Ω would not be implemented.
In this case, we must only solve the gap equation stemming from eq.(3.13) with γ ≡ 0.

The original Gribov-Zwanziger model, i.e. without the inclusion of the operator A2
µ, is ob-

tained by only retaining the condition (3.14) with σ ≡ 0.

Up to now, the LCO parameter ζ is still a free parameter of the theory. We do not intend
here to give a complete overview of the LCO formalism, we suffice by saying that ζ is fixed by
the demand that the action Γ should obey the homogeneous renormalization group equation

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ γγ2(g2)γ2 ∂

∂γ2
+ γσ(g2)σ

∂

∂σ

)
Γ = 0 , (3.17)

with

µ
∂g2

∂µ
= β(g2) ,

µ
∂γ2

∂µ
= γγ2(g2)γ2 ,

µ
∂σ

∂µ
= γσ(g2)σ . (3.18)

This can be accomodated for by making ζ a function of the running coupling constant g2, in
which case it is found that

ζ(g2) =
ζ0

g2
+ ζ1 + ζ2g

2 + · · · . (3.19)

We refer to the available literature [3, 12, 20, 22, 25, 26] for a detailed account of the LCO
formalism.
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3.1 Renormalization group invariance of the one-loop effective action in the

MS scheme without the inclusion of A
2
µ.

Before proceeding with the detailed analysis of the horizon condition in the presence of the local
operator Aa

µAa
µ, let us first derive the horizon condition and check the explicit renormalization

group invariance of the quantum action Γ by switching off the source τ coupled to the operator
Aa

µAa
µ. This amounts to consider the original Gribov-Zwanziger model. We consider thus the

action

S = S0 + Sγ . (3.20)

The one-loop effective action Γ(1) is easily obtained from the quadratic part of eq.(3.20)

e−Γ
(1)
γ =

∫
[DΦ] e−Squad , (3.21)

with Squad given by

Squad =

∫
d4x

[
1

4

(
∂µAa

ν − ∂νA
a
µ

)2
+

1

2α

(
∂µAa

µ

)2
+ ϕab

µ ∂2ϕab
µ

− γ2g
(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ

)
− 4(N2 − 1)γ4

]
, (3.22)

where the limit α → 0 is understood in order to recover the Landau gauge. After a straightfor-
ward computation, one gets

Γ(1) = −4(N2 − 1)γ4 +
(N2 − 1)

2
(d − 1)

∫
ddp

(2π)d
ln
(
p4 + 2Ng2γ4

)
. (3.23)

Dimensional regularization, with d = 4− ε, will be employed throughout this work. Taking the
derivative of Γ(1), one reobtains the original gap equation for the Gribov parameter γ, namely

∂Γ(1)

∂γ
= 0 ⇒ 1 =

N (d − 1)

4
g2

∫
ddp

(2π)d

1

(p4 + 2Ng2γ4)
. (3.24)

More precisely, recalling that

∫
ddp

(2π)d
ln
(
p4 + ρ2

)
= − ρ2

32π2

(
ln

ρ2

µ4 − 3

)
+

1

ε

4ρ2

32π2
, (3.25)

the one-loop effective action Γ(1) reads

Γ(1) = −4(N2 − 1)γ4 − 3(N2 − 1)

64π2

(
2Ng2γ4

)(
ln

2Ng2γ4

µ4 − 5

3

)
, (3.26)

where the MS renormalization scheme has been used.

In order to check the renormalization group invariance of Γ(1), we need to know the anoma-
lous dimension of the Gribov parameter γ. This is easily obtained from eq.(A.34), yielding

γγ2(g2) = −1

2

(
β(g2)

2g2
− γA(g2)

)
, (3.27)
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where γA(g2) stands for the anomalous dimension of the gauge field Aa
µ. Thus, at one-loop order,

µ
dΓ(1)

dµ
=

(
4(N2 − 1)

(
β(1)(g2)

2g2
− γ

(1)
A (g2)

)
+

3(N2 − 1)

16π2
2Ng2

)
γ4 . (3.28)

Furthermore, from (see e.g. [65])

β(1)(g2) = −22

3

g4N

16π2
,

γ
(1)
A (g2) = −13

6

g2N

16π2
, (3.29)

it follows

µ
dΓ(1)

dµ
= 0 , (3.30)

which establishes the RGE invariance of the effective action at the order considered.

We are now ready to face the more complex case in which the local composite operator Aa
µAa

µ

is present. This will be the topic of the next section.

4 One-loop effective action in the MS scheme with the inclusion

of A
2
µ.

4.1 Calculation of the one-loop effective potential.

Let us turn to the explicit one-loop evaluation of the effective action Γ in the presence of A2
µ.

At one-loop, it turns out that2

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2g2ζ
+

N2 − 1

2
ln det

[
p2δµν +

2Ng2γ4

p2
δµν − pµpν

(
1 − 1

α

)
+

gσ

g2ζ
δµν

]
,

(4.1)
or

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2g2ζ
+

N2 − 1

2
(d − 1)

∫
ddp

(2π)d
ln

[
p4 + 2Ng2γ4 +

gσ

g2ζ
p2

]
. (4.2)

Before calculating the integral, we quote the two gap equations

∂Γ

∂σ
= 0 ⇔ σ

ζ0

(
1 − ζ1

ζ0
g2

)
+

(
N2 − 1

)

2

g(d − 1)

ζ0

∫
ddp

(2π)d

p2

p4 + gσ
ζ0

p2 + 2Ng2γ4
= 0 ,

∂Γ

∂γ
= 0 ⇔ γ3 = γ3 d − 1

4
g2N

∫
ddp

(2π)d

1

p4 + gσ
ζ0

p2 + 2Ng2γ4
. (4.3)

The second gap equation of (4.3), being the horizon condition, gives rise to the one obtained in
the previous paper [49], while the first one describes the condensation of A2

µ when the restriction
to the Gribov region Ω is implemented. We notice that that the explicit value of the Gribov
parameter γ is influenced by the presence of

〈
A2

µ

〉
.

It remains to calculate

I =

∫
ddp

(2π)d
ln
[
p4 + bp2 + c

]
, (4.4)

2We shall drop from now on the superscript (1) indicating that we are working at one-loop order.
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with
b =

gσ

ζ0
, c = 2Ng2γ4 , (4.5)

Since
p4 + bp2 + c =

(
p2 + ω1

) (
p2 + ω2

)
, (4.6)

with

ω1 =
b +

√
b2 − 4c

2
, ω2 =

b −
√

b2 − 4c

2
, (4.7)

one has

I =

∫
ddp

(2π)d
ln
(
p2 + ω1

)
+

∫
ddp

(2π)d
ln
(
p2 + ω2

)
. (4.8)

To make sense, the expression (4.4) should be real to ensure that the one-loop effective action
is real-valued. Therefore, we must demand that c ≥ 0. If b ≥ 0, I is certainly real. However,
when b2 − 4c ≤ 0, then also b < 0 is allowed. We should thus have a positive Gribov parameter
γ4, while the condensate

〈
A2

µ

〉
can be negative or positive, depending on the case.

Using ∫
ddp

(2π)d
ln
(
p2 + m2

)
=

−m4

32π2

(
2

ε
− ln

m2

µ2 +
3

2

)
, (4.9)

it holds

I = − ω2
1

32π2

(
2

ε
− ln

ω1

µ2 +
3

2

)
− ω2

2

32π2

(
2

ε
− ln

ω2

µ2 +
3

2

)
. (4.10)

Finally, in the MS scheme, we obtain

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2ζ0

(
1 − ζ1

ζ0
g2

)
+

3
(
N2 − 1

)

2
×




(
gσ
ζ0

+
√

g2σ2

ζ2
0

− 8g2Nγ4
)2

128π2


ln

gσ
ζ0

+
√

g2σ2

ζ2
0

− 8g2Nγ4

2µ2 − 5

6




+

(
gσ
ζ0

−
√

g2σ2

ζ2
0

− 8g2Nγ4
)2

128π2


ln

gσ
ζ0

−
√

g2σ2

ζ2
0

− 8g2Nγ4

2µ2 − 5

6





 . (4.11)

To lighten the notation a bit, let us introduce the new variables3

λ4 = 8g2Nγ4 , (4.12)

m2 =
gσ

ζ0
. (4.13)

in which case the action (4.11) can be rewritten as

Γ = −
(
N2 − 1

)
λ4

2g2N
+

ζ0m
4

2g2

(
1 − ζ1

ζ0
g2

)

+
3
(
N2 − 1

)

256π2

[(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5

6

)

+
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −

√
m4 − λ4

2µ2 − 5

6

)]
. (4.14)

3In comparison with the previous article [49], we have the correspondence λ4 = 4γ4 with the Gribov parameter
γ4 as defined there. It is actually this γ4 which will enter the modified propagators, see [49] and further in this
paper.
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We notice that the foregoing expression is also valid, i.e. real-valued, in the case in which
m4 < λ4, as ℓ+(m,λ) and ℓ−(m,λ), defined by,

ℓ+(m,λ) =
(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5

6

)

ℓ−(m,λ) =
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −

√
m4 − λ4

2µ2 − 5

6

)
(4.15)

are complex conjugate4.

The horizon condition, eq.(3.14), can be translated to

∂Γ

∂λ
= 0 , (4.16)

and the gap equation (3.13) to
∂Γ

∂m2
= 0 . (4.17)

As a check of this one-loop calculation, the expression (4.14) with m2 ≡ 0 reduces to the result
obtained earlier in eq.(3.26), i.e. the original Gribov-Zwanziger model without the inclusion of
A2

µ. If λ ≡ 0, i.e. the case where the condensation of A2
µ is investigated without implementing

the restriction to the Gribov region Ω, eq.(4.14) coincides with the result of [3, 12, 25]. From
[11], one knows that

µ
∂
〈
A2

µ

〉

∂µ
= γA2

µ
(g2)

〈
A2

µ

〉
= −

(
β(g2)

2g2
+ γA(g2)

)〈
A2

µ

〉
, (4.18)

or, using the relation (3.11) and the definition (4.13),

µ
∂m2

∂µ
= γm2(g2)m2 =

(
β(g2)

2g2
− γA(g2)

)
m2 , (4.19)

while from eq.(3.27), it can be inferred that

µ
∂λ

∂µ
= γλ(g2)λ =

1

4

(
β(g2)

2g2
+ γA(g2)

)
λ . (4.20)

We notice the remarkable fact that the anomalous dimensions of the Gribov parameter and of
the operator A2

µ are proportional to each other, to all orders of perturbation theory.

It can now be checked that Γ is renormalization group invariant, namely

µ
d

dµ
Γ = 0 . (4.21)

Finally, taking the derivatives of the action given in eq.(4.14) gives rise to

1

λ3

∂Γ

∂λ
= −2

(
N2 − 1

)

g2N
+

3
(
N2 − 1

)

256π2


−4

(
m2 +

√
m4 − λ4

)

√
m4 − λ4

ln
m2 +

√
m4 − λ4

2µ2

+ 4

(
m2 −

√
m4 − λ4

)

√
m4 − λ4

ln
m2 −

√
m4 − λ4

2µ2 +
8

3


 , (4.22)

4Using ln(z) = ln |z| + i arg(z) with −π < arg(z) ≤ π.
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and

∂Γ

∂m2
=

ζ0m
2

g2

(
1 − ζ1

ζ0
g2

)
+

3
(
N2 − 1

)

256π2

[
2
(
m2 +

√
m4 − λ4

)(
1 +

m2

√
m4 − λ4

)
ln

m2 +
√

m4 − λ4

2µ2

+ 2
(
m2 −

√
m4 − λ4

)(
1 − m2

√
m4 − λ4

)
ln

m2 −
√

m4 − λ4

2µ2 − 8

3
m2

]
.

(4.23)

4.2 Solving the gap equations.

We have now all the ingredients at hand to search for estimates of the mass parameter m2 and
Gribov parameter λ as solutions of the gap equations (4.22) and (4.23). To avoid misinterpre-
tations due to the suggestive use of the notation m2, we remark that, due to the presence of λ,
the mass parameter does not even appear as a pole in the tree level gluon propagator, see eq.(6.2).

Let us first consider the pure Gribov-Zwanziger case, i.e. we put m2 ≡ 0 in the expression
(4.14). The relevant gap equation (horizon condition) reads

∂Γ

∂λ
= λ3

(
−2
(
N2 − 1

)

g2N
− 3

(
N2 − 1

)

64π2

(
ln

λ4

4µ4 − 5

3

)
− 3

(
N2 − 1

)

64π2

)
= 0 . (4.24)

We remind here that the solution λ = 0 must be rejected. The natural choice for the renormal-
ization scale is to set µ2 = λ4

4 to kill the logarithms, and we find

g2N

16π2

∣∣∣∣
µ2= λ2

2

= 4 . (4.25)

In principle, from

g2(µ2) =
1

β0 ln µ2

Λ2
MS

, with β0 =
11

3

N

16π2
, (4.26)

eq.(4.25) could be used to determine an estimate for the Gribov parameter, however it might be
clear that this is meaningless since the corresponding expansion parameter (4.25) is far too big.

It is interesting to notice that, in a general massless renormalization scheme, the one-loop action
with m2 ≡ 0 would read

Γ = −
(
N2 − 1

)

2g2N
λ4 − 3λ4

(
N2 − 1

)

264π2

(
ln

λ4

4µ4 + a

)
, (4.27)

with a an arbitrary constant. The corresponding gap equation equals

∂Γ

∂λ
= λ3

(
−2
(
N2 − 1

)

g2N
− 3

(
N2 − 1

)

64π2

(
ln

λ4

4µ4 + a

)
− 3

(
N2 − 1

)

64π2

)
= 0 . (4.28)

Denoting by λ∗ a solution of eq.(4.28), for the vacuum energy corresponding to (4.27) one finds

Evac = Γ(λ∗) =
3(N2 − 1)

64π2

λ4
∗
4

. (4.29)
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This expression is valid for all µ and for all a. The vacuum energy is thus always nonnegative
at one-loop order in the original Gribov-Zwanziger model.

The gap equation (4.23) with λ ≡ 0 obviously has the solution already obtained in [3, 12, 25]
where the restriction to the Gribov region Ω was not taken into account. We recall the values

g2N

16π2
=

36

187
≈ 0.193 , (4.30)

m2 = e
17
12 Λ2

MS
≈ (2.031ΛMS)

2 , (4.31)

Evac = − 3

16π2
e

17
6 Λ4

MS
≈ −0.323Λ4

MS
, (4.32)

which were obtained upon setting µ2 = m2 to kill the logarithms.

We shall now show that, in the MS scheme, the gap equations (4.22)-(4.23) have no solution
with m2 > 0 when the restriction to the horizon is implemented (i.e. when λ 6= 0). To this
purpose, we introduce for m2 > 0 the variable

t =
λ4

m4
. (4.33)

Evidently, we should only consider t > 0.

Dividing the gap equations (4.22)-(4.23) by m2, they can be rewritten as5

16π2

g2N
=

3

8

(
−2 ln

m2

2µ2 +
2

3
+

1√
1 − t

ln
t

(
1 +

√
1 − t

)2 − ln t

)
, (4.34)

and

− 24

13

(
16π2

g2N

)
+

322

39
= 4 ln

m2

2µ2 − 4

3
− 2 − t√

1 − t
ln

t
(
1 +

√
1 − t

)2 + 2 ln t , (4.35)

where use has been made of the explicit values of ζ0 and ζ1, which can be found in [3, 12, 25]

ζ0 =
9

13

N2 − 1

N
, ζ1 =

161

52

N2 − 1

16π2
, (4.36)

The eqns.(4.35)-(4.36) can be combined to eliminate ln m2

2µ2 , yielding the following condition

68

39

(
16π2

g2N

)
+

161

39
=

t√
1 − t

ln
t

(
1 +

√
1 − t

)2 ≡ F (t) . (4.37)

It can be checked that F (t) is real-valued and negative for t > 0, thus the r.h.s. of eq.(4.37) is
always negative. Since the l.h.s. of eq.(4.37) is necessarily positive for a meaningful result (i.e.
g2 ≥ 0), there is no solution with m2 > 0. As already mentioned, there are a priori also possible
solutions with m2 < 0.

To investigate the existence of a solution with m2 < 0, it might be instructive to look again
at the gap equations (4.22) and (4.23) from another perspective. We recall that, if the horizon
is not implemented, i.e. λ ≡ 0, the gap equation (4.23) has two solutions, a perturbative one

5We have already factored out m2 or λ3 since these are non-zero in the present case.
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corresponding to m2 = 0 (no condensation) and a non-perturbative one corresponding to the
m2 given in eq.(4.31).

If we momentarily consider λ as a free, adjustable parameter of the theory, eq.(4.23) dictates
how m2 becomes a function of the parameter λ. From the result at λ = 0, we could expect that
two branches of solutions would evolve, one starting from the perturbative and one from the
non-perturbative value of m2 at λ = 0. When λ ≡ 0, the choice for the scale µ is quite obvious
from the requirement that all the logarithms ln m2

µ2 are vanishing. However, when λ 6= 0, we

notice that there are two kinds of logarithms present, being ln m2+
√

m4−λ4

2µ2 and ln m2−
√

m4−λ4

2µ2 .
We opt to set

µ2 =

∣∣∣m2 +
√

m4 − λ4
∣∣∣

2
. (4.38)

This reduces to µ2 = m2 if λ = 0, while it allows for6 m2 < 0. This is possible if m4 ≤ λ4, as

it was mentioned below eq.(4.8). In this case, the size of both logarithms, ln m2+
√

m4−λ4

2µ2 and

ln m2−
√

m4−λ4

2µ2 , is determined by their arguments, which are complex conjugate.

Let us specify to the case N = 3. In Figure 1, we have plotted the behaviour of m2(λ4).
We see that next to the “non-perturbative” branch of solutions, starting from m2 6= 0, also a
“perturbative” branch of solutions with m2 < 0 is emerging from m2 = 0, in correspondence
with our expectation.

50 100 150 200 250
lambda^4

-10

-5

5

m^2

Figure 1: m2 as a function of λ4, in units ΛMS = 1.

However, λ4 is not a free parameter of the theory. We should require that λ4 is such that
the doublet (λ4,m2(λ4)) is a solution of the gap equation (4.22), i.e. the horizon condition. In
Figure 2, we have plotted the value of the horizon condition equation, as a function of λ4. It
is clear that no solution with m2 > 0 exists as the horizon condition never becomes zero. Of
course, this is in correspondence with the foregoing general proof that there is never such a
solution, independently of the choice of µ. However, we see that there is a single solution with
m2 < 0.

6Evidently, µ2 should be real and positive, hence the modulus in eq.(4.38).
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50 100 150 200 250
lambda^4

-0.8

-0.6

-0.4

-0.2

horizon condition

Figure 2: The horizon condition (4.22) as a function of λ4, in units ΛMS = 1. The top curve
corresponds to the solutions of (4.23) with m2 < 0 and the lower curve to the solutions with
m2 > 0.

The corresponding values for the expansion parameter, for the Gribov and mass parameter,
as well as for the vacuum energy are found to be

g2N

16π2
≈ 1.18 , (4.39)

λ4 ≈ 6.351Λ4
MS

, (4.40)

m2 ≈ −0.950Λ2
MS

, (4.41)

Evac ≈ 0.043Λ4
MS

, (4.42)

4.3 Intermediate comments.

Although the MS expansion parameter (4.39) is too large to speak about reliable results, we
nevertheless would like to raise some questions. Apparently, the solution of the coupled gap
equations is laying on the “perturbative” branch, being the one with m2 ≤ 0. This gives rise
to a positive value for the mass dimension two gluon condensate

〈
A2

µ

〉
. When the restriction

on the domain of integration in the path integral is not implemented, as in the previous papers
[3, 12, 25],

〈
A2

µ

〉
was necessarily negative, the reason being that the action should be real-valued,

as it was explained below eq.(4.8). As already explained in the Introduction, a finding a bit
unfortunate is that the vacuum energy is positive, eq.(4.42), which leads to a negative estimate

for the gluon condensate
〈

g2

4π2 F 2
µν

〉
via the trace anomaly, eq.(1.8). Essentially, we are thus left

with the following questions:

(i.) What is the sign and value of m2 and thus of
〈
A2

µ

〉
?

(ii.) What is the sign and value of Evac and the corresponding value for
〈

g2

4π2 F 2
µν

〉
?

(iii.) Are these values better or not when the operator A2
µ is added to the original Gribov-

Zwanziger model?
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5 Changing and reducing the dependence on the renormaliza-

tion scheme.

We have already shown that the vacuum energy obtained in a one-loop approximation is always
positive when the condensation of the operator A2

µ is left out of the discussion, using whatever
renormalization scheme.

To answer the foregoing questions (i.)-(iii.), one could investigate what happens at two-loop
order. However, due to the already quite complicated structure of the one-loop effective action
and to the fact that the calculations at higher loop order will not get any easier, this task is
beyond the scope of the present article. Here, we shall mainly focus on the effects of a change of
the renormalization scheme at the one-loop order. It could happen that, in a scheme different
from the MS one, the vacuum energy is negative and/or that the coupling constant is small
enough to speak about trustworthy results, at least qualitatively.

Since to obtain an optimization of the renormalization scheme and scale dependence is a rather
lengthy task, we shall not dwell upon technicalities in this section. The interested reader can find
all details in Appendix B. We shall thus focus on the main results obtained after the optimization.

Essentially, what we have done is replacing in the effective action (4.14) the quantities m2

and λ4 by their order by order renormalization scale and scheme invariant counterparts m̂2 and
λ̂4. The residual freedom in the choice of renormalization scheme can then be reduced to a single
parameter b0, related to coupling constant renormalization. As the vacuum energy is a physical
quantity, it should in principle not depend on b0. At the same time, the quantities m̂2 and λ̂4

should be b0 independent by construction. This provides one with the interesting opportunity
to fix the redundant parameter b0 by demanding a minimal dependence on it.

The final one-loop action turns out to be given by

Γ = −
(
N2 − 1

)

2N
x−2bλ̂4

(
x + B + (1 − 2b)

(
β1

β0
ln

x

β0
− b0

))

+
ζ0

2
m̂4x−2a

(
x + A − ζ1

ζ0
+ (1 − 2a)

(
β1

β0
ln

x

β0
− b0

))
+

3
(
N2 − 1

)

256π2
×

[(
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

)2
(

ln
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

2µ2 − 5

6

)

+

(
m̂2x−a −

√
m̂4x−2a − λ̂4x−2b

)2
(

ln
m̂2x−a −

√
m̂4x−2a − λ̂4x−2b

2µ2 − 5

6

)]
, (5.1)

while the corresponding gap equations read

1

λ̂3

∂Γ

∂λ̂
= 0 , (5.2)

1

m̂2

∂Γ

∂m̂2
= 0 . (5.3)

The definitions of all quantities appearing in the above expressions can be found in the Appendix
B.

In Figure 3, we collected the solutions of the scale invariant quantities m̂2 and λ̂4 as a function
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of b0, while Figure 4 displays the vacuum energy Evac and the relevant expansion parameter,
given by y ≡ N

16π2x
. For completeness, we have also shown the solutions which correspond to

higher values of Γ and are as such describing unstable solutions. These are indicated with the
thinner lines.
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Figure 3: The quantities m̂2 and λ̂4 as a function of b0, in units ΛMS = 1.
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Figure 4: The vacuum energy Evac and the expansion parameter y as a function of b0, in units
ΛMS = 1.

5.1 Interpretation of the results.

Let us first have a look at the plot of vacuum energy, on the l.h.s. of Figure 4. We notice
that for b0 < −0.33564...., the vacuum energy becomes negative. However, we cannot attach
any definitive meaning to this result. In fact, as it can be seen from the Figures 3 and 4, the
values of the vacuum energy and the supposedly minimally b0-dependent quantities m̂2 and λ̂4

are extremely b0-dependent. Very small variations in b0 induce large fluctuations on e.g. the
energy. This is indicative of the fact that the equations we have solved are not yet stable against
b0-variations in the range of the values obtained for b0. The behaviour is better for, let us say
b0 > −0.2. However, in this case, we find again that the vacuum energy is positive. The vacuum
energy Evac, as well as m̂2 and λ̂4 fall of to zero for growing b0.

As an example, we set b0 = 0, which corresponds to use the MS coupling constant. Then
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we find, with the optimized expansion,

y ≡ N

16π2x
≈ 0.796 , (5.4)

λ̂4x−2b ≈ 7.939Λ4
MS

, (5.5)

m̂2x−a ≈ −0.814Λ2
MS

, (5.6)

Evac ≈ 0.063Λ4
MS

, (5.7)

results which are in fair agreement with the naive MS results (4.39)-(4.42). We notice that the
expansion parameter y is already smaller than 1, but still relatively large, while the vacuum
energy is indeed positive.

The conclusion than can be drawn from this section is that we cannot find a reliable result
with negative vacuum energy and hence positive gluon condensate

〈
F 2

µν

〉
using a one-loop ap-

proximation. We see therefore that, in order to be able to give a reasonable answer to the
questions concerning the sign of m2 and Evac and to get more trustworthy numerical values, the
two-loop evaluation of the effective action Γ, at least in the MS scheme, would be very useful.

6 Consequences of a non-vanishing Gribov parameter.

Before turning to the final conclusions, we shall give in this section a brief account of some well
known consequences stemming from the presence of the Gribov parameter, to emphasize the
important role of this parameter.

6.1 The gluon propagator.

If there is no generation of a mass parameter due to
〈
A2

µ

〉
, we can consider just the action (2.2).

Then the tree level gluon propagator turns out to be

〈
Aa

µAb
ν

〉
p

= δab p2

p4 + λ4

4

(
δµν − pµpν

p2

)
. (6.1)

This result, first pointed out in [48], was obtained by retaining only the first term of the nonlocal
horizon function (1.4), corresponding to the approximation −∂D ≈ −∂2. The gluon propagator,
eq.(6.1), is suppressed in the infrared region due to the presence of the Gribov parameter λ. In
particular, the presence of this parameters implies that

〈
Aa

µAb
ν

〉
p

vanishes at zero momentum,

p = 0. When the possibility of the existence of a dynamical mass parameter in the gluon
propagator is included, by investigating the condensation of A2

µ, the tree level gluon propagator
reads

〈
Aa

µAb
ν

〉
p
≡ δabD(p2)

p2

(
δµν − pµpν

p2

)
= δab p2

p4 + m2p2 + λ4

4

(
δµν − pµpν

p2

)
. (6.2)

This type of propagator is sometimes called the Stingl propagator, from the author who used it
as an anzatz for solving the Schwinger-Dyson equations, see [66] for more details .

However, it should be realized that eq.(6.2) describes only the tree level gluon propagator.
In particular, to produce a plot of the form factor D(p2) as a function of the momentum p,
which would allow to make a comparison with the results obtained in lattice simulations, see
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e.g. [31] for N = 3 and [32, 34] for N = 2, one should go beyond the zeroth order approxi-
mation, for example by including higher order polarization effects and/or trying to perform a
renormalization group improvement. In general, these corrections will also be dependent on the
external momentum p.

6.2 The ghost propagator.

Even more prominent is the influence of the Gribov parameter on the infrared behaviour of the
ghost propagator, which can be calculated at one-loop order using the modified gluon propagator
(6.1) or (6.2) with their respective gap equations (1.6) and (4.3). In both cases, the infrared
behaviour of the ghost propagator [48, 49, 50, 51, 52] is shown to be

δab

N2 − 1

〈
cacb

〉
p≈0

≡ 1

p2
G(p2)

∣∣∣∣
p≈0

≈ 4

3Ng2J p4
, (6.3)

where J stands for the real, finite integral given by

J =

∫
d4k

(2π)4
1

k2
(
k4 + m2k2 + λ4

4

) . (6.4)

The original Gribov-Zwanziger model corresponds to m2 ≡ 0. Thus, the ghost propagator is
strongly enhanced in the infrared region compared to the perturbative behaviour, if the re-
striction to the first Gribov region is taken into account. It is important to notice that this
behaviour of the ghost propagator is preserved in the present treatment, due to the peculiar
form of the gap equation (4.3) implementing the horizon condition. In particular, from the
expression for the effective action in eq.(4.2), one sees that, while the term quadratic in the

field σ, i.e. σ2

2g2ζ
, contains the LCO parameter ζ, the first term which depends on the Gribov

parameter, i.e. −4(N2 − 1)γ4, does not contain any such new LCO parameter. This important
feature follows from the fact that no new parameter has to be introduced in order to renormalize
the term

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
, as remarked in eq.(A.35). While the parameter ζ is required to

take into account the ultraviolet divergences of the vacuum correlator 〈A2
µ(x)A2

ν(y)〉, which are
proportional to τ2, no such a parameter is needed for

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
which, upon setting

the external sources to their physical values, gives rise to term −4(N2 − 1)γ4 in the expression
(4.2). Said otherwise, this term is not affected by the presence of a new parameter which would
be required if eq.(A.35) would not hold. As a consequence, the factor “1” appearing in the
left hand side of the gap equation (4.3) is, so to speak, left unchanged by the quantum correc-
tions. It is precisely that property which ensures, through a delicate cancelation mechanism, see
[48, 49, 51, 52], the infrared enhancement of the ghost propagator.

Analogously to the case of the gluon propagator, a more detailed study of higher order cor-
rections would be needed in order to obtain a plot of the ghost form factor G(p2).

6.3 The strong coupling constant.

Usually, a nonperturbative definition of the renormalized strong coupling constant αR can be
written down from the knowledge of the gluon and ghost propagators as, see e.g. [39, 34]

αR(p2) = αR(µ)D(p2, µ)G2(p2, µ) , (6.5)

where D and G stand for the gluon and ghost form factors as defined before. This definition
represents a kind of nonperturbative extension of the perturbative results (A.33). According to
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Schwinger-Dyson studies [41, 42, 43, 44, 45, 46], those form factors satisfy a power law behaviour
in the infrared

lim
p→0

D(p2) ∝
(
p2
)θ

,

lim
p→0

G(p2) ∝
(
p2
)ω

, (6.6)

where the infrared exponents θ and ω obey the sum rule

θ + 2ω = 0 . (6.7)

Such a sum rule suggests the development of an infrared fixed point for the renormalized coupling
constant, (6.5), as also pointed out by lattice simulations for the SU(2) as well as for the SU(3)
case [34, 35, 36],

lim
p→0

α(p2) = αc . (6.8)

The existence of a fixed point in this reasoning is dependent on the sum rule rather than on
the precise value of the exponents. We refer to the already quoted literature for more details on
the value of these exponents. We end by noticing that the form factors of the gluon and ghost
propagator in our zeroth order approximation give rise to the sum rule (6.7), since we have θ = 2
and ω = −1. Moreover, without Gribov parameter, the sum rule (6.7) is lost, and thus there is
no indication for an infrared fixed point.

6.4 Positivity violation.

The behaviour of the gluon propagator is sometimes used as an indication of confinement of
gluons by means of the so called positivity violation, see e.g. [67, 68] and references therein.

Briefly, when the Euclidean gluon propagator D(p) ≡ D(p2)
p2 is written through a spectral repre-

sentation as

D(p) =

∫ +∞

0
dM2 ρ(M2)

p2 + M2
, (6.9)

the spectral density ρ(M2) should be positive in order to have a Källen-Lehmann representation,
making possible the interpretation of the fields in term of stable particles. We refer to [67, 68]
for more details. One can define the temporal correlator [68]

C(t) =

∫ +∞

0
dMρ(M2)e−Mt , (6.10)

which is certainly positive for positive ρ(M2). The inverse is not necessarily true. C(t) can be
also positive for a ρ(M2) attaining negative values. However, if C(t) becomes negative for certain
t, then a fortiori ρ(M2) cannot be always positive. Using a contour integration argument, it is
not difficult to show that C(t) can be rewritten as

C(t) =
1

2π

∫ +∞

−∞
e−iptD(p)dp . (6.11)

Let us consider the function C(t) using the tree level propagator (6.2), thus using

D(p) =
p2

p4 + p2m2 + λ4

4

. (6.12)

We can consider several cases7:
7Each of the following expressions for C(t) is obtainable via contour integration.
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• if λ = 0 (thus m2 > 0), one shall find that

C(t) =
e−mt

2m
. (6.13)

This function is always positive.

• if m2 = 0,

C(t) =
e−

Lt
2

2L

(
cos

Lt

2
− sin

Lt

2

)
, (6.14)

and clearly, this function will attain negative values for certain t.

• in any other case, the correlator C(t) is found to be

C(t) =
1

2

[ √
ω1

ω1 − ω2
e−

√
ω1t +

√
ω2

ω2 − ω1
e−

√
ω2t

]
(6.15)

where the decomposition

p2

p4 + p2m2 + λ4

4

=
ω1

ω1 − ω2

1

p2 + ω1
− ω2

ω1 − ω2

1

p2 + ω2
, (6.16)

has been employed. It is understood that
√

ω1 (
√

ω2) is the root having a positive real part.

If we assume that m̂4 > λ4, then ω1 > ω2 and C(t) becomes negative for t > 1
2

ln
ω1
ω2

ω1−ω2
.

In the case that m̂4 = λ4, or ω1 = ω2, one finds that C(t) = e−
√

ω1t

4
√

ω1
(1 − √

ω1t), which

can also become negative. If m̂4 < λ4, we can reintroduce the complex polar coordinates
R and φ for the complex conjugate quantities ω1 and ω2. If cos φ

2 ≥ 0, eq.(6.15) can be
rewritten as

C(t) =
1

2
√

R sin φ
e−

√
R cos(φ

2 )t sin

(
φ

2
−

√
R sin

(
φ

2

)
t

)
(6.17)

By choosing an appropriate value of t > 0, also this expression can be made negative. An
analogous expression and conclusion can be derived in case that cos φ

2 < 0

We conclude that, when the restriction to the Gribov region Ω is implemented, the function C(t)
exhibits a violation of positivity when the tree level propagator is used, with our without the
inclusion of

〈
A2

µ

〉
.

The goal of this section was merely to provide some interesting consequences when the restric-
tion to the first Gribov region Ω is implemented. Higher loop effects, which shall be momentum
dependent, would also influence the behaviour of the gluon and ghost propagator. Hence, to
give a sensible interpretation of the behaviour of e.g. the form factors and of the strong coupling
constant αR, a more detailed analysis than a tree level one is necessary. This is however far
beyond the aim of this work.

7 Conclusion.

In this work we have considered SU(N) Euclidean Yang-Mills theories in the Landau gauge,
∂µAµ = 0. We have studied the condensation of the dimension two composite operator A2

µ when
the restriction to the Gribov region Ω is taken into account. Such a restriction is needed due to
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the presence of the Gribov copies [48], which are known to affect the Landau gauge.

In a previous work [49], the consequences of the restriction to the region Ω in the presence
of a dynamical mass parameter due to the gluon condensate

〈
Aa

µAa
µ

〉
were studied by following

Gribov’s seminal work [48]. Here, we have relied on Zwanziger’s action [51, 52], which allows to
implement the restriction to the Gribov region Ω within a local and renormalizable framework.
We have been able to show that Zwanziger’s action remains renormalizable to all orders of per-
turbation theory in the presence of the operator A2

µ, introduced through the local composite
operator technique [3, 12, 20, 25]. The effective action, constructed via the local composite
operator formalism [3] obeys a homogeneous renormalization group. The explicit form of the
one-loop effective action has been worked out. We have seen that, considering the original
Gribov-Zwanziger model, i.e. without including the operator A2

µ, the vacuum energy is always
positive at one-loop order, independently from the choice of the renormalization scheme. A
positive vacuum energy would give rise to a negative value for the gauge invariant gluon con-
densate

〈
F 2

µν

〉
, through the trace anomaly. Furthermore, by adding the operator A2

µ, we have
proven that there is no solution of the two coupled gap equations at the one-loop order in the
MS scheme with

〈
A2

µ

〉
< 0. Nevertheless, when

〈
A2

µ

〉
> 0, a solution of the gap equations was

found, although the corresponding expansion parameter was too large and the vacuum energy
still positive.

In order to find out what happens in other schemes, we performed a detailed study, at low-
est order, of the influence of the renormalization scheme. We have been able to reduce the
freedom of the choice of the renormalization scheme to two parameters, namely the renormal-
ization scale µ and a parameter b0, associated to the coupling constant renormalization. We
reexpressed the effective action in terms of the mass parameter m̂ and Gribov parameter λ̂,
which are renormalization scheme and scale independent order by order. The resulting gap
equations for these parameters have been solved numerically. Although a solution with negative
vacuum energy was found, we have been unable to attach any definitive meaning to it. This is
due to the fact that the results obtained turn out to be strongly dependent from the parameter
b0. This brought us to the conclusion that we should extend our calculations to a higher order
to obtain more sensible numerical estimates.

The mass parameters m̂ and λ̂ are of a nonperturbative nature and appear in the gluon and
ghost propagator. Even if we lack reliable estimates for these parameters, some already known
interesting features can be recovered. For a nonzero mass and Gribov parameter, there is a qual-
itative agreement with the behaviour found in lattice simulations and Schwinger-Dyson studies:
a suppressed gluon and enhanced ghost propagator in the infrared, while further consequences
of the Gribov parameter are e.g. the possible existence of an infrared fixed point for the strong
coupling constant and the violation of positivity related to the gluon propagator.
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Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, the SR2-UERJ and the Coor-
denação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) are gratefully acknowledged
for financial support. D. Dudal would like to acknowledge the warm hospitality at the UERJ,
where part of this work was done, while R. F. Sobreiro would like to acknowledge the kind
hospitality at the Department of Mathematical Physics and Astronomy of the Ghent University,
where this work was completed.

24



A Appendix A.

In this Appendix, we have collected all details of the multiplicative renormalization of the
Zwanziger action in the presence of the operator A2

µ.

A.1 Ward identities.

In order to begin with the algebraic characterization of the most general counterterm needed
for the renormalizability of the complete action Σ of eq.(3.1), let us first give the set of Ward
identities which are fulfilled by Σ. These are

• the Slavnov-Taylor identity
S(Σ) = 0 , (A.1)

with

S(Σ) =

∫
d4x

(
δΣ

δKa
µ

δΣ

δAa
µ

+
δΣ

δLa

δΣ

δca
+ ba δΣ

δca + ϕa
i

δΣ

δωa
i

+ ωa
i

δΣ

δϕa
i

+ Mai
µ

δΣ

δUai
µ

+ Nai
µ

δΣ

δV ai
µ

+ τ
δΣ

δη

)
, (A.2)

• the Landau gauge condition and the antighost equation

δΣ

δba
= ∂µAa

µ , (A.3)

δΣ

δca + ∂µ
δΣ

δKa
µ

= 0 , (A.4)

• the ghost Ward identity
GaΣ = ∆a

cl , (A.5)

with

Ga =

∫
d4x

(
δ

δca
+ gfabc

(
cb δ

δbc
+ ϕb

i

δ

δωc
i

+ ωb
i

δ

δϕc
i

+ V bi
µ

δ

δN ci
µ

+ U bi
µ

δ

δM ci
µ

))
,

(A.6)

and

∆a
cl = g

∫
d4xfabc

(
Kb

µAc
µ − Lbcc

)
. (A.7)

Notice that the term ∆a
cl, being linear in the quantum fields Aa

µ, ca, is a classical breaking.

• the linearly broken local constraints

δΣ

δϕai
+ ∂µ

δΣ

δMai
µ

= gfabcAb
µV ci

µ , (A.8)

δΣ

δωai
+ ∂µ

δΣ

δNai
µ

− gfabcωbi δΣ

δbc
= gfabcAb

µU ci
µ , (A.9)

δΣ

δωai
+ ∂µ

δΣ

δUai
µ

− gfabcV bi
µ

δΣ

δKc
µ

= −gfabcAb
µN ci

µ , (A.10)

δΣ

δϕai
+ ∂µ

δΣ

δV ai
µ

− gfabcϕbi δΣ

δbc
− gfabcωbi δΣ

δcc − gfabcU bi
µ

δΣ

δKc
µ

= gfabcAb
µM ci

µ , (A.11)
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• the integrated Ward identity

∫
d4x

(
ca δΣ

δωai
+ ωai δΣ

δca + Uai
µ

δΣ

δKa
µ

)
= 0 , (A.12)

• the exact Rij symmetry
RijΣ = 0 , (A.13)

with

Rij =

∫
d4x

(
ϕa

i

δ

δωa
j

− ωa
j

δ

δϕa
i

+ V ai
µ

δ

δNai
µ

− Uai
µ

δ

δMai
µ

)
. (A.14)

A.2 Algebraic characterization of the counterterm.

Having established all the Ward identities fulfilled by the complete action Σ, we can now turn
to the characterization of the most general allowed counterterm Σc. Following the algebraic
renormalization procedure [21], Σc is an integrated local polynomial in the fields and sources
with dimension bounded by four, with vanishing ghost number and Qf -charge, obeying the
following constraints

δΣc

δϕai
+ ∂µ

δΣc

δV ai
µ

− gfabcωbi δΣ
c

δcc − gfabcU bi
µ

δΣc

δKc
µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δUai
µ

− gfabcV bi
µ

δΣc

δKc
µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δNai
µ

= 0 ,

δΣ

δϕai
+ ∂µ

δΣ

δMai
µ

= 0 ,

δΣ

δca + ∂µ
δΣ

δKa
µ

= 0 ,

δΣc

δba
= 0 , (A.15)

GaΣc = 0 , (A.16)

∫
d4x

(
ca δΣc

δωai
+ ωai δΣ

c

δca + Uai
µ

δΣc

δKa
µ

)
= 0 , (A.17)

RijΣ
c = 0 , (A.18)

and
BΣΣc = 0 , (A.19)

where BΣ is the nilpotent linearized Slavnov-Taylor operator

BΣ =

∫
d4x

(
δΣ

δKa
µ

δ

δAa
µ

+
δΣ

δAa
µ

δ

δKa
µ

+
δΣ

δLa

δ

δca
+

δΣ

δca

δ

δLa
+ ba δ

δca

+ ϕa
i

δ

δωa
i

+ ωa
i

δ

δϕa
i

+ Mai
µ

δ

δUai
µ

+ Nai
µ

δ

δV ai
µ

+ τ
δ

δη

)
, (A.20)
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BΣBΣ = 0 . (A.21)

As it was shown in [51, 52, 53], the constraints (A.15) imply that Σc does not depend on the
Lagrange multiplier ba, and that the antighost ca and the i-valued fields ϕa

i , ωa
i , ϕa

i , ωa
i can enter

only through the combinations

K̃a
µ = Ka

µ + ∂µca − gfabcŨ bi
µ ϕci − gfabcV bi

µ ωci ,

Ũai
µ = Uai

µ + ∂µωai ,

Ṽ ai
µ = V ai

µ + ∂µϕai ,

Ñai
µ = Nai

µ + ∂µωai ,

M̃ai
µ = V ai

µ + ∂µϕai . (A.22)

Therefore, Σc can be parametrized as follows

Σc = Sc(A) +

∫
d4x

(
a1gfabcLacbcc + a2K̃

a
µ∂µca + a3gfabcK̃a

µAb
µcc + a4f

abcṼ ai
µ Ũ bi

µ cc

+ a5Ṽ
ai
µ M̃ai

µ + a6Ũ
ai
µ Ñai

µ +
a7

2
τAa

µAa
µ +

a8

2
ζτ2 + a9ηAa

µ∂µca + a10ηca∂Aa
)

, (A.23)

where Sc(A) depends only on the gauge field Aa
µ, and with a1, ..., a10 arbitrary parameters.

Notice, however, that there is no mixing in expression (A.23) between M̃ai
µ , Ñai

µ , Ṽ ai
µ , Ũai

µ and
the sources τ , η. This is due to the dimensionality and to the Qf -charge. It is precisely the
absence of this mixing that will ensure the renormalizability of the Zwanziger action in the
presence of the composite operator Aa

µAa
µ. From the ghost equation (A.16) it follows

a1 = a3 = a10 = 0 ,

a4 = −g(a6 + a5) . (A.24)

¿From the equations (A.17) and (A.18) we obtain

a6 = −a2 . (A.25)

Finally, from eq.(A.19) it turns out that

a5 = a2 ,

a9 = a7 − a2 , (A.26)

and

Sc(A) = a0SY M + a2

∫
d4xAa

µ

δSY M

δAa
µ

. (A.27)

In summary, the most general local invariant counterterm compatible with all Ward identities
contains four arbitrary parameters, a0, a2, a7, a8, and reads

Σc = a0SY M + a2

∫
d4x

(
Aa

µ

δSY M

δAa
µ

+ K̃a
µ∂µca + Ṽ ai

µ M̃ai
µ − Ũai

µ Ñai
µ

)

+

∫
d4x

(a7

2
τAa

µAa
µ +

a8

2
ζτ2 + (a7 − a2) ηAa

µ∂µca
)

. (A.28)
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A.3 Stability and renormalization constants.

Having determined the most general local invariant counterterm Σc compatible with all Ward
identities, it remains to check that the starting action Σ is stable, i.e. that Σc can be reabsorbed
through the renormalization of the parameters, fields and sources of Σ. According to expression
(A.28), Σc contains four arbitrary parameters a0, a2, a7, a8, which correspond in fact to a
multiplicative renormalization of the gauge coupling constant g, the parameters ζ, and of the
fields φ = (Aa

µ, ca, ca, ba, ϕa
i , ωa

i , ϕa
i , ωa

i ) and sources Φ = (Kaµ, La, Mai
µ , Nai

µ , V ai
µ , Uai

µ , τ , η),
according to

Σ(g, ζ, φ,Φ) + ηΣc = Σ(go, ζo, φo,Φo) + O(η2) , (A.29)

with
go = Zgg , ζo = Zζζ , (A.30)

and

φo = Z
1/2
φ φ ,

Φo = ZΦΦ . (A.31)

The coefficients a0, a2 are easily seen to be related to the renormalization of the gauge coupling
constant g and of the gauge field Aa

µ,

Zg =
(
1 + η

a0

2

)
,

Z
1/2
A =

(
1 + η

(
a2 −

a0

2

))
. (A.32)

¿From expression (A.28) it follows that the Faddeev-Popov ghosts (ca, ca) and the i-valued fields
(ϕa

i , ω
a
i , ϕa

i , ω
a
i ) have a common renormalization constant, given by

Zc = Zc = Zϕ = Zϕ = Zω = Zω = (1 − ηa2) = Z−1
g Z

−1/2
A . (A.33)

Eq.(A.33) expresses a well-known renormalization property of the Faddeev-Popov ghosts (ca, ca)
in the Landau gauge, stemming from the transversality of the gauge propagator and from the
factorization of the ghost momentum in the ghost-antighost-gluon vertex. We see therefore that,
in the present case, this property holds for the i-valued fields (ϕa

i , ω
a
i , ϕa

i , ω
a
i ) as well. Similarly

to the ghost and the i-valued fields, the renormalization of the sources
(
Mai

µ , Nai
µ , V ai

µ , Uai
µ

)
is

also determined by the renormalization constants Zg and Z
1/2
A , being given by

ZM = ZN = ZV = ZU = Z−1/2
g Z

−1/4
A . (A.34)

It is worth noticing here that equation (A.34) ensures that the counterterm a2

(
V ai

µ Mai
µ − Uai

µ Nai
µ

)

can be automatically reabsorbed by the term
(
−Mai

µ V ai
µ + Uai

µ Nai
µ

)
in the expression (3.5) with-

out the need of introducing new free parameters. Indeed,

−MoVo = −MV Z2
M = −MV Z−1

g Z
−1/2
A = −MV + εa2MV . (A.35)

Concerning now the parameters a7, a8, they are easily seen to correspond to a multiplicative
renormalization of the local source τ and of the parameter ζ, according to

τo = Zττ , Zτ = 1 + η(a7 − 2a2 + a0) ,

ζo = Zζζ , Zζ = 1 + η(−a8 − 2a7 + 4a2 − 2a0) . (A.36)
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Moreover, we would like to underline that there exists even an extra relation, namely

Zτ = ZgZ
−1/2
A . (A.37)

It can be proven by introducing the operator A2
µ through a more sophisticated set of local

sources, like it was done in [11]. We will not repeat that analysis here, we only mention that a
key ingredient in the proof of relation ( A.37) was the presence of the ghost Ward identity, and
since the Zwanziger action possesses that identity, eq.(A.5), one can proceed along the lines of
[11]. Thus, there are in fact only three independent renormalization factors present.

B Appendix B.

In this Appendix, we give the detailed analysis of the procedure used to optimize the renormal-
ization scheme and scale dependence, which was summarized in section 5.

B.1 Preliminaries.

Before coming to the actual computations, let us first discuss some results which will turn out
to be useful.

Consider again the action S of eq.(3.8). Due to the rich symmetry structure of the model,
encoded in the Ward identities (A.1)-(A.14), and due to the extra relation (A.37), only three
renormalization factors remain to be fixed, namely Zg, ZA and Zζ . Apparently, this means
that we would need three renormalization conditions in order to fix a particular renormalization
scheme. However, taking a look at the bare action associated with expression eq.(3.8), we would
find the following relations

ζo = Zζζ ,

ζoτ
2
o = µ−εZζζτ2 ,

τo = Zττ , (B.38)

from which it follows that
Zζζ = µεζoZ

2
τ . (B.39)

Since the bare quantity ζo is renormalization scheme and scale independent and since ζ always
appears in the combination Zζζ in the action, it follows that only Zg and ZA are relevant for
the effective action, because Zτ can be expressed in terms of these two factors. Consequently,
we would only need two renormalization conditions to fix the scheme. Obviously, we can equally
well choose to make use of, for example, Zg and Zτ as the two independent renormalization
factors, corresponding to coupling constant and mass renormalization.

We will change from the MS to another massless renormalization scheme by means of the fol-
lowing transformations8

g2 = g2
(
1 + b0g

2 + b1g
4 + · · ·

)
,

λ = λ
(
1 + c0g

2 + c1g
4 + · · ·

)
,

m2 = m2
(
1 + d0g

2 + d1g
4 + · · ·

)
, (B.40)

8Barred quantities refer to the MS scheme.
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where the parameters bi, ci and di label the new scheme. However, we should keep in mind
that the renormalization of the Gribov parameter λ is not independent of that of g2 and m2.
Eliminating γA(g2) between eqns.(4.19) and (4.20), yields

γλ(g2) =
1

4

(
β(g2)

g2
− γm2(g2)

)
. (B.41)

This relation, valid to all orders of perturbation theory, implies the existence of relationships
between the coefficients bi, ci and di. For further use, we shall explicitly construct the relation
between b0, c0 and d0. Let us adopt as parametrization of β(g2), γm2(g2) and γλ(g2)

β(g2) = −2
(
β0g

4 + β1g
6 + · · ·

)
,

γm2(g2) = γ0g
2 + γ1g

4 + · · · ,

γλ(g2) = λ0g
2 + λ1g

4 + · · · , (B.42)

and an analogous one in the case of the MS scheme. Then, one computes

µ
∂λ

∂µ
= µ

∂

∂µ

[
λ
(
1 + c0g

2 + · · ·
)]

= · · ·
= λ

(
λ0g

2 + (λ1 + c0λ0 − 2β0c0) g4 + · · ·
)

, (B.43)

which can be expressed in terms of γi and βi by exploiting the relation (B.41). We find

µ
∂λ

∂µ
= λ

[−2β0 − γ0

4
g2 +

(−2β1 − γ1

4
+ c0

−2β0 − γ0

4
− 2β0c0

)
g4 + · · ·

]
. (B.44)

We can also calculate µ dλ
dµ by first exploiting the relation (B.41), obtaining

µ
∂λ

∂µ
=

1

4

[
(−2β0 − γ0)g

2 + (−2β1 − γ1)g
4 + · · ·

] [
λ
(
1 + c0g

2 + · · ·
)]

= · · ·
=

1

4

[
(−2β0 − γ0)g

2 + (c0(−2β0 − γ0) − 2β1 − γ1 − 2β0(−d0 + b0)) g4 + · · ·
]

.(B.45)

In the previous expression, we had to express γ1 in terms of γ1; a task accomplished by using
the relation

γ1 = γ1 − 2β0d0 − γ0b0 , (B.46)

which can be obtained along the same lines of the previous calculations. It should also be noted
that γ0, β0 and β1 are renormalization scheme independent quantities. Thus, the identification
of eqns.(B.44) and (B.45) gives the desired relation, given by

c0 =
1

4
(b0 − d0) . (B.47)

We now perform the transformations (B.40) on the action (4.14), which was calculated in the
MS scheme, to obtain it in a general scheme.

Γ = −
(
N2 − 1

)
λ4

2g2N

(
1 + 4c0g

2 − b0g
2
)

+
ζ0m

4

2g2

(
1 − ζ1

ζ0
g2 + 2d0g

2 − b0g
2

)

+
3
(
N2 − 1

)

256π2

[(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5

6

)

+
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −

√
m4 − λ4

2µ2 − 5

6

)]
, (B.48)
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while the gap equations now read

∂Γ

∂λ
= −2

(
N2 − 1

)

g2N
λ3
(
1 + 4c0g

2 − b0g
2
)

+
3
(
N2 − 1

)
λ3

256π2


8

3

−4

(
m2 +

√
m4 − λ4

)

√
m4 − λ4

ln
m2 +

√
m4 − λ4

2µ2 + 4

(
m2 −

√
m4 − λ4

)

√
m4 − λ4

ln
m2 −

√
m4 − λ4

2µ2


 ,

∂Γ

∂m2
=

ζ0m
2

g2

(
1 − ζ1

ζ0
g2 + 2d0g

2 − b0g
2

)

+
3
(
N2 − 1

)

256π2

[
2
(
m2 +

√
m4 − λ4

)(
1 +

m2

√
m4 − λ4

)
ln

m2 +
√

m4 − λ4

2µ2

+ 2
(
m2 −

√
m4 − λ4

)(
1 − m2

√
m4 − λ4

)
ln

m2 −
√

m4 − λ4

2µ2 − 8

3
m2

]
.

(B.49)

We mention that, in the case in which m2 ≥ 0, similar algebraic manipulations as those leading
to the condition (4.37), give a more general equation

68

39

(
16π2

g2N

)
+

161

39
+

16π2

N

(
32

3
c0 −

68

39
b0 −

24

13
d0

)
=

t√
1 − t

ln
t

(
1 +

√
1 − t

)2 , (B.50)

or, using the relation (B.47),

68

39

(
16π2

g2N

)
+

161

39
+

16π2

N

(
12

13
b0 −

176

39
d0

)
=

t√
1 − t

ln
t

(
1 +

√
1 − t

)2 . (B.51)

¿From this expression, it is apparent that a sensible solution with m2 > 0 might exist, depending
on the values of the renormalization parameters d0 (∼ mass renormalization) and b0 (∼ coupling
constant renormalization).

Frequently used are the so-called physical renormalization schemes whereby, loosely speaking,
one demands that the quantum corrected quantities reduce to the tree level values at a certain
scale µ. However, it turns out that such an approach is not particularly useful to implement
in the current case due to the presence of the several scales. Therefore, the question arises
how one can make a somewhat motivated choice for the arbitrary parameters, labeling a certain
renormalization scheme. In the next subsection we shall discuss a way to reduce the freedom in
the choice of the renormalization parameters. The method relies on the possibility of performing
an optimization of the renormalization scheme dependence, as illustrated in [70, 71].

B.2 Optimization of the renormalization scheme.

Consider a quantity ̺ that runs according to

µ
d̺

dµ
= γ̺(g

2)̺ , (B.52)

where
γ̺(g

2) = γ̺,0g
2 + γ̺,1g

4 + · · · . (B.53)
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To ̺, we can associate a quantity ̺̂ that does not depend on the choice of the renormalization
scheme and which is scale independent. It is defined as

̺̂= F̺(g
2)̺ , (B.54)

whereby

µ
d

dµ
F̺(g

2) = −γ̺(g
2)F̺(g

2) . (B.55)

It is apparent that ̺̂will not depend on the scale µ. It can also be checked [70, 71] that ̺̂ is left
unmodified by a change of the renormalization scheme, implemented through transformations
analogous to those of eqns.(B.40). The equation (B.55) can be solved in a series expansion in
g2 by noticing that

µ
d

dµ
F̺(g

2) ≡ β(g2)
d

dg2
F̺(g

2) . (B.56)

Then, the above differential equation can be solved in a series expansion in g2, more precisely
by

F̺(g
2) = (g2)

γ̺,0
2β0

(
1 +

1

2

(
γ̺,1

β0
− β1γ̺,0

β2
0

)
g2 + · · ·

)
. (B.57)

Consider once more the MS action Γ given in eq.(4.14). We shall now replace the MS variables
m2 and λ by their renormalization scheme and scale independent counterparts m̂2 and λ̂, which
are obtained as before. By inverting eq.(B.57), one has

m2 = (g2)
− γ0

2β0

(
1 − 1

2

(
γ1

β0
− β1γ0

β2
0

)
g2 + · · ·

)
m̂2 , (B.58)

λ = (g2)
− λ0

2β0

(
1 − 1

2

(
λ1

β0
− β1λ0

β2
0

)
g2 + · · ·

)
λ̂ . (B.59)

Moreover, introducing the notations

a = − γ0

2β0
, b = −λ0

β0
, (B.60)

A = −
(

γ1

β0
− β1γ0

β2
0

)
, B = −2

(
λ1

β0
− β1λ0

β2
0

)
, (B.61)

the one-loop action is rewritten as

Γ = −
(
N2 − 1

)

2N
(g2)2bλ̂4

(
1

g2 + B

)
+

ζ0

2
m̂4(g)2a

(
1

g2 + A − ζ1

ζ0

)
+

3
(
N2 − 1

)

256π2
×



(

m̂2(g2)a +

√
m̂4(g2)2a − λ̂4(g2)2b

)2

ln

m̂2(g2)a +

√
m̂4(g2)2a − λ̂4(g2)2b

2µ2 − 5

6




+

(
m̂2(g2)a −

√
m̂4(g2)2a − λ̂4(g2)2b

)2

ln

m̂2(g2)a −
√

m̂4(g2)2a − λ̂4(g2)2b

2µ2 − 5

6




 .

(B.62)
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The action (B.62) is still written in terms of the MS coupling g2. Performing the first transfor-
mation of (B.40), Γ can be reexpressed as

Γ = −
(
N2 − 1

)

2N
(g2)2bλ̂4

(
1

g2
+ B − b0 + 2bb0

)

+
ζ0

2
m̂4(g2)2a

(
1

g2
+ A − b0 + 2ab0 −

ζ1

ζ0

)
+

3
(
N2 − 1

)

256π2
×



(

m̂2(g2)a +

√
m̂4(g2)2a − λ̂4(g2)2b

)2

ln

m̂2(g2)a +

√
m̂4(g2)2a − λ̂4(g2)2b

2µ2 − 5

6




+

(
m̂2(g2)a −

√
m̂4(g2)2a − λ̂4(g2)2b

)2

ln

m̂2(g2)a −
√

m̂4(g2)2a − λ̂4(g2)2b

2µ2 − 5

6




 .

(B.63)

So far, we have constructed an action which is written in terms of renormalization scale and
scheme independent variables λ̂ and m̂2 and the coupling constant g2(µ). This is a certain
improvement, since we are not faced anymore with a choice of the parameters di, related to the
renormalization of the Gribov and mass parameter. The remaining freedom in the choice of the
renormalization scheme resides in the coupling constant, labeled by the parameters b0, b1, . . .,
and in the scale µ. Of course, the higher order coefficients bi, i = 1, . . . do not show up here,
since we have restricted ourselves to the one-loop level. Nevertheless, we will perform one more
step, since the dependence on the coupling constant renormalization can be reduced to solely
b0, by expanding the perturbative series in inverse powers of

x ≡ β0 ln
µ2

Λ2
, (B.64)

rather than in terms of g2. For another illustration of this, see e.g. [70, 71]. The coupling
constant g2 can be replaced by x since g2 is explicitly determined by

g2 =
1

x

(
1 − β1

β0

ln x
β0

x
+ · · ·

)
. (B.65)

In [69], the relation between the scale parameter Λ, corresponding to a certain coupling constant
renormalization, and that of the MS scheme, ΛMS, was found to be

Λ = e
− b0

2β0 ΛMS . (B.66)

One finally gets the expression (5.1). We notice that this alternative expansion is correct up to

order
(

1
x

)0
.

In principle, we can solve the two equations (5.2)-(5.3) for the two quantities m̂∗ and λ̂∗, which
will be functions of the two remaining parameters µ and b0. However, by construction, we know
that m̂ as well as λ̂ should be independent of the renormalization scale and scheme order by
order. This gives us an interesting way to fix these parameters by demanding that the solutions
m̂∗(µ, b0) and λ̂∗(µ, b0) depend minimally on b0 and µ. Since this would give a quite complicated
set of equations to solve, we can make life somewhat easier by reasonably choosing the scale9 µ

9This can be motivated thanks to the scale independence of the ̂-quantities.
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in the gap equations (5.2)-(5.3). In analogy to the choice for µ2 done in the previous equation
(4.38), we shall now set

µ2 =

∣∣∣∣∣
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

2

∣∣∣∣∣ , (B.67)

In order to proceed, we still have two quantities at our disposal to fix the remaining parameter
b0. In fact, we can also take the vacuum energy Evac in consideration since, being a physical
quantity, it should depend minimally on the renormalization scheme and scale. Therefore, we
could determine the value for b0 by demanding that

Υ(b0) ≡
∣∣∣∣∣
∂λ̂4

∗
∂b0

∣∣∣∣∣+
∣∣∣∣
∂m̂4

∗
∂b0

∣∣∣∣+
∣∣∣∣
∂Evac

∂b0

∣∣∣∣ , (B.68)

is minimal w.r.t. the parameter b0. This seems to be a reasonable candidate. When its depen-
dence on b0 is small, then the dependence of m̂, λ̂ and Evac on b0 is necessarily small too. The
ideal situation would be that Υ is zero for a certain b0. If no such an ideal b0 would exist, we
weaken the condition by requiring that Υ is as small as possible. The condition (B.68) to fix
b0 can be considered as some kind of principle of minimal sensitivity à la Stevenson [72]. An
alternative that is sometimes used is a fastest apparent convergence criterion, where it is de-
manded that the quantum corrections are as small as possible compared to the tree level value.
For example, if we denote by Γ[0] the action to order

(
1
x

)−1
and by Γ[1] to order

(
1
x

)0
, we could

demand that ∣∣∣∣∣
Γ[1] − Γ[0]

Γ[0]

∣∣∣∣∣ (B.69)

is as small as possible when the parameters fulfill the gap equation describing the vacuum of
the theory.

Before continuing with explicit calculations, let us just remark here that the other logarithm,

namely ln m̂2x−a−
√

m̂4x−2a−λ̂4x−2b

2µ2 , could become large for a small argument, thus when λ̂4x−2b

would be small compared to m̂4x−2a. However, it is harmless since it appears in the form of
u ln u, while we know that u ln u|u≈0 ≈ 0.

B.3 Numerical results.

Let us first give some numerical factors we need. From e.g. [65], we infer that

β1 =
34

3

(
N

16π2

)2

, γ0 = −3

2

N

16π2
, γ1 = −95

24

(
N

16π2

)2

, (B.70)

and hence, from the relation (B.41),

λ0 = −35

24

N

16π2
, λ1 = −449

96

(
N

16π2

)2

. (B.71)

This means that, for any N , the quantities a and b in eq.(B.60) are found to be

a =
9

44
, b =

35

88
. (B.72)
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It is instructive to consider once more the original Gribov-Zwanziger model by setting m̂ ≡ 0
and by solving the gap equation (5.2). If λ̂∗ is a solution of this equation, then it is not difficult
to show that the corresponding vacuum energy is given by

Evac =
3(N2 − 1)

64π2

λ̂4
∗
4

, (B.73)

for any choice of µ2. Thus, also with the improved perturbative expansion, the vacuum energy
of the original Gribov-Zwanziger is always nonnegative at the lowest order.

Let us return to the model we were investigating. We solved the gap equations stemming
from (5.2)-(5.3) numerically.

Let us first search for a possible solution of the gap equation in the region of space deter-
mined by m̂4x−2a ≥ λ̂4x−2b. Taking a look at the action (5.1), it might be clear that the gap
equations derived from it will be coupled and hence quite complicated to solve numerically.
From the calculational point of view, it is useful to introduce new variables, defined by

ω1 =
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

2
, (B.74)

ω2 =
m̂2x−a −

√
m̂4x−2a − λ̂4x−2b

2
, (B.75)

with the inverse transformation

m̂2x−a = ω1 + ω2 ,

λ̂4x−2b = 4ω1ω2 . (B.76)

This defines a mapping from the space m̂4x−2a ≥ λ̂4x−2b > 0 to ω1 ≥ ω2 > 0. One checks that
the gap equations (5.2)-(5.3) are equivalent to

(
ω1

ω1 − ω2

∂

∂ω1
− ω2

ω1 − ω2

∂

∂ω2

)
Γ(ω1, ω2) = 0 , (B.77)

(
1

ω1 − ω2

∂

∂ω1
− 1

ω1 − ω2

∂

∂ω2

)
Γ(ω1, ω2) = 0 . (B.78)

We notice that the case in which ω1 and ω2 would become equal, i.e. m̂4x−2a = λ̂4x−2b, should
be treated with some extra care. Let us therefore first assume that ω1 > ω2. Then the two
equations (B.77)-(B.78) can be recombined to

∂

∂ω1
Γ = 0 , (B.79)

∂

∂ω2
Γ = 0 . (B.80)

The action Γ(ω1, ω2) is explicitly given by

Γ = −2

(
N2 − 1

)

N
℧1ω1ω2 +

ζ0

2
℧2(ω1 + ω2)

2

+
3
(
N2 − 1

)

64π2

[
ω2

1

(
ln

ω1

µ2 − 5

6

)
+ ω2

2

(
ln

ω2

µ2 − 5

6

)]
. (B.81)
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where

℧1 = x + B + (1 − 2b)

(
β1

β0
ln

x

β0
− b0

)
, (B.82)

℧2 = x + A − ζ1

ζ0
+ (1 − 2a)

(
β1

β0
ln

x

β0
− b0

)
. (B.83)

It is not difficult to work out the gap equations (B.79)-(B.80), being given by

− 2
N2 − 1

N
℧1ω2 + ζ0℧2(ω1 + ω2) +

3(N2 − 1)ω1

32π2

(
−1

3
+ ln

ω1

µ2

)
= 0 , (B.84)

−2
N2 − 1

N
℧1ω1 + ζ0℧2(ω1 + ω2) +

3(N2 − 1)ω2

32π2

(
−1

3
+ ln

ω2

µ2

)
= 0 . (B.85)

¿From the explicit expression of the gap equations and of the action itself in terms of ω1 and
ω2, the advantages of using these variables should be obvious, since we can decouple the two
gap equations. Explicitly, since µ2 = ω1, one finds from eq.(B.84),

ω2 =
N2−1
32π2 − ζ0℧2

−2N2−1
N ℧1 + ζ0℧2

ω1 , (B.86)

which can be substituted in the second gap equation (B.85), yielding an equation for ω1 which
does not contain ω2 anymore. The nominator of eq.(B.86) is different from zero, since filling in
the numbers gives

−2
N2 − 1

N
℧1 + ζ0℧2 =

N2 − 1

4576

(
−975

π2
− 5984

N
x

)
6= 0 . (B.87)

where we kept in mind that for a meaningful result, x ∼ 1
g2 , should be positive.

A numerical investigation of the gap equation (B.85) using eq.(B.86) revealed that there are
no zeros. We conclude that there are no solutions with m̂4x−2a > λ̂4x−2b.

Next, let us find out if a possible solution with m̂4x−2a = λ̂4x−2b or ω1 = ω2 might exist.
We explicitly evaluate the gap equations (B.77)-(B.78), where now µ2 = ω1,

ζ0℧2(ω1 + ω2) −
N2 − 1

32π2
(ω1 + ω2) −

3(N2 − 1)

32π2

ω2
2

ω1 − ω2
ln

ω2

ω1
= 0 , (B.88)

2
N2 − 1

N
℧1 −

N2 − 1

32π2
− 3(N2 − 1)

32π2

ω2

ω1 − ω2
ln

ω2

ω1
= 0 . (B.89)

¿From the foregoing expressions, we infer that the limit ω1 → ω2 exists, giving rise to

2ζ0℧2 −
2(N2 − 1)

32π2
+

3(N2 − 1)

32π2
= 0 , (B.90)

2
N2 − 1

N
℧1 −

N2 − 1

32π2
+

3(N2 − 1)

32π2
= 0 . (B.91)

This means that we have two equations to solve for the single quantity ω1, which is present in
℧1 and ℧2 through the quantity x. It would be an extreme coincidence if these two different
equations, which can be rewritten as

18

13
℧2 = − N

32π2
, (B.92)

℧1 = − N

32π2
. (B.93)
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Figure 5: The solution ω1 = ω2 as a function of b0 of eq.(B.92), top curve, and eq.(B.93), bottom
curve, in units ΛMS = 1. Clearly, these two curves do no coincide.

possess a common solution. That this is not the case can be inferred from the numerical solutions
of both equations (B.92) and (B.93), shown in Figure 5.
As a final step, we should investigate if there is a solution in the region m̂4x−2a < λ̂4x−2b. We
can still define the coordinates ω1 and ω2 by

ω1 =
m̂2x−a + i

√
−m̂4x−2a + λ̂4x−2b

2
, (B.94)

ω2 =
m̂2x−a − i

√
−m̂4x−2a + λ̂4x−2b

2
. (B.95)

In this case, ω1 and ω2 are complex conjugate. Henceforth, it would be more appropriate to use
the modulus R and the argument φ, φ ∈] − π, π], defined by

Reiφ = ω1 , (B.96)

Re−iφ = ω2 , (B.97)

If the argument φ is so that |φ| > π
2 , then m̂2x−a < 0. As a consequence, the estimate for

〈
A2

µ

〉

will be positive.

Most of the foregoing analysis can be repeated. The action (B.81) is rewritten in terms of
R and φ by

Γ = −2

(
N2 − 1

)

N
℧1R

2 + 2ζ0℧2R
2 cos2 φ

+
3R2

(
N2 − 1

)

32π2

[
cos(2φ)

(
ln

R

µ2 − 5

6

)
− φ sin(2φ)

]
. (B.98)

The gap equations (B.84)-(B.85) reduce to

− 2
N2 − 1

N
℧1Re−iφ + ζ0℧2R(eiφ + e−iφ) +

3(N2 − 1)Reiφ

32π2

(
−1

3
+ iφ

)
= 0 , (B.99)

and its complex conjugate. With the parametrization (B.96), we have µ2 = R.
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We must solve the following two real equations10 for φ and R.

− 2
N2 − 1

N
℧1 cos φ + 2ζ0℧2 cos φ +

3(N2 − 1)

32π2

(
−cos φ

3
− φ sin φ

)
= 0 , (B.100)

2
N2 − 1

N
℧1 sinφ +

3(N2 − 1)

32π2

(
−sinφ

3
+ φ cos φ

)
= 0 . (B.101)

We can divide these equations11 by cos φ to obtain

− 2
N2 − 1

N
℧1 + 2ζ0℧2 +

3(N2 − 1)

32π2

(
−1

3
− φ tan φ

)
= 0 , (B.102)

2
N2 − 1

N
℧1 tan φ +

3(N2 − 1)

32π2

(
−tan φ

3
+ φ

)
= 0 . (B.103)

These equations can also be decoupled. The most efficient way to proceed is to eliminate R

between these two equations to obtain an equation for φ, as the range in we must search for a
solution is limited for this angle. The equation for φ finally becomes

−90985N − 107712π2b0 + 12N
(
484φ cot φ + 1734 ln

(
−117(50+11φ csc φ sec φ)

8228

)
− 1573φ tan φ

)

107712π2
= 0

(B.104)
while the value of R is obtained from

x ≡ β0 ln
R

Λ2
MS

+ b0 = −1950 + 429φ csc φ sec φ

11968π2
N . (B.105)

We shall concentrate on the case N = 3. Depending on the value of the parameter b0, there is
more than one solution possible. In Figure 6, we have plotted the expression (B.104) for several
values of the parameter b0, namely b0 = 0.25, 0,−0.25,−0.3,−0.33564...,−0.41594...,−0.5. It is
possible to obtain those values of b0 where the number of solutions change. If we consider the
plots of Figure 6, it is apparent that for each b0, the corresponding curve possesses two extremal
values. The number of solution exactly changes at those values of b0 where the curve becomes
tangent to the φ-axis. An explicit evaluation learns that his occurs at b0 = −0.41595..., where
φ = 2.26407... and at b0 = −0.33564... where φ = 2.62545. It is important to know these num-
bers to a high enough accuracy, to instruct the computer in which φ-interval it can search for a
solution. If the initial values are not chosen in an appropriate way, the iterations will jump be-
tween the different branches of solutions and there will be no convergence to any of them. There
is a single solution φ if b0 > −0.33564... or b0 < −0.41595.... If −0.41595... < b0 < −0.33564...,
there are three solutions, while for b0 = −0.41595... and b0 = −0.33564... there are two solutions.
In Figure 7, we have displayed the solution for φ and R. To determine the solution φ which
characterizes the vacuum, we should take that one which gives us the absolute minimum of the
energy functional Γ, which was shown in Figure 3.

As a final remark, we would like to notice that the same decomposition as in eq.(4.7) could
also be useful for higher loop computations. The effective action Γ will remain symmetric under
the exchange of ω1 and ω2 and equations like (B.77)-(B.80) shall remain valid. This should
facilitate at least a bit the two-loop evaluation of the effective action and gap equations. Also,
one does not need to evaluate any new anomalous dimension, since these are already known,
either from previous calculations [3, 12, 25], or from exploiting relations like eq.(B.41).

10The R-dependence is hidden in ℧1 and ℧2
11We may assume cos φ 6= 0, otherwise eqns.(B.100)-(B.101) would give φ = 0, which is inconsistent with

cos φ = 0.
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Figure 6: The gap equation (B.104) with N = 3 plotted in function of φ for the values b0 =
0.25, 0,−0.25,−0.3,−0.33564...,−0.41594...,−0.5 (from bottom to top).

-1 -0.8-0.6-0.4-0.2 0.2 0.4
b0

1.8

2.2

2.4

2.6

2.8

3

phi

-0.4 -0.2 0.2 0.4
b0

200

400

600

800

1000

R

Figure 7: The angle φ and scale R as a function of b0, in units ΛMS = 1.
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