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The cause of backscattering in the Rayleigh angle has first been explained by means of finite beam
models in which there are inherently present backward traveling components that explain the
backscattering effect. Later, the nature of backscattered sound was proved to consist mostly of
incoherent sound due to material anomalies. The present work shows that besides the well known
real Snell’s law: i.e., continuity of the frequency and continuity of the wave vector component along
the interface, there is also the possibility of a complex solution of Snell’s condition of continuity.
The latter shows that it is possible that a part of the incident sound gets reflected into nonspecular
directions including the backscatter direction. Furthermore, it is shown that this sound must have a
different frequency than the incident frequency. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1756675#

One of the most obscure phenomena in acoustics is per-
haps that of seriously increased backscattering at the Ray-
leigh angle.1,2 The most famous experiments of backscatter-
ing have been performed by de Billyet al.3 Their results are
shown in Fig. 1. The authors are aware of two theories that
explain this phenomenon numerically. The first is the appli-
cation of the Fourier theory to describe bounded beams.
They almost always include some plane waves that travel in
a backward direction.4–6 These backward traveling waves
are able to mathematically describe a backscattering phe-
nomenon. The smaller the beam, the more backward waves
are present when the backward scattering increases for
smaller beams. The latter has been observed experimentally.4

Second, it was assumed that backscattering occurs due to
material defects such as dislocations and surface
irregularities.7,8 All of these ‘‘anomalies’’ are generating in-
coherent backscattering in all directions. At the Rayleigh
angle, the backscattering power increases due to higher par-
ticle velocities near the surface. The increase of the measured
backscattering amplitude for narrower beams follows di-
rectly from its incoherent nature. In Refs. 7 and 8, it is as-
sumed that backscattered sound contains only incoherent
waves and contains no coherent waves at all. This letter ar-
gues that this belief is doubtful.

We consider sound incident on a plane interface between
a fluid and a solid. A schematic view and definition of Car-
tesian axes is shown in Fig. 2. The mathematical framework
of what follows depends on ultrasonic complex inhomoge-
neous harmonic waves.9–12 It will be shown that within this
framework, it is possible that coherent backscattered sound
exists having a frequency that differs from that of the inci-
dent sound.

Snell’s law can be found in many versions that are all

equivalent to each other.
For a plane wave

u5Pexp~ ik inc"r2 iv inct !, ~1!

incident on r5xex , Snell’s law states that for a reflected
plane wave

kx5kx
inc and v5v inc. ~2!

For complex inhomogeneous harmonic waves,9–12 this has
been generalized to the case where the wave vector and the
frequency are both complex, whence for

k5k11 ik2 ~3!

and

v5v11 iv2 , ~4!

a!Author to whom correspondence should be addressed; electronic mail:
nicof.declercq@ugent.be

FIG. 1. Experimental results taken~from Ref. 3! for the amplitude of the
backscattering coefficient for a water–stainless steel interface as a function
of the angle of incidence.
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the generalized law of Snell~also called the generalized law
of Snell–Descartes! then becomes

k1,x5k1,x
inc ~5!

k2,x5k2,x
inc

and

v15v1
inc ~6!

v25v2
inc .

This generalized Snell’s law does not predict backscattered
sound.

An extension of Snell’s law actually should not start
from Eq. ~2!, but from Eq.~1!. Hence, we must consider the
foundation of Snell’s law. This is done by demanding conti-
nuity of the argument of the exponential function in Eq.~1!,
whence

~kxx2vt !5~kx
incx2v inct ! ~7!

from which

~k1,xx2v1t !5~k1,x
incx2v1

inct ! ~8!

~k2,xx2v2t !5~k2,x
incx2v2

inct !.

Combining both equations in Eq.~8! leads to

~k1,x2k1,x
inc!~v2

inc2v2!xt5~k2,x2k2,x
inc!~v1

inc2v1!xt. ~9!

Relation~9! is equivalent to Eq.~8! only if each value con-
tained in the brackets differs from zero. Furthermore, by de-
manding that Eq.~9! must hold for each point in space-time
~just as is done for the well known real solution of Snell’s
law!, the generalized Snell’s law becomes

~k1,x2k1,x
inc!~v2

inc2v2!5~k2,x2k2,x
inc!~v1

inc2v1!. ~10!

If this condition does not hold, then the real solution holds;
i.e. Eqs.~5! and~6! are valid. If the condition does hold, then
it is seen from Eq.~10! that there is a possibility for changing
frequencies and changing wave vectors.

These generalized solutions have always been neglected,
but they may become important in solving the backscattering
phenomenon. First, it must be made clear that in nature, ev-
ery possible solution is a solution. The total solution must be
found as a linear combination of all possible solutions. For
the reflected sound, there are six unknown variables; i.e.,
k1,x , k1,z , k2,x , k2,z , v1 , andv2 . There are three degrees of
freedom, while one variable can be determined from the gen-
eralized Snell’s law~10! or if the three freely chosen vari-
ables lead to one or more brackets being zero in Eq.~10!,
then the usual Snell’s law@Eqs.~5! and~6!# needs to be used,

while the remaining two unknown variables can be found
from the dispersion relation for bulk waves, i.e.,

k"k5S v

n
2 ia0D 2

. ~11!

Often one works with the complex slowness vector,9–12 i.e.,

k5vS→H k15v1S12v2S2

k25v2S11v1S2
. ~12!

Then, Eq.~11! becomes

~v1
22v2

2!~S1
22S2

2!24v1v2S1"S2

5
1

n2 ~v1
22v2

2!12
v2

n
a02a0

2 ~13!

and

v1v2~S1
22S2

2!1~v1
22v2

2!S1"S25
v1v2

n2 2
v1

n
a0 . ~14!

Therefore, the reflected sound field is written as a linear
combination of all possible solutions:

u5E
2`

1`E
2`

1`E
2`

1`

A~k1,x ,k1,z ,v1!$~12d!P

3expi ~~k1,x1 ik2,x!x1~k1,z1 ik2,z!z2~v11 iv2!t !

1dPexpi ~~k1,x
inc1 ik2,x

nc !x1~k1,z
inc1 ik2,z

inc!z

2~v1
inc1 iv2

inc!t !%dk1,xdk1,zdv1 , ~15!

whered is unity whenever the generalized Snell’s law does
not hold and is zero otherwise. When backscattering occurs,
sound returns to the receiver, whence

~k1,x52k1,x
inc! and ~k1,z52k1,z

inc! ~16!

and from Eq.~10! this means that

v25~v12v1
inc!k2,x

inc/k1,x
inc1v2

inc . ~17!

Hence, for the backscattered sound field only, Eq.~15! be-
comes

uBS5E
2`

1`

A~2k1,x
inc2k1,z

inc ,v1!3$~12d!Pexpi ~~2k1,x
inc

1 ik2,x!x1~2k1,z
inc1 ik2,z!z2~v11 iv2!t !%dv1 .

~18!

In other words, for all real frequenciesv1 that result in the
generalized Snell’s law, i.e.,d50, Eq. ~18! will be different
from zero. There will be real frequencies present in the back-
scattered sound that differ from the incident real frequency.
This means that besides the non-coherent backscattering hav-
ing the same frequency as the incident frequency, it is physi-
cally possible that other frequencies are also present due to
coherent backscattering, as a consequence of the generalized
Snell’s law.

Nevertheless determining the coefficientsA(k1,x

k1,z,v1) numerically is something that can only occur if one
considers cases like the usual Snell’s law, since otherwise for
example continuity of normal stress and normal displace-
ment along the fluid-solid interface does not involve enough
equations to find all ~infinitely much! coefficients

FIG. 2. A schematic view of the axes definition and the liquid–solid inter-
face. The propagation direction of sound in the liquid is visualized.
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A(k1,x ,k1,z ,v1). This is a major problem. However, the the-
oretical possibility of having coherent backscattered sound
with different frequencies than the incident frequency is
hereby proven. This means that whenever in reflection/
transmission phenomena one observes different frequencies
than the incident frequency, this phenomenon should not au-
tomatically be attributed to nonlinear effects, but perhaps
also to the generalized Snell’s law.

In this letter, it is shown that there is the possibility that
sound is backscattered at frequencies different from the inci-
dent frequency. This effect is not due to any nonlinearity, but
due to a generalized form of Snell’s law. The total sound
field is then an integration over all these frequencies and also
contains the solutions that are always considered, i.e., the
solutions of the usual Snell’s law. It is therefore shown that
even though noncoherent backscattering is probably the most
important factor in the backscattering effect, that there is also
the possibility of coherent backscattering due to this gener-
alized Snell’s law. Due to the infiniteness of the number of
solutions of this generalized Snell’s law, it is not possible to
perform exact numerical simulations. However this does not

harm the theoretical finding that frequency shifted coherent
backscattering must be a topic of further research in the near
future.
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