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EXECUTIVE SUMMARY  

Current traffic management strategies are based on expected conditions caused by 
recurring congestion (e.g., by time of day, day of week), and could become very effective 
when provisions are also given for reasonable variations from such expectations. 
However, traffic variations due to non-recurrent events (e.g.. crashes) can be much larger 
and difficult to predict, rendering efforts to measure and forecast their disruptive effects a 
challenging task.  
 
This project explores a proactive approach through a simple framework to deploy a tool 
for managing non-recurrent congestion by identifying and quantifying the effects of 
disruptive traffic events at a microscopic level using a comprehensive set of data sources. 
A combination of resources including high-resolution vehicle detector data, and traffic 
signal phasing and timing data, together with highly detailed crash records hold promise 
not only to identify events in the network, but also to monitor for anomalies. A number of 
additional elements can complement the proposed approach by including external factors 
such as weather or planned short-term construction.  
 
Data preparation and management played a significant role in the project development, 
as the team had initially proposed the use of video images for event detection and 
quantification. However, exploration of this alternative did not yield consistency in the data 
acquisition due to limited and uncontrolled field of view, as well as image processing 
limitations using images from cameras with changing orientation and angles (i.e., PTZ 
cameras).  
 
Data collection methods were later expanded to access the newly available high-
resolution datasets from the Automated Traffic Signal Performance Measures (ATSPM) 
managed by the Utah DOT (UDOT). These datasets provide similar capabilities as those 
traditionally available for freeway systems, where detector and counting stations are 
regularly spaced along the facilities. Instead, ATSPM collects all vehicle detection 
activation and deactivation calls and signal controller phasing and signal indication, using 
a standardized set of enumerations for decoding and encoding. 
 
Custom scripts were required to read and process the high-resolution data and extract 
metrics of interest that may characterize typical approach-level performance. These 
included time-series of vehicle volumes, measures of signal coordination such as vehicles 
arriving in green, and measures of speed and occupancy.  
 
Data analysis incorporated proof of concepts of simple but practical algorithms that could 
play a significant role in regular monitoring, namely time-series thresholds, as well as 
dynamic predictions from autoregressive ARIMA models and machine-learning methods 
such as Long Short-Term Memory. Ultimately, Long Short-Term Memory neural networks 
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were preferred given their flexibility to replicate both well-defined trends as well as 
additional random variations.  
 
Results from a selection of crash events along different corridors in the Salt Lake Valley 
showed the applicability of the approach in a monitoring environment, but additional 
validation is needed for this ongoing effort when bringing the proposed framework into a 
deployment mode. The monitoring tool will continue evolving to build a library of events 
and their impact on the traffic network, but the exploration conducted as part of this project 
set the stage for this long-term application that could be shareable to others as soon as 
the sample size reaches a significant level to make transferability more likely. For 
example, intersections with certain traffic patterns, number of lanes, and in the presence 
of an event type have experienced a specific range of effects in time and space. 
 
Outcomes from this research are expected to lead to shareable event-based 
spatiotemporal congestion and safety models, ultimately enabling informed and proactive 
traffic management and safety countermeasures. This project uses the Salt Lake Valley 
as a testbed and could open new opportunities for research that relies on the integration 
of large and disaggregated datasets. 
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1.0 BACKGROUND AND OBJECTIVES 

This project aims to take advantage of a combination of datasets generally not available 
for analysis of traffic conditions, particularly in the presence of disruptive events. 
Integrated datasets encompassing high-resolution vehicle detection data and detailed 
crash records constitute the core data source for this analysis. Different from traditional 
analysis of events or incidents where the occurrence of events is to be predicted or 
modeled, the primary efforts in this project are directed at measuring their impacts upon 
occurrence.  

There is much to learn from the effects of incidents or other non-recurrent events. Most 
research in this area has been directed to freeways, where fixed-location and mobile 
sensor coverage has traditionally been more extensive than other surface streets. As 
sensor presence has become more ubiquitous and data collection capabilities continue 
advancing, new opportunities have opened for this type of research on surface streets 
and, particular for this research, along arterials. 

Initial conceptualization of this project was aimed at the integration of video data from live 
feeds available to the research team, as well as detailed crash data reports. However, 
while the research progressed, the team redirected its main interests towards newly 
available datasets with high-resolution vehicle detections from the Automated Traffic 
Signal Performance Measures (ATSPM). ATSPM provides analytical tools and 
approaches derived from high-resolution traffic controller data (i.e., traffic signal states 
and vehicle detections) collected and transformed automatically to produce actionable 
performance measures (FHWA, 2020).  

With access to these rich datasets, the team evaluated the pros and cons of the initial 
approach using video images, making the decision to invest the subsequent efforts into 
ATSPM data in place of video images. While video certainly had promising utilization, 
camera angles, camera height, and zoom levels were often not favorable to observe 
crash events and their effects as they occurred. In addition, given their changing zoom 
level and field of view, it was challenging to automate extraction of related data such as 
volume and queues as a result of a given incident. ATSPM offered a systematic data 
collection process at the individual vehicle level that was difficult to maintain outside of 
the team’s main focus.   

As the team hosts the State of Utah’s crash database using a custom content 
management system, there is accessibility to crash events in near time and details that 
are often not available for research purposes. These include a complete set of coded 
values, crash diagrams, and narratives. Coupling detailed crash data with high-resolution 
vehicle detection and traffic signal states, the team can tackle questions surrounding not 
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only the incident itself, but the magnitude and duration of its effects in space and at 
specific locations.  

As the team continues collecting data and enhancing the ability to develop robust models 
for individual locations, research from this project has the potential to provide transferable 
insights to answer different types of questions. 

The main objectives leading to the research project were the following:  

1) To create a testbed for advanced real-time traffic mobility using unique capabilities that 
already exist at the University of Utah’s Traffic Lab, but are not yet integrated. It is 
anticipated for this testbed to support continued research on a wide range of topics 
inherent to proactive traffic management and mobility strategies;  

2) To develop methods to develop congestion models that describe the temporal and 
spatial effects as a function of network characteristics and for a range of event types, 
including crashes (e.g., by crash severity, time of occurrence, and corresponding traffic 
demands) and special events (e.g., major sport and cultural events); and  

3) To quantify the safety effects of those events by integrating crash data from a large 
geographical area, and to describe the temporal and spatial effects of crashes in traffic 
networks. 

This project was designed with the intent of providing the groundwork for future research 
seeking to identify incident response alternatives based on individualized traffic and 
environmental context, anticipate their intended outcomes on network performance, and 
use such forecasts to select optimal response strategies. 
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2.0 METHODOLOGY 

The data integration makes use of existing infrastructure at the University of Utah’s Traffic 
Lab to create a testbed for network-wide traffic analysis. A unique source of data allows 
the team to access crash reports in near time (less than 24 hours after the events are 
reported). The UofU has developed a content management system for crash records 
through a related project titled “Crash Data Initiative” (UTAPS-CDI), including databases 
and web interfaces through which users can interact with the data.  

In addition, the team has direct access to API services that query the ATSPM database 
in Utah. ATSPM covers hundreds of signalized intersections throughout the state, with 
the highest concentration of locations in the Salt Lake Valley. The general ATSPM 
interface allows the user to produce metrics given an intersection ID, a time frame, and 
specific parameters (if any) for selected metrics. While this interface is highly valuable for 
visualization purposes, it does not allow for further analysis of the raw data. More in-depth 
access can be gained through an authenticated account to download raw datasets and 
open opportunities for new analysis and data integration. The team uses a set account 
type to access raw datasets with individual vehicle detections and traffic signal states at 
a resolution of 0.1 seconds.  

A number of considerations need to be addressed before the data can be properly 
integrated. First, not all intersections are defined identically, so additional work is required 
to map traffic signal and sensor settings to outputs. In general, ATSPM follows standard 
event codes to identify specific updates in sensor or traffic signal states so a sensor 
activation will always have the same coded number, but the output channel for such a 
sensor may be associated with a different lane depending on the approach and 
intersection.  

Evaluation of crash data also requires a number of steps before integration, including 
quality control on the specific location of the crash. Crash data in its original form does 
not guarantee that the assigned coordinates of a crash (if any) are correct, and the precise 
location of the crash needs to be verified for general accuracy purposes. In addition, 
crashes are typically located along the roadway centerline, so a route number and a 
milepost can be associated with linear referencing systems. So, the use of narratives and 
crash diagrams is essential not only to confirm the crash location along the road, but also 
to identify the lane where the crash occurred, the circumstances of the crash, the location 
of impact, and the resting place of the vehicles after the crash occurred, when available.  
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Crash location and timing information is then integrated into the ATSPM raw files to 
identify the likely moment the crash occurred. It should be noted that crash times from 
law enforcement reports provide only an approximation of the actual timing of the crash, 
so “anomalies” in the ATSPM data will be used to identify the precise moment that traffic 
was disrupted as a consequence of the crash event. The need to detect an “anomaly” in 
traffic conditions implicitly requires the definition of a baseline or a characterization of 
“normal” traffic conditions not only to identify the moment when the crash likely occurred, 
but also the moment that traffic returned to “normality” so the duration of the disruption 
can be also quantified. Lastly, the magnitude of the changes in traffic conditions can also 
be characterized and modeled over time.  

A number of methods to identify traffic disruptions have been proposed in previous 
research, as described in the literature review. They range from fixed thresholds to 
probabilistic analysis, time-series analysis, and machine-learning approaches. This 
research explores the adequacy of some of these methods under a variety of locations 
and traffic conditions, and focuses on a machine-learning application for online model 
development to maintain knowledge in terms of current expected traffic patterns and to 
identify and quantify effects of events at a given location.   

It is important to highlight that unlike most previous research, this work is based on 
empirical data without the need for simplifications in simulated environments. Also, 
incident detection in terms of detection and false-alarm rates is not intended to be the 
main goal of the study, but the quantification of the effects given that starting point of the 
event is identified.  

Moreover, associations between crash characteristics and resulting magnitude of traffic 
disruptions are also investigated. Both standard and non-standard elements from crash 
data are incorporated in the analysis. Examples of standard elements include coded 
values for well-defined crash characteristics, including crash severity, manner of collision, 
vehicle types, and vehicle maneuvers. On the other hand, non-standard elements include 
information on vehicles’ resting place post-collision and additional data from narratives 
and diagrams to help inform the post-crash scene. 

Ultimately, the exploration of events and the magnitude of their disruptions is intended to 
be characterized. With enough observations of specific “types” of events, models 
therefore become more representative of the actual responses of the network.  

The team has proposed the general framework in Figure 2.1 to accomplish the main 
objectives, and has explored the applicability of integrating these elements as part of 
this project. Full-scale deployment will continue after this exploratory phase and will 
require technical expertise, virtual and physical resources that are accounted for as part 
of the UTAPS-CDI long-term initiative at the University of Utah.  



11 

 

Figure 2-1: Schematic Representation of the Proposed Data Integration System 
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3.0 LITERATURE REVIEW 

This chapter reviews previous studies on incident analysis on arterials and, more 
generally, on interrupted traffic conditions with the objective of identifying gaps in past 
data analysis and data integration initiatives. To our knowledge, efforts to conduct incident 
analysis from a combination of crash data and high-resolution signal and vehicle detection 
data have been rather limited, particularly using extensive field data. Moreover, studies 
aim to generally estimate the probability of an event (with little research dealing with the 
effects of such events, particularly on arterials), but not to build knowledge from a 
particular network to improve future long-term operation. 
 
 

3.1 AUTOMATED INCIDENT DETECTION 

 
An area more closely associated with the objectives of this work deals with incident 
detection. This is a well-developed area, mostly covering uninterrupted traffic (e.g., 
freeways), but it has also been addressed in the context of arterial roadways by a 
relatively small number of researchers (Chen et al., 2016). Evans et al. (2020) estimated 
that only about 10% of traffic incident algorithms have been developed for urban 
networks, with the remaining 90% targeting freeways. Moreover, only a few of them have 
been tested on real data or implemented in the field, and those implemented have 
difficulties with numerous challenges in real-world applications, including sport events or 
holidays. 
 
Incident detection is mostly centered around identifying anomalies in traffic significant 
enough to trigger an event alert, so inherently it is a decision-making process. In order to 
detect such anomalies, an understanding of baseline conditions needs to be established 
over time and/or space. Such a baseline could be built upon preset thresholds, or dynamic 
values, or from more advanced algorithms using alternative data sources different from 
standard vehicle detection, including video processing. 
  
Similar to our objectives, the effects of incidents in “normal” traffic are quantified to 
estimate the occurrence or the probability of occurrence of such events. However, 
incident detection research does not necessarily account for the duration and severity of 
the traffic disruption, so from this perspective the work proposed in this study could 
provide additional inputs to enhance incident analysis. 
 
Comparative analysis is perhaps one of the main building blocks of automated incident 
detection, and includes well-known and now traditional algorithms such as those 
proposed by Payne and Tignor (1978), also known as the California algorithm, and 
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Chassiakos and Stephanedes (1993) by smoothing of occupancy measures to distinguish 
short-duration traffic homogeneities from incidents (i.e., a low-pass filter). A somewhat 
related approach was also proposed by Persaud (1990) with the McMaster algorithm, 
which separates a flow-occupancy diagram into areas corresponding to three different 
traffic conditions, and identifies incidents if specific changes in traffic are observed in a 
short time period or if sudden speed drops are detected. This is essentially realized in a 
two-step process: first identifying congestion, and then determining if the congestion is 
attributable to an incident.  
 
However, these popular solutions were designed for freeway environments without a 
clear path for application along arterials. Nonetheless, some examples can be found in 
the literature related to urban networks with interrupted flows. Examples of different 
methods are provided below and include research using threshold-based approaches and 
discriminant analyses, Bayesian or belief networks, and machine-learning.   
 
Threshold-based real-time incident detection was proposed by Ahmed and Hawas 
(2012), using standard vehicle detectors and measures of volume and speed over each 
traffic signal phase split, for a total of eight variables for four splits (later reduced to six 
variables given no volume during red phases). Standard regression analysis was 
conducted with limited success, where variables were significant in detecting an incident 
but had false-alarm rates over 10% using simulated data. The study indicated significant 
refinements needed beyond a standard regression method.    
 
Sethi et al. (1995) presented an analysis of simulated data including fixed sensor 
locations along a nine-intersection arterial. Discriminant analysis was used to classify 
incidents, and basic concepts related to expected changes in traffic conditions due to an 
incident served as the core ideas for the proposed algorithms. These expectations 
included higher occupancy and slower flows upstream of an incident, and lower 
occupancy and flow speed downstream. Deviations and ratios of metrics derived from 
volume and occupancy were used as inputs. Results showed superior performance when 
combining both volume and occupancy and when the detection was mostly performed 
upstream of the incident, with only marginal improvements by adding downstream 
detectors. Probe vehicle data was also considered, and the deviation and ratios of travel 
times and speeds were used in the algorithm. Adequate prior probabilities were deemed 
important and to influence the detection rates and false-alarm rates, but they could only 
be estimated through sensitivity analysis given the lack of comprehensive field data.  
    
Sermons and Koppelman (1996) also used discriminant analysis for incident detection, 
but derived data from field-collected vehicle GPS traces. Traffic conditions observed on 
the field indicated if there was an incident or not, serving as ground truth. Due to difficulty 
of collecting trajectories during actual crash incidents, short-term lane closures were 
assumed to be incidents, resulting in about one-third of the traversals having an incident 
(out of 154 traversals). Improvements were obtained when total travel time was 
decomposed into stopped and running times, and adding variables such as coefficient of 
variation of speed, speed noise, etc. may be marginally beneficial. Overall, large and 
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accurate data collection for model development and validation was difficult to achieve in 
the context of actual non-recurrent incidents.  
 
Zhang and Taylor (2006) presented an automated incident detection algorithm based on 
Bayesian (or belief) networks, where expert knowledge was combined with traffic data to 
generate a decision on the presence of incidents. More specifically, volume and 
occupancy were extracted from a subject site and also at a location upstream using both 
stop bar detectors for volume and advance detectors for occupancy. Simplified traffic 
states (e.g., low, medium, high) are used for evidential reasoning, and multiple scenario-
specific Bayesian network approaches were used to deal with complicated arterial road 
incident detection problems. Simulation data was used to test the algorithm, resulting in 
low false-alarm rates (0.62%) with detection rates of up to 88%. Detection rates and alarm 
rates were also shown to be stable when the incident detection threshold was set between 
65% and 80%. 
 
In addition to traditional methods such as those mentioned above, more complex methods 
for incident detection seem to be needed. Machine-learning and less traditional 
approaches have evolved within the last two decades, including support vector machines 
(SVM) and more notoriously neural networks. 
 
Classification using SVM has been proposed for incident detection. Wang et al. (2018) 
proposed a classification process using an adaptive booster classifier to identify data 
outliers, indicating the potential presence of an incident, and a SVM method to further 
classify the outlier into a set of categories. Simulated data was used to complement field 
data collected at a signalized intersection, and principal component analysis was used to 
reduce the dimensionality of the feature vector that contained volume averages over four 
consecutive cycles, with 80 cycles (i.e., dimensions) per day and movement. Outliers 
were classified into those due to recurrent congestion or due to non-recurrent congestion. 
The overall accuracy of the hybrid Adaptive Boosting SVM method produced an average 
of 92% prediction accuracy. 
 
On a different approach, but featuring an additional module to adjust signal timing settings 
after an incident, Hawas et al. (2020) proposed the incident detection algorithm to be 
based on deviations with respect to historical records and their standard deviation. Sets 
of fuzzy variables indicated the occurrence of a potential incident via flags if the metrics 
fell in the “high” variation category. Parameters to define such categories were based on 
the central limit theorem, so values over 175% standard deviations of the normal 
distribution of detector readings were assigned a “high” label. Then, an incident index 
transformed the fuzzy variables to a numerical scale and the indices were added over the 
section being analyzed for a final score. The methods can be calibrated for improved 
detection and false-alarm rates, but it always depends on such calibration over the 
assumption of a given distribution of traffic volume variations and impacts caused by 
incidents. It is also noted that this study used simulation data for model calibration.   
 
Ghosh and Smith (2014) implemented an arterial version of four machine-learning 
algorithms (three neural network-based and one SVM-based) typically used for freeway 
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incident detection. The neural networks included a multi-layer, feed-forward neural 
network, a probabilistic neural network, and a fuzzy-wavelet radial basis neural network. 
The main objective of the research was to investigate the transfer of well-performing 
algorithms for extensive urban network usage under the general premise of pre-
processing data to reduce the effect of signal presence by scaling traffic volume and 
occupancy data. Results were based on simulated data and provided an initial exploration 
with positive results, but significant work ahead prior to implementation. 
 
Research focused on automated incident detection is extensive and mostly directed to 
freeway applications. However, examples can be drawn for arterial roadways using a 
range of methods including threshold-based or discrimination-based classifications, belief 
networks, SVM and neural networks, among others. Even though the examples illustrated 
above do not represent a comprehensive list of methods, a common denominator of such 
research emerges. That is, the complexity of arterial scenarios and the difficulty to test 
algorithms using field data, lead to most evaluations using simulation data only or limited 
field data supplemented by simulation. 
 
Overall, machine-learning applications have gained momentum in the incident detection 
arena and, compared to more traditional parametric tools, they seem to provide additional 
flexibility not only in terms of time-series trend modeling, but also in terms of 
computational efficiency. Online applicability and modeling updating is an essential 
objective for the large-scale deployment of the proposed framework, and thus significant 
consideration will be given to this group of methods in testing and exploration phases.  
 

3.2 ANALYSIS ON INCIDENT DURATION 

Complementary to incident detection, analysis and prediction of incident duration and 
clearance times is also an important area of research when the objective is to quantify 
the impacts of traffic incidents. Similar to incident detection, most research in this area 
has been directed at freeway systems. Data granularity and availability seem to be an 
issue for analysis on arterials, with only a few studies dealing with such applications. 
Likewise, limitations on crash data not only stem from the usage of high-level crash 
characteristics but also on the accuracy of geographical and/or environmental attributes. 
In addition, traffic data may be limited to conditions during the incident occurrence, without 
equivalent data to analyze “baseline” conditions.    
 
Raub and Schofer (1997) compiled data from traffic events in the Chicago area and 
reported incident duration times by incident type based on the moment from which a 
dispatcher was notified until the officer reported clear of the scene. An average crash 
duration of 57 minutes and deviation of 35 minutes was estimated from reports, with injury 
crashes having a longer average clearance time of 71 minutes. Crashes were collected 
on arterials at times when they were at or near capacity, but traffic data was not available 
for further assessments even though some preliminary data from a parallel study 
indicated capacity reductions by more than 60% for crashes and more than 50% for 
disabled vehicles when one lane was blocked out of four lanes on an arterial. Crashes 
resulting in injuries generated the most severe scenario observed in the study, with only 
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32% of capacity available for traffic. Similarly, minor crashes with a disabled vehicle 
resulted in a remaining capacity as low as 43% of the arterial directional capacity. (Raub 
and Pfefer, 1998).  
 
Challenges of prediction of duration of incidents are related to relationships between 
vehicle detectors and the event, and difficulties obtaining consistent traffic information 
associated with said event. Using machine-learning and a bi-level prediction framework 
combining classification and regression, Mihaita et al. (2019) analyzed crash reports and 
traffic data (15-minute flows when the crash occurred, one-hour flow before the crash, 
and the ratio between the two metrics) to obtain predictions of incident durations on 
arterials. Also, among other related features, the affected lanes, hour of the day, and 
speed limit are significant factors in the incident duration. Crash duration was obtained 
directly from crash reports (as stated by the officer), showing a skewed distribution with 
an average of 30 minutes and a longer tail to the right including about 10% of records 
with over 100 minutes of duration. Gradient-boosted decision trees and extreme-boosted 
decision trees provided the best performance to classify crash durations as either lower 
or higher than 45 minutes until clearance time.     
 
Several studies have found associations between incident duration and crash 
characteristics. As pointed out by Nam and Mannering (2000), longer crash durations 
were linked to higher severities and greater number of involved vehicles. Additional 
factors increasing clearance time were identified by Chung (2010) for the time of crash; 
by Junhua et al. (2013) when crashes blocked traffic lanes; in terms of season and 
weather conditions by Dimitriou and Vlahogianni (2015) and Vlahogianni and Karlaftis 
(2013); and roadway type by Gu et al. (2021), with crashes taking longer to clear in minor 
arterials compared to urban arterials and collectors. Gu et al. (2021) pointed out that 
previous research has also identified errors in crash duration data given the difficulty to 
observe the crash site from the moment the crash occurred until traffic recovered to pre-
crash conditions (Garib et al., 1997; Khattak, Schofer & Wang, 1995). Use of crash 
duration can be adjusted to reflect the time frame until the response vehicle leaves the 
scene, as various researches did in the past. Their own study reported average durations 
in urban arterials and collectors of less than 80 minutes, with most crashes cleared within 
50 and 100 minutes.  
 
 
This research will address a number of limitations in the literature, mainly the expansion 
of analysis to a corridor or a network-wide scale, where specific locations will be 
monitored beyond current capabilities of installed systems that use ATSPM metrics. In 
addition, the idea of model building and storage is new and recognizes the variability of 
patterns at different locations. These efforts focus on existing techniques, and the 
development of an application that integrates data sources for long-term use by agencies 
and researchers alike.  
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4.0 DATA COLLECTION & MANAGEMENT TOOLS 

Throughout the development of this project, the team considered a number of data 
sources to identify traffic states along urban arterials and to quantify the effects of 
individual, non-recurring events. Initially, and as a result of capabilities of data processing 
at the Utah Traffic Lab, the team proposed use of video images from the state’s traffic 
monitoring CCTV camera network. The cameras cover a significant portion of the network 
managed by UDOT, and at the surface street level they are located at significant 
intersections within the Salt Lake Valley.  
 
The Utah Traffic Lab was equipped to collect video images, so the team proceeded to 
identify key high crash frequency locations, where crashes would be more likely to be 
captured. A total of eight camera feeds were selected and set to record for multiple weeks 
at a time, so the data collection opened opportunities to capture crash events as they 
occurred. As the team received a crash report at one of these locations, the video was 
reviewed to determine if the crash was captured on video. Capturing events in this fashion 
was expected to provide data to quantify the extent of the effects of such events, so the 
team could analyze and characterize them. 
 
As this process continued, it was noticed that the field of view of the cameras was not 
effective at capturing these events, and most of the events provided effective metrics in 
terms of changes in traffic conditions. For example, even in the case that an event was 
captured, the extent of queue or the effects on the approaches upstream of the crash 
were not visible. 
 

4.1 UTAH’S AUTOMATED TRAFFIC SIGNAL PERFORMANCE 
MEASURES (ATSPM) 

 
After a long period of data collection, the team explored different and more systematic 
metrics. At the arterial level, UDOT had rolled out ATSPM, as a result of a joint research 
program that included Indiana DOT, Purdue University, Econolite, PEEK, and Siemens. 
The ATSPM produces metrics to monitor traffic operations, such as traffic volumes, signal 
progression or traffic speed, and presents data analysis outputs using a web interface. 
An example of these outputs is the Purdue Coordination Diagram (Day et al., 2010), to 
visualize the temporal relationship between the coordinated phase indications and vehicle 
arrivals on a cycle-by-cycle basis.  
 
To produce these metrics, the system uses detailed vehicle sensor and signal phasing 
and timing data. Given the large scale of datasets, when such high-resolution data is 
collected, it is essential for the signal control cabinets to be equipped with advanced 
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communications to transfer the data to a storage location. In Utah, this is performed via 
fiber-optic communication, so the system is capable of transmitting raw data for ATSPM’s 
calculation to UDOT’s Traffic Operations Center (TOC), where it is stored and managed. 
A series of standardized codes are defined for ATSPM for the system to identify specific 
sensor calls or signal changes. This protocol is defined by the Traffic Signal Hi Resolution 
Data Logger Enumerations (Sturdevant et al., 2012). 
 
Interfaces from ATSPM allow a user to query the large database stored at the TOC for 
specific metrics at a given signal, date, and time of day. UDOT uses the ATSPM system 
in many different ways, including monitoring arterial networks for signal coordination 
improvements, special events, and even for maintenance requirements as abnormal 
detector data in identified.  
 
A sample image adapted from the ATSPM interface is shown in Figure 4.1, where an 
intersection was queried for traffic volumes over a span of four hours and the figure shows 
plots with these outcomes for the different directions of traffic of interest. In this particular 
case, the image shows volumes for northbound and southbound and with a maximum 
resolution of five minutes.  
 
 

 
Figure 4-1: Sample Image from ATSPM Interface Showing Volumes for 

Northbound and Southbound 

 
Similar outcomes are provided for a number of different metrics, including vehicle arrivals 
in red, delay, turning movement counts, etc. An interesting feature is the visualization of 
vehicle arrivals with respect to the signal cycle, coined as the Purdue Coordination 
Diagram, where an engineer can observe areas of interest for improving coordination and 
overall signal efficiency. Figure 4.2 illustrates an example of the diagram for the same 
intersection and time period shown in Figure 4.1, in this case displaying the northbound 
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direction of travel. The diagram shows the moment within the cycle that each vehicle 
activation is received, where the continuous lines show the beginning of each signal 
indication (color coded for green, yellow, or red). Also, the signal plan is being identified, 
as well as the arrivals on green (AoG), the percentage of green time (GT), and the platoon 
ratio (PR).   
 
 

 
Figure 4-2: Sample Image of the Purdue Coordination Diagram 

 
However, a significant drawback of these interfaces is evident when additional details or 
data post-processing is needed for custom analysis. For example, the data to produce 
the Purdue Coordination Diagram or the traffic volumes is not available as a summary in 
an output that can be consumed. Extracting details from the default plots is not practical 
and, thus, an analyst is limited to visualizations and manual processing of each individual 
approach. Furthermore, a combination of adjacent locations for comparison purposes is 
also difficult at levels finer than standard ATSPM metrics, such as those listed for the 
Purdue Coordination Diagram.  
 
Fortunately, sometime after UDOT launched the main set of interfaces, it made available 
a password-protected extension for downloading raw controller data using the Logger 
enumerations mentioned above. In combination with the documentation to decode the 
enumerations, as well as the mapping of detector and signal phasing from each 
intersection, raw datasets could allow an analyst to expand data exploration in any 
research direction. 
 
It is noted that the main interfaces also provide the mapping of sensors for each of the 
approaches and the signal phases. For example, for a specific approach, say the 
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4.2 CRASH DATASETS 

A second piece essential to the analysis in this project is related to crash data and, in 
particular, to detailed reports beyond typical crash-level information. The team has direct 
access to complete crash records in the state and, in fact, is responsible for the content 
management system that produces local and state-wide data and metrics to local and 
regional agencies. These functions are part of the Utah Transportation and Public Safety 
– Crash Data Initiative (UTAPS-CDI), and constitute a significant capability in terms of 
crash and event analysis. 
 
As part of UTAPS-CDI, the team can produce internal queries to verify and cross-validate 
crash event details not always available to third parties. First, the team verifies the precise 
location of all crash records in the state, ensuring that coordinates, route numbers, and 
mileposts correctly represent those of the actual crash event. Location information in the 
original crash reports is the most commonly reviewed set of items, as a significant 
percentage of records would need coordinate updates and, most importantly, because 
the records are not by default associated to a centerline within the state’s GIS roadway 
layers. 
 
Second, the team has access to all coded values related to the vehicle files, including 
their maneuver, manner of collision, and direction of travel. While these fields are 
commonly available from the state’s databases, the UTAPS-CDI team can verify this 
information with the help of detailed narratives of events as written by the officers in the 
complete reports. It is noted that while the team can internally verify such details, 
narratives are restricted and not available for consumption outside of the UTAPS-CDI 
repositories.  
 
Lastly, crash diagrams are also available to the team and play an important role when 
confirming the point of crash in relation to roadway features, help verify the vehicle’s travel 
directions, and point out the resting places of vehicles within the intersection area.  
 
Different from standard crash-related analyses conducted at an intersection level, 
elements such as the travel direction are key to correctly assign or review potential 
crashes for analysis. For example, if there is interest in events along a specific corridor 
because of potential effects on the main road, the travel direction of a left-turning vehicle 
may indicate the direction before or after the maneuver is completed. The two possible 
situations result in a very different crash event of the vehicle. Consider the case of a 
northbound vehicle turning left against opposing through traffic traveling southbound. If 
the direction of the turning vehicle is coded as westbound (i.e., after the turn is 
completed), then the crash could be interpreted as involving a vehicle traveling west and 
turning left towards the south direction.  
 
Thus, overall, the team had a very favorable level of access to detailed data that could be 
essential to characterize the effects of events in the network. 
 
 



22 

4.3 DATA INTEGRATION AND PROPOSED FRAMEWORK 

Access to both raw datasets from ATSPM and crash data allowed the team to analyze 
the two data sources together. First, identification of a crash of interest can be done from 
a custom query builder developed by the team as part of UTAP-CDI. Then, exports will 
feed scripts coded in R to read the crash information, and process raw datasets from 
ATSPM to investigate changes in traffic flow in terms of volume rates, arrivals with respect 
to the signal timing, and occupancy.  
 
Moreover, the team envisions the integration of these tools in a process that allows for a 
framework to monitor for traffic flow anomalies in the network. Such tools would help 
operators to understand not only instances of non-recurring events, but also previously 
unidentified disturbances outside of expected fluctuations.  
 
A general overview of the framework is shown in Figure 2.1, where the data elements 
described above are integrated to produce a monitoring system along a specific corridor. 
ATSPM outputs could enable capabilities to monitor traffic through alerts using 
performance thresholds, but no explicit public-facing mechanism is currently in operation 
to maintain models or to provide dynamic thresholds for this purpose.  
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5.0 DATA ANALYSIS 

 
After the identification of datasets necessary to build a framework to analyze non-
recurrent events on arterials, the team began an exploration of potential sites for analysis, 
and experimenting with the steps to post-process the raw ATSPM datasets.  
 
As described above, the team used custom processes to manage the enumerations in 
the raw datasets. A number of metrics were identified as having potential to flag variations 
in traffic patterns as a result of a crash event, including traffic volume over a given time 
window (ranging from five- to 30-minute windows), variations in a measure of speed, and 
variations in arrivals or in occupancy at the stop bar. 
 
The process starts with the identification of sites with minimum detection requirements 
for the analysis. Individual movement volumes can be captured at stop bar and advance 
counting zones, so either one of these channels could be used in the analysis. In our 
case, preference was given to stop bar counting zones, particularly for through 
movements along the subject arterial, but both locations are recommended to be used 
for a more complete picture in cases where queues can reach the detector zones.  
 
In addition, presence zones can be used to estimate proxy metrics for speed and 
occupancy. Speed can be approximated by the duration of the detection calls during the 
green indication, and after discarding a few seconds from the start of the phase where 
vehicles could be experiencing start-up loss time (e.g., queues are being processed at 
rates lower than a typical saturation headway). In addition, vehicle arrivals could also be 
investigated by analyzing the distribution of vehicle spacing at the presence zones.  
 
A significant portion of intersections investigated in the ATSPM system in Utah had lane-
by-lane stop bar zones (both presence and count zones) as well as count capabilities for 
the complete approach at the advance locations. It is noted that most vehicle detection 
along arterials is collected for ATSPM using microwave detection, as opposed to inductive 
loops or video detection systems. 
 

5.1 SAMPLE LOCATIONS FOR ANALYSIS 

The team identified available corridors to explore the data integration. Given that 
ATSPM operates on a large proportion of the intersections managed by the state, the 
number of intersections suitable for testing was considerably large. This is also further 
indication of the significant potential of the proposed monitoring framework. 
 
The team settled on the 700 East corridor along an important arterial in the north-south 
direction of the central-city area within Salt Lake City. Figure 5.1 shows the selected 
corridor inside the dashed box of the zoomed-in area, together with other ATSPM 
locations in the Salt Lake Valley pointed by the blue markers.  
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Figure 4-1. ATSPM Locations in the Salt Lake Valley and Focus Corridor (700 E) 

 
 
Data selection was limited to events between December, 2021 and May, 2022, so the 
team had multiple crashes to evaluate. Within the selected period, there were a total of 
25 crashes within the dashed box in Figure 5.1, where their severity ranged from no 
injury to suspected minor injury crashes. Among those, one pedestrian crash and one 
motorcycle-involved crash were observed. Table 5-1 shows a summary of the crash 
data in the selected sample. 
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Table 1 Selected Crashes for Analysis on 700 E Corridor 

Crash 
Sequence Date Crash Severity Manner of 

Collision Notes 

1 12/10/21 Suspected Minor Injury Angle 
Red light running - At least one vehicle 

disabled 

2 12/15/21 No Injury Rear End 
Not at intersection - no vehicles 

disabled 

3 12/25/21 Possible Injury Angle 
Opposing left-turn - both vehicles 

disabled 
4 1/7/22 No Injury Angle No narrative 

5 1/19/22 Suspected Minor Injury Angle 
Red light running - Both vehicles 

disabled 

6 1/22/22 No Injury Angle 
Opposing left-turn - No indication of 

disabled vehicles 
7 2/11/22 No Injury Single Vehicle  

8 2/27/22 Possible Injury Angle 
Red light running - Both vehicles 

disabled 

9 3/2/22 No Injury Angle 
Opposing left-turn - at least one 

vehicle disabled 

10 3/2/22 Possible Injury Angle 
Red light running - At least one vehicle 

disabled 

11 3/25/22 No Injury Angle 
Opposing left-turn - both vehicles 

disabled 
12 3/30/22 Suspected Minor Injury Angle Opposing left-turn - motorcycle 
13 4/7/22 No Injury Rear End No narrative 
14 4/8/22 No Injury Single Vehicle Pedestrian crash - no injury 
15 4/12/22 Possible Injury Sideswipe No narrative 
16 4/18/22 Possible Injury Rear End No vehicles disabled 

17 4/18/22 Possible Injury Angle 
Opposing left-turn - both vehicles 

disabled 
18 4/22/22 Suspected Minor Injury Single Vehicle  

19 4/24/22 Suspected Minor Injury Angle Red light running - Both vehicles 
disabled 

20 4/28/22 Suspected Minor Injury Angle 
Red light running - Both vehicles 

disabled 
21 5/3/22 Possible Injury Rear End One vehicle disabled 
22 5/6/22 No Injury Rear End No vehicles disabled 
23 5/19/22 Possible Injury Rear End No narrative 
24 5/20/22 Possible Injury Single Vehicle No narrative 
25 5/23/22 No Injury Sideswipe Minor crash with emergency vehicle 
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5.2 DATA EXTRACTION AND POST-PROCESSING 

 
Direct extraction of datasets from the ATSPM interface is straight forward and only 
requires identifying the signal controller ID from a master list embedded in the HTML of 
the platform, or by manually selecting a single location from the provided map. 
 
Extraction of metrics requires prior mapping of the detector channels and decoding of the 
logged enumerations. For example, event code 82 indicates a “Detector On” status and 
event code 81 provides the corresponding “Detector Off,” so for the same detector 
channel a sequence of timestamped activations and deactivations can be processed.  
 
So, by accounting for all activations along through movements within a time frame, the 
framework can piece together traffic flow patterns at a given location. Moreover, data from 
multiple days can be combined to generate time-series from such volumes. 
 
Let’s take an intersection part of the selected sample corridor as an example. In particular 
we discuss traffic flows for the intersection of 700 E and 600 S, which has included in the 
selected area from Figure 5.1, and is shown in Figure 5.2. At this intersection, 700 E runs 
in the north-south direction and has a symmetrical cross-section with three through lanes 
and exclusive left turn and right-turn lanes in both directions. Similarly, the minor street 
(600 S) has two through lanes in the eastbound, one through lane in the westbound, and 
both directions have exclusive left and right through lanes.  
 
 

 
 

Figure 5-2. Aerial View of Sample Intersection at 700 E and 600 S 
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To illustrate the proposed fram
ew

ork, Figure 5.3 show
s the northbound 30-m

inute traffic 
flow

 at 700 E and 600 S, w
here m

ultiple w
eekdays can be seen together for continuous 

24-hour periods. It is noted that standard ATSPM
 interfaces do not provide capabilities to 

develop this analysis, so custom
 post-processing is needed.  

  

 
Figure 6-3. 24-H

our W
eekday Vehicle Flow

 Pattern – N
orthbound of 700e &

 600s 

 Also, note from
 Figure 5.3 that a potential new

 pattern is observed the last day of the 
series at som

e point tow
ards the end of the m

orning. This w
as actually the result of a 

crash event that w
as further investigated. Based on details from

 the crash report, the 
m

anner of collision of this crash w
as classified as an “angle”, and resulted in a disabled 

vehicle resting in the m
iddle of the intersection w

ith one suspected m
inor injury.  

 A different perspective of the sam
e intersection approach is seen in Figure 5.4, w

here 
data from

 the sam
e days are displayed for a tim

e w
indow

 betw
een 9 a.m

. and 1 p.m
., 

covering the period w
here the event is observed. It is now

 m
ore apparent that an event 

occurred on 12/10/21. Tw
o m

ain observations are draw
n from

 the figure. First, traffic 
flow

 patterns are highly consistent betw
een w

eekdays from
 the sam

e tim
e period, 

seasonality, and isolated from
 w

eather events, as expected. Second, the process is 
suitable for event identification given an algorithm

 that can identify a baseline trend and 
a confidence interval.  
 In addition, as the team

 gathered crash events and review
ed com

plete crash records, 
including diagram

s and narratives from
 this and other locations am

ong the 700 E 
corridor, it w

as apparent that incident signatures (or the effects of cashes) could vary 
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from
 seem

ingly large effects along the corridor to no m
easurable effect in term

s of 
changes in traffic flow

. 
 

 

 
Figure 7-4. 4-hr Tim

e W
indow

 Vehicle Flow
 Pattern – N

orthbound of 700e &
 600s 

 
It is noted that valuable inform

ation w
as extracted in part from

 the narratives and 
diagram

s contained in the crash reports. For exam
ple, Figure 5-5 show

s the crash 
diagram

 for the crash event on the last day of Figure 5-4, w
here the narrative also 

indicated that one of the involved vehicles w
as disabled and resting in the m

iddle of an 
intersection.  
 

 
 

Figure 8-5. C
rash D

iagram
 from

 Sam
ple C

rash
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Additional metrics were also explored to identify complementary flags that could help 
identify changes in traffic patterns. Even if traffic flow is being processed at a given rate, 
perhaps disturbances could be measured in terms of speed or density variations. 
Preliminary exploration showed that meaningful outcomes could be produced from such 
metrics and are also subject to the same metrics and time-series analysis described 
below for vehicle flows.  
 

5.3 TIME-SERIES FORECASTING IN THE PROPOSED FRAMEWORK 

    
A number of approaches can be implemented to forecast or “backcast” time-series data, 
ranging from traditional parametric approaches including ARIMA methods to simulation, 
or non-parametric methods using machine-learning. Automation of such processes was 
considered in the analysis, as well as the flexibility to capture a wide range of daily 
traffic patterns.  
 
Taking advantage of advances in machine-learning, an application based on Long 
Short-Term Memory (LSTM) was used to demonstrate a time-series forecast process 
that can be implemented in the framework and can be operated while online. LSTMs 
are part of the larger recurrent neural networks field and can be characterized by their 
ability to learn patterns and sequences of unknown length (Malhotra et al, 2015). In 
particular for anomaly detection in time-series data, LSTM networks prevent issues with 
varying or decaying gradients over time by using multiplicative gates that maintain error 
flows through the states of “memory cells.” Significant documentation on LSTM has 
been produced in the literature, including detailed descriptions of the network 
formulations (Graves et al., 2013).    
 
LSTMs have recently remerged in the transportation field as efficient methods to 
forecast or impute traffic demands and calculate crash risk (Zhuo et al., 2017; Abbas et 
al., 2018; Mackenzie et al., 2018; Yuan et al., 2019; Saroj et al., 2021), particularly for 
applications with a focus on online monitoring, resource intensive, and big data 
processing. Therefore, LSTMs hold promise for the development of traffic pattern 
models that can be updated online as the system receives newly captured data from 
traffic controllers in the field.  
 
It is noted that the main objective of using LSTMs is to characterize and maintain up-to-
date patterns under common conditions using recent historical data, so that a baseline 
is available for detection and quantification of potential events in the network.  
 
In our discussion, the use of LSTMs can be mainly thought as a tool for traffic demands, 
but their application extends to other measures of performance discussed above, 
including speed and occupancy estimates from detector data, as well as expected 
signal progression at different times of day.  
 
The implementation of LSTM within the proposed framework followed an open source 
code implementation using the deep learning KERAS library in combination with 
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TENSORFLOW. Although these libraries were originally python-based, the particular 
implementation used in this project was based on the R versions of the libraries (Keras 
and Tensorflow v. 2.9.0). 
 
To explore the implementation of LSTMs in our context, inputs for network training and 
forecasting were based on historical vehicle flows arriving at a subject intersection. Both 
five-minute and 30-minute aggregation intervals were explored. Sample sizes from 
multiple days were used for training, with a minimum of eight days from the nearest 
neighbors to be selected for model building. For example, if the system is about to scan 
traffic patterns for anomalies using data for a Thursday, the eight most recent weekdays 
will be selected or, in the case of delayed estimates, the four weekdays before and four 
weekdays after said Thursday are used. It is noted that traffic patterns with high 
variability may require additional training data, but typical recurrent patterns along 
arterials showed consistent results following this data selection. 
 
Among different parameters in the LSTM formulation, the layer size provides an 
indication for the model complexity. Larger layer sizes are capable of producing larger 
weight combinations and more precise patterns, but with a risk of overfitting the training 
data if the network is much larger than needed. Standard network sizes were deemed 
appropriate for the application at hand, where a layer size of 50 was enough to replicate 
observed patterns when traffic volumes were aggregated at five-minute and 30-minute 
intervals. Figure 5-6 illustrates the progression of the model and its ability to reproduce 
greater details with an increase in the layer size. However, almost negligible benefits 
are observed above a layer size of 50.  
 

 
 

Figure 9-6. Effect of LSTM Layer Size on Reproduction of Detailed Vehicle Flow 
Patterns 
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To evaluate the implementation of LSTM for event detection, a k-fold cross validation 
approach was followed and produced performance measures when comparing model 
predictions with observed data points. This allowed for a quantification of the expected 
model accuracy based on historical input data and, therefore, to evaluate newly 
collected data in light of such expectations.  
 
Figure 5.7 shows three standard metrics of model performance and their relative 
spread, and a second series indicating the actual evaluation of a data point from a day 
with a confirmed crash event. The measures of performance are standard practice to 
model evaluation and included the mean absolute error (MAE), mean absolute 
percentage error (MAPE), and root mean squared error (RMSE), defined as follows: 
 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

1

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
100
𝑛𝑛

�
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

𝑛𝑛

1

 

 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
1

𝑛𝑛
 

 
Where 𝑦𝑦𝑖𝑖 is a value observed in the time-series and 𝑦𝑦𝚤𝚤�  is an estimated time-series value 
from the LSTM model.  
 

It is noted that not all three measures of performance are needed to flag an anomaly for 
the detection to be successful. In this particular case, two of our three measures 
indicate an observation away from the expected performance distribution, pointing to 
potential rules based in a number of minimum flags needed for a positive event to be 
communicated by the system. 
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a) MAE Distribution                                         b) MAPE Distribution  

 
c) RMSE Distribution 

Figure 10-7. Expected Performance of LSTM Modeled Vs Observed Data in 
Relation to Data Point with a Confirmed Crash Event 

 
A similar approach was also followed to evaluate the distribution of individual points 
throughout the time-series. This is different from the central tendency metrics illustrated 
above, and refers to the point locations along the time-series with respect to the 
expected spread based on the LSTM models and their variance. Figure 5.8 shows an 
example of the confidence bands from LSTM and a time-series with a confirmed crash 
event. It is important to highlight that portions of the time-series outside of the 
confidence bands do not necessarily indicate the occurrence of an event, but the 
cumulative proportion of such points may be used as an indication instead. The 
proposed idea is analogous to the analysis performed by the Cramér–von Mises test, 
but applied in the context of a time-series instead of a cumulative distribution function.  
 
Finally, it is noted that measures of performance are not only expected to serve as 
incident detection flags, but also as indicators of incident severity. Likewise, deviations 
found from expected performance can be measures in terms of time, providing a 
measure of event duration. Both severity and duration of the effects of an event could 
also be cross-referenced with confirmed data from detailed crash reports, specially 
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during validation of system performance after the physical deployment of the 
framework.  

 

 
 

Figure 11-8. LSTM Model Confidence Bands and Time-Series with Crash Event 

 

5.4 PLANNED LONG-TERM DEPLOYMENT AND EVENT 
CHARACTERIZATION  
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6.0 CONCLUSIONS AND FUTURE WORK 

Efforts from this project contributed to the development and testing of a scalable 
process to verify, identify, and quantify effects of event data on traffic flow by integrating 
high-definition vehicle detector activations/deactivations and traffic signal data, in 
combination with detailed crash data. The framework is centered on a flexible 
application for surface streets, using open source code that can incorporate database 
connections, access to API services, and powerful libraries to model time-series from 
traffic data using machine-learning.  
 
The team used newly available high-definition datasets from the Automated Traffic 
Signal Performance Measures (ATSPM) as one of the main assets for the application. 
ATSPM provides unique opportunities for research and its use is currently limited to 
unscheduled monitoring of traffic operations, with limited applications in the safety 
domain. The infrastructure, communications system, and data collection and 
management behind ATSPM required significant asset acquisitions and needs large 
operation expenses. Thus, leveraging such resources for extended applications 
provides significant added value at a very low cost. 
 
The framework deployment within the University of Utah network will also leverage 
existing resources associated with the Utah Transportation and Public Safety – Crash 
Data Initiative (UTAPS-CDI), which is a continuing effort between the Utah DOT and 
Department of Public Safety and, thus, is an ideal set-up in terms of personnel expertise 
and to ensure project continuation.  
 
Today’s automated applications and system response programs based on incident 
detection are exclusive for freeway systems, and to the authors’ knowledge, there are 
no similar initiatives underway to integrate detailed crash records, high-resolution 
ATSPM datasets, and efficient algorithms to produce an arterial monitoring system with 
a strong safety component. Therefore, the framework proposed through this project 
paves the way for new avenues for research with a strong technological component that 
can adapt to new data sources and advances in connectivity.  
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